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In this work we address the application of pseudopotentials directly on high-order lattice Boltzmann models.
We derive a general expression for the pressure tensor on high-order lattices considering all nonideal inter-
actions, including intra- and intermolecular interactions, following the discrete lattice theory introduced by
X. Shan [Phys. Rev. E 77, 066702 (2008)]. From the derived expression a generalized continuum approximation,
truncated at fourth-order isotropy, is obtained that is readily applicable to high-order lattices. With this, we
demonstrate that high-order lattice models with pseudopotentials can satisfy thermodynamic consistency. The
derived generalized expression and continuum approximation are validated for the case of a flat interface and
compared against the standard definition available from the literature. The generalized expression is also shown
to accurately reproduce the Laplace experiment for a variety of high-order lattice structures. This work sets the
preliminary steps towards the application of high-order lattice models for simulating nonideal fluid mixtures.

I. INTRODUCTION

Microscopic fluid dynamic problems often involve various
processes including mixing, separation and sorting of cells and
particles in heterogeneous mediums, at high throughputs [1, 2].
Many of these applications involve fluid mixtures, a system
composed of various species and/or phases. The inclusion of
either various phases and/or species results in the fluid, as a
whole, deviating from the conventional ideal-fluid definition
(where competing interactions are absent). Understanding the
physical phenomenon at the microscopic scale is still limited
despite the well-established advantages of potential applications,
such as microfluidic devices [1]. Computational methods have
the ability to describe such a phenomenon and provide a detailed
description of transport properties that are not observable and
quantifiable through experimentation [3, 4]. The challenge
facing computational modeling of the various microscopic fluid
dynamic systems is the inclusion of multiple components and
their intra- and intermolecular interactions.

The lattice Boltzmann (LB) method has recently gained
tremendous popularity, with potential qualities that are attractive
to microscopic fluid dynamics including accuracy, adaptability
[5] and scalable parallel computations [6]. The LB method
is also an attractive alternative to Navier-Stokes (NS) based
numerical methods for simulating microfluidic applications
[3, 5, 7]. Shan et al. [8] demonstrated that higher-order LB
models has the ability to describe hydrodynamics that is beyond
Navier-Stokes capabilities [8, 9]. Therefore, the LB method
have the potential to be used as an alternative to computationally
expensive atomistic methods such as direct simulation Monte
Carlo [10]. For fluid flow problems where Knudsen numbers
(Kn) are near unity, a description of hydrodynamics that is be-
yond the NS representation is required and is achieved through
high-order expansions of the LB equilibrium distribution func-
tion, M> 3. As the general rule for matching the order (M) of
equilibrium distribution to the algebraic degree (N) of precision
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of the lattice structure is N> 2M [8, 11], these flow problems
subsequently require a larger lattice structure [8, 10]. More
methodological details, theoretical proof and more insights
into the methods of choosing orders and corresponding lattice
structures can be found in Shan et al. [8], Chen and Shan [9].

Extensions to the LB method allow nonideal fluids to be
simulated where these extensions are, in general, based on; the
free energy [12] and pseudopotential interactions [13]. Recent
development of the entropic LB (ELB) method, proposed
almost two decades ago in [14, 15], have the potential to extend
the capabilities of the LB method to model complex systems
including, turbulent flow [16] and nonideal fluids as shown in
recent works [17, 18] using the free energy model. In this work,
we are interested in the pseudopotential model first introduced
by Shan and Chen [13], generally referred to as the Shan-Chen
(SC) model, which has consistently been shown to accurately
reproduce complex multi-component systems [19–23] including
sliding droplets on chemical surfaces [24, 25]. It was also shown
in [26] that it is possible to combine the ELB method with the
SC model. The advantage of the SC model is that it allows for
intra- and intermolecular interactions to be modeled directly.
More specifically, the SC model depicts these interactions by
pseudopotentialψ (a function of local density) and an amplitude
G. For this reason transport properties are directly related to ψ
and G; a direct link to the macroscopic fluid equations can be
derived using the Chapman-Enskog analysis as shown by the
inventors Shan and Chen [13] in their succeeding works [27–29].
This analysis requires knowledge of the interaction pressure
tensor, which, in a nonideal fluid, depends on the competing
interactions [30]. The pressure tensor is also required to describe
the dynamics at the fluid interface [31–34]. Despite theoretical
advancements of LB models and pseudopotentials, limited work
addresses pseudopotentials for high-order LB single- and multi-
component models. We believe that one contributing factor
is the difficulties in successful application of pseudopotentials
with higher-order lattice models, which is likely the result of
the undefined form of the interaction pressure tensor.

A pioneering work by Shan [32], using a forcing model
with a lattice structure that conforms with eighth-order-isotropy
gradients, demonstrated that the consequent interaction pres-
sure tensor is dependent on the lattice structure. Shan [32]
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introduced this discrete theory to describe the pressure tensor
by considering its very basic fundamental definition, i.e., the
momentum flux through an area element. From this point of
view, all force vectors directly on the lattice through an infinites-
imal area A in space x will produce a consequent pressure
tensor that in principle can be defined in a discrete form,

∑

P ·A = −
∑

x

F , (1)

where the increase in interaction length or number of interactions
links, or both, will result in an increased number of force vectors
passing through A. Hence, depending on the lattice structure,
different contributions to the interaction pressure tensor are to
considered.

The long-wavelength limit of Eq. (1) is defined by its contin-
uum differential form,

∇ · P = −F , (2)

which can be used to define the continuum link between the
interaction force and subsequent pressure tensor. That is, to
define the interaction pressure tensor in space x the differential
form (2) requires only the knowledge of the interaction force
equation alone, whereas the discrete definition (1) is derived
directly on the lattice structure and requires the exact knowledge
of the contribution from all force vectors passing through A

in space x. Clearly, the differential form is significantly more
convenient to obtain and, since the form of the interaction force
equation is not dependent on the lattice, has the same solution
for any lattice model. In the limited literature where pseudopo-
tentials are applied on high-order lattice models, including [26]
and more recently [35], the differential form [Eq. (2)] is used to
describe the interaction pressure tensor. The same was done
in [30], which used the same eighth-order-isotropy lattice as
in [32]. However, as shown in [32, 34, 36], even on the two-
dimensional nine-velocity lattice model (D2Q9), the derived
interaction pressure tensor from the discrete definition in Eq. (1)
is inconsistent with the expression derived from Eq. (2). It
was also noted in [30] that the exact lattice theory exists and
could allow for more accurate calculation of the total momen-
tum flux tensor. A continuum description of the interaction
pressure tensor is still desirable, as it is more computationally
and mathematically convenient, thus allowing the user to define
the relevant transport properties prior to simulations and thus
allowing more precise control of the model [23]. As shown
by Shan [32], with the exact discrete definition, a continuum
approximation of the interaction pressure tensor can be obtained
by approximating spatial derivatives. In essence, in order for
such a solution to be derived for higher-order lattices, the exact
discrete definition of the interaction pressure tensor, based on
Eq. (1), has to be defined first. Evidently, the discrete definition
(1) is paramount for the application of SC pseudopotentials
on high-order lattice models. So far, the eighth-order-isotropy
force interaction model used by Shan [32] originally is the only
lattice structure available in the literature with an exact discrete
definition.

Our work aims to provide a general and programmable
expression of the interaction pressure tensor for higher-order
lattices in line with the discrete definition in Eq. (1) that includes
all forms of interactions required in microscopic fluid dynamic
systems, including intra- and intermolecular interactions.
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FIG. 1: Two-dimensional high-order lattice model constructed
from projection of D1Q7 [37], i.e., a total of 72 = 49 lattice
velocities. We denote this lattice structure by Q49ZOTT,
based on its D1Q7 construction on zero-one-two-three (ZOTT)
velocity, analogous to the zero-one-three (ZOT) construction
used for D2Q25ZOT in [37]. Refer to Appendix A for details.

The paper is structured as follows. In Sec. II we introduce the
general lattice Boltzmann method for nonideal fluids including
the high-order equilibrium distribution function. In Sec. III we
derive the general expression for the discrete interaction pressure
tensor for high-order lattice structures. We then conduct the
continuum analysis in Sec. IV and obtain a generalized solution
for the continuum approximation truncated at fourth-order
isotropy. The thermodynamic consistency is demonstrated
for a single-component liquid-gas system in Sec. IV A. In
addition, the surface tension coefficient is obtained in Sec. IV B.
Numerical experiments and a discussion are provided in Sec. V.
Finally, conclusions are drawn and a future outlook is given in
Sec. VI.

II. LB MODEL FOR NONIDEAL FLUIDS

In the lattice Boltzmann method, the mesoscopic represen-
tation of fluid flow is described by the distribution function.
In this work an athermal third-order M=3 equilibrium distri-
bution function (third-order Hermite polynomial expansion) is
developed following the seminal work in [8] to recover the NS
level of description of hydrodynamics, more specifically, the
momentum dynamics and pressure tensor. This equilibrium
distribution function is then projected on a two-dimensional
high-order (multi-speed) lattice structure. These two elements
combined form the high-order lattice model. This work focuses
on the general application of nonideal fluid using high-order
lattices, with an example of such a lattice structure, denoted by
Q49ZOTT [37], illustrated in Fig. 1 (details provided in Ap-
pendix A). Note that Q49ZOTT can recover up to a fourth-order
equilibrium distribution [37] but is not required for the purposes
of our work here and therefore is neglected. The Q49ZOTT
structure is used here purely for demonstrative purposes, which
will become apparent later in Sec. III.

In a nonideal fluid mixture system, consisting of a number S
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of components, each unique component is defined by its own
lattice distribution f in space x, in each discrete velocity ξα of
all directions ξα : α = 0, ...,Q, at time t. One component φ
has the following evolution,

fφα (x+ ξα, t+∆t) = fφα (x, t)− Ωφα +∆tSφα(x, t). (3)

The left-hand side term in the above, fφα (x+ ξα, t+∆t), is
the constant propagation of particles in space x at each time
interval ∆t. This direct and exact advection of particles, known
as the streaming step, ensures that zero ‘numerical’-diffusion
is generated. This is a clear advantage compared to finite-
difference (or finite-volume) schemes constructed on the basis
of fractional advection. On the far right-hand side of Eq. (3) is
the source term Sφα(x, t), which allows a force contribution, F ,
(such as the nonideal interactions and influences from external
sources) to be included in the collision process. This is coupled
explicitly with the distribution function to conserve the explicit
nature of the LB method in [21, 38],

Sφα =
F φ(ξα − ueq)

ρφc2s
feq,φα , (4)

where the collision term Ωφα in Eq. (3),

Ωφα = ωφ
[

fφα (x, t) +
∆t

2
Sφα(x, t)− feq,φα (x, t)

]

, (5)

relaxes the distribution using the relaxation parameter ωφ =
1/τφ based on the kinematic viscosity ν of the fluid, i.e., νφ =

c2s(τ
φ − 1/2)∆x

2

∆t , where on a discrete lattice ∆x = ∆t = 1.
The sound speed cs is specific to the lattice structure (again,
refer to Appendix A).

Following Shan et al. [8], the systematic procedure to derive
higher-order LB models by expansion of Hermite polynomials,
the third-order expansion yields

feq,φα = wαρ
φ

{

1+
ξα · um
c2s

︸ ︷︷ ︸

1st Order

+
1

2

[
(ξα · um)2

c4s
− (um)2

c2s

]

︸ ︷︷ ︸

2nd Order

+
1

6

ξα · um
c2s

[
(ξα · um)2

c4s
− 3(um)2

c2s

]

︸ ︷︷ ︸

3rd Order

}

, (6)

where wα are the lattice weights and um · um = (um)2. The
density ρφ at each lattice site in spacex is defined by summation
of the distribution fφα (zeroth-order moment). Momentum is
then computed by the sum of fφαξα (first-order moment) and a
shift in momentum due to the additional force contribution.

ρφ =
∑

α

fφα , (7a)

ρφuφ =
∑

α

fφαξα +
∆t

2
F φ. (7b)

To satisfy the total momentum conversation, instead of uφ the
variableum is used in feq,φα [Eq. (6)], which is generally referred
to as the common mixture velocity [39], and is evaluated by

um =

∑S
φ ρ

φuφ · ωφ
∑S
φ ρ

φ · ωφ
. (8)

The total velocity of the fluid mixture (barycentric velocity)

takes the form of u =
∑

S

φ ρ
φ
u

φ

∑
S

φ ρ
φ . More details regarding this

interpretation of this force contribution in the collision, known
as the explicit forcing model, and mixture velocity have already
been covered extensively in a recent paper by [40].

The total momentum flux tensor [30]

PTOTij = P kinij + P intij . (9)

involves contributions from a kinetic part, P kinij , obtained
directly from the lattice distribution (second-order moment)
and additional contributions due to nonideal interactions from
the SC pseudopotential model. Close to equilibrium, the kinetic
part of Eq. (9) can be approximated directly from distributions
[30, 36]

P kinij = ρc2sδij + ρumi u
m
j ≈

S∑

φ

∑

α

feq,φα ξα,iξα,j , (10)

where δij is the Kronecker delta and ρ =
∑S
φ ρ

φ. The term

ρc2s in Eq. (10) is identified as the ideal contribution and the
following term can be defined in relation to um, since at
equilibrium the component-specific velocity (7b) converges
towards the mixture velocity um. Note that, for typographical
convenience, here and throughout this work, we denote the ith
and jth components of tensors (of any rank) by subscripts. The
discrete lattice velocity ξα (rank-1 tensor), due to dependence
on α, is, for example, the ith component, denoted by ξα,i.

In the total momentum flux tensor (9) the kinetic part, as
defined in Eq. (10), is an approximation and may, in addition,
involve higher-order contributions as discussed in [30, 41, 42].
Nevertheless, central to the analysis in this work is the interaction
pressure tensor P intij part of Eq. (9).

III. NONIDEAL INTERACTIONS

The ith component of the force at x due to intra- and inter-
particle interactions in the pseudopotential SC multi-component
model [13] can be defined by

Fφi (x) =−
[

ψφ(x)Gφφ
∑

α

w̃α(|eα|2)ψφ(x+ eα)eα,i

+Ψφ(x)

S∑

ϕ 6=φ
Gφϕ

∑

α

w̃α(|eα|2)Ψϕ(x+ eα)eα,i

]

,

(11)
where G is the interaction strength between components whose
negative (positive) sign defines attraction (repulsion), which
is essentially used as a control variable to achieve various
transport properties. Component-specific pseudopotentials for
intra-interaction (self-interaction) ψ(ρ) and inter-interaction
(cross-interactions) Ψ(ρ), can take various forms depending on
the type of application [23, 30]. For example, a popular choice

is would be [23, 30, 33]: ψφ = ρo[1− e−ρ
φ/ρo ] and Ψφ = ρφ,

where ρo is a constant used to refine the interface resolution [43].
It is interesting to note that

∑

α w̃αψ(x+ ξα)ξα is effectively
the gradient [44], that is, essentially F ∝ −ψG∇ψ. From
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this point of view, it is clear that the intra- and intermolecular
interactions only exist in the bulk phase in the presence of
gradients ∇ρ and when dissimilar components coexist in the
same space x ± ξ (e.g., fluid mixtures and phase interface),
respectively.

An important feature of the interaction force Eq. (11) is
that it is directly applicable on any lattice structure. The term
w̃α(|eα|2) represents weights for the force interaction links
eα in Eq. (11) and does not strictly have to be the same as
the discrete velocity weights wα(ξα). This has traditionally
allowed for the force interaction to be at a specific isotropy order
independent of the lattice structure [see 43]. This is useful
for low-isotropy order lattice structures, such as the popular
D2Q9, which are plagued by spurious currents. The lattice
structure in Fig. 1, and high-order lattice models in general, have
algebraic accuracy of isotropy order of 6 or greater. [This hold
for any lattice model that can completely recover the third-order
equilibrium distribution function Eq. (6). The lattice model with
the shortest lattice structure to comply with this is the D2Q17
model [8].] This will give confidence that spurious currents are
minimized. As such, when using high-order lattice structures,
there may not be any need for a specific force interaction model,
such as the eighth-order-isotropy force interaction model in
[32], and instead the lattice structure is used directly to model
interactions. For this reason, hereinafter, we omit eα and use
the lattice velocities ξα to also define interaction vectors, and
in addition treat w̃α(|ξα|2) ∝ wα(|ξα|2). Furthermore, it
is convenient to ensure certain conditions on the mth order
isotropy coefficient Cm. Here we ensure that the second-order
isotropy coefficient is normalized to unity C2 = δij = 1, which
is achieved by rescaling weights by w̃α = wα/c

2
s (details

regarding isotropy are provided in Appendix B). As a result, the
fourth-order isotropy coefficient C4 is now equal to c2s on any
lattice structure. This allows C2 to remain constant and C4 to
always be equal to the sound speed squared for any high-order
lattice structure.

A. On-lattice Interaction Pressure Tensor

Here we detail the consequent interaction pressure tensor, at
the discrete level, from the nonideal interaction forces Eq. (11)
applied directly on high-order lattices. To be consistent with the
exact lattice theory, we follow Shan [32] and derive a generalized
form that can be used on a variety of high-order lattices. As
mentioned earlier, contributions vary depending on the lattice
and as such we consider the contributions from the symmetry
group individually. Symmetry groups (z) are uniquely identified
by the square length of the vectors z = |ξ1|2, |ξ2|2, . . . , |ξα|2.
Here and throughout this work, we denote by superscripts
variables that are classified to comply with, or be dependent on,
specific symmetry groups, e.g., ξz=2

α or equivalently ξzα ∀z = 2.
The total interaction pressure tensor, P intij , is then the sum of

all Pint(z)ij contributions,

P intij =

S∑

φ

∑

z

Pφ,int(z)ij . (12)

Obviously, the smallest symmetry groups (z ≤ 2) are the
simplest, and are therefore used here as a starting point. We

classify this as a unique subgroup which we denote by z̃,
z̃ := z ∀z ≤ 2. For typographical convenience, we use ψ
to denote any form of pseudopotential and omit explicit fluid-
component φ dependence.

We now follow on directly from the brief introduction in
Sec. I and provide a overview of the key concepts of exact lattice
theory [refer to 32, for more details]. The objective of the exact
lattice theory is to link the force with the pressure tensor at
the discrete level, which compels the principles of Eq. (1) to
be satisfied, that is, to define the momentum flux tensor of
interactions through an infinitesimal area element dA in space
x. This by definition requires P intij dAj to be the ith component
of the sum of all interaction pairs (sum of all interaction force
vectors F ) through dA, i.e., −∑i Fi =

∑

i,j P
int
ij dAj . On a

discrete lattice, the interpretation of this concept is simplified by
considering a horizontal dA(x) and a vertical dA(y) unit area
element along the principle axis of the lattice at x. The pressure
tensor at x is then defined by all possible force vectors passing
through dA(x) and dA(y). The ith component of the total force

through dA(j) is then −
∑

i Fi =
∑

i,j P
int
ij dA

(j)
j . See, for

example, illustrations in Fig. 2a, where the contribution from
the force vectors along ξ25 through dA(x) is clearly equal to

−∑y Fy =
∑

i,x Pintix dA
(x)
x = 0. (Note that the illustrations

in Fig. 2 are elaborated upon later in this section.) A key
observation made in [32] is that along any single ξα the number
of interaction force vectors passing through a unit area element
at any lattice site x is exactly equal to the components of the
interaction vector ξα, namely, the number of force vectors
through dA(x) is ξα,y and through dA(y) is ξα,x. According
to [32], if we consider the case where along ξα all forces
passing through any unit area element are of equal magnitude,
then, from the above analysis, the pressure tensor is defined
by multiplying this magnitude by1 ξαξα. Since it cannot be
guaranteed that over the whole force field all magnitudes are the
same, the average of total forces through the unit area elements
is taken instead [32, 45]. Using nearest neighbors (z̃, where the
interaction range |ξz̃α| ≤ 1) to illustrate this, as done in [32, 34],
we consider all possible forces along a class of vector, in this
case ξl, through any unit area element centered at x. Since
only nearest neighbors are considered, we find that over the
entire lattice at x there is a total of two interaction pairs (force
vectors) through dA(x) or dA(y), or both, i.e., one in which
a particle at x which interacts with a particle at x+ ξl and a
second where a particle at x− ξl interacts with the particle at
x. As a result, the averaged pseudopotential interaction force
magnitude is then defined by (the use of ξl := ξz̃α is strictly
only for the example here)

−Gw̃lψ(x)
ψ(x+ ξl) + ψ(x− ξl)

2
,

where the contribution to the interaction pressure tensor is then,

G
[

w̃lψ(x)
ψ(x+ ξl) + ψ(x− ξl)

2
ξl,iξl,j

]

.

1 It should be that Sbragaglia and Belardinelli [34] demonstrated this link
between the force and pressure tensor from a statistical mechanics point
of view, following the theory of Irving and Kirkwood [45], adopted on the
lattice for z ≤ 2.
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(a) (b)

FIG. 2: Illustration of the force vectors along the vectors ξα that belong to symmetry group z̄ and pass through (bold solid arrows)
the infinitesimal horizontal dA(x) and vertical dA(y) unit area elements (bold red line) centered at x. In reference to the Q49ZOTT
lattice in Fig. 1, force vectors along (a) ξ25 (z̄ = 9) and (b) ξ45 (z̄ = 18) are shown. In both cases, there is a total of six (2Ez) force
vectors contributing equally to their respective interaction pressure tensor, i.e., Pint,z̄=9

ij and Pint,z̄=18
ij . The six force vectors

consist of four different classes of vectors; one (F1) starts and another ends (accounted for along the opposite, ξa) at x, and two
(F2 and F3) pass through x. Labeled force vectors are those to be explicitly considered along each respective ξα. The unlabeled
bold dotted arrows are not considered along vectors ξα but are instead accounted for along the opposite ξa (hence the direction
of arrows) as a result of symmetry and summation around the lattice, for example, in this case (a) ξ27 and (b) ξ47. These are

automatically considered in Eq. (15).

We identify that the terms within the square brackets can be
represented by the sum of all α on the lattice divided by 2,
1
2ψ(x)

∑

α w̃αψ(x+ ξα)ξα,iξα,j , which is possible due to the
symmetry of the lattice structure (e.g., ξ5 = −ξ7 in Fig. 1).
Rearranging according to this, it is possible to rewrite the
above, in terms of the total interaction pressure tensor at x (all
contributions along all ξl on the lattice ξzα ∀z = z̃),

Pint(z̃)ij, (x) =
1

2
Gψ(x)

∑

α

w̃αψ(x+ ξz̃α)ξ
z̃
α,iξ

z̃
α,j . (13)

It is then straight forward to extend this relation to consider
both the intra- and inter-interaction, i.e., in a fluid mixture
of S components, where Eq. (13) for component φ would be
expressed by

Pφ,int(z̃)ij, (x) =
1

2

[

ψφ(x)Gφφ
∑

α

w̃αψ
φ(x+ ξz̃α)ξ

z̃
α,iξ

z̃
α,j

+Ψφ(x)

S∑

ϕ 6=φ
Gφϕ

∑

α

w̃αΨ
ϕ(x+ ξz̃α)ξ

z̃
α,iξ

z̃
α,j

]

, (14)

Equations (14) and (13) for the case of a single fluid system,
are the exact discrete definition of P intij (12) for a standard
lattice, such as the Q9, which satisfies Eq. (1). However,
on higher-order lattices, where the interaction range spans
through multiple lattice sites (ξα,i, ξα,j > 1), there are various
additional force vectors contributing to P intij [Eq. (12)] that are
not captured by Eq. (13).

In order to account for all contributions on any arbitrary high-
order lattice and satisfy Eq. (1), we expand upon the concept

detailed above. First, due to symmetry and the summation
∑

α
around the lattice, we only need to consider half the total number
of force vectors, that is, only those along any single ξα, as done
in Eq. (13). To satisfy these conditions, the basic general rule is
that force vectors along any given vector ξzα ∀z > 2 contribute
to the pressure tensor if they pass through the horizontal dA(x)

or the vertical dA(y), or both, unit area elements centered at
x, which includes if these start at, or pass through, the center
of x. In Figs. 2 and 3 we illustrate contributions accounted
for along each respective ξα (which make up half of the total
contribution) by bold solid arrows and those accounted for
along their opposite ξa (the other half) by bold dotted arrows.
Hereinafter we denote the opposite of any ξα by ξa. Moreover,

we consider Pint(z)ij ∀ z > 2 in two subgroups, which we
denote by z̄ and ẑ, illustrated in Figs. 2 and 3, respectively.
Again we recall the use of superscript z̄ or ẑ to denote variables
that are classified to comply with these subgroups, i.e., ξz̄α
or equivalently ξzα ∀z = z̄. In the following, the Q49ZOTT
lattice illustrated in Fig. 1 will be used as an example (a single
lattice structure for the sake of convenience). Reasons for this
particular lattice will be elaborated upon later.

The first subgroup, which we classify by z̄, considers all
vectors that are purely axial, ξα,i · ξα,j = 0, i 6= j, or purely
diagonal with components of equal lengths, ξα,i = ξα,j . Two
examples of vectors belonging to this first group, ξ25 (z̄ = 9)
and ξ45 (z̄ = 18), are illustrated in Fig. 2, where in both
cases there is a total of six force vectors that consist of four
different classes of vectors (more details in Fig. 2). It can
be clearly seen that along ξ25 there are three (equal to ξ25,x)

force vectors through dA(y) and zero through dA(x) (equal to
ξ25,y) consistent with analysis in [32]. Along ξ45 there is a
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total of three (equal to ξ45,x and ξ45,y) force vectors through

both dA(x) and dA(y). For this reason, in both cases, all
six force vectors contribute equally to the interaction pressure
tensor. First, to account for F1, along any ξz̄α, the same
definition from Eq. (13) can be used and this is true for any
z-group. In what follows we therefore focus on obtaining the
additional contributions that appear when z > 2 (e.g., F2 and
F3). We identify that the number of additional contributions is
defined by Ez − 1, where the scalar variable Ez is the largest
of the absolute value of the components in the vector ξα of
the symmetry group z: Ez = maxα(|ξzα|), ∀α ∈ ξzα. For
example, consider the ξ11 vector of Q49ZOTT where z = 9
(see Fig. 1): E9 = maxα(|ξz=9

11 |) = 3, ∀α ∈ ξz=9
α . The total

number of force vectors, those along ξα and ξa (all bold arrows
in Fig. 2), can then be defined by 2Ez and with this the total
average can be achieved by multiplying all force vectors by
1/2Ez . Furthermore, in Fig. 2 it can be noticed that additional
contributions, F2 and F3 are simply vectors shifted along the
unit vector (Uα)2 along each respective ξzα. Clearly, the total
number of shifts is equal to the total number of additional

contributions, i.e., Ez − 1. It is convenient to view this in terms
of summation, where we have some starting vector (e.g., F3 in
Fig. 2) and then shift progressively in the direction of Uα up to
some final vector (e.g., F2 in Fig. 2). This final vector is always
defined as the additional contribution that resides closest to F1

and is found by shifting by one unit backward (opposite the
direction of Uα), that is, a vector that starts at x− ξα +N and
extends to (ends at) x+N, where N(ξα) = (Ez − 1)Uα. The
starting vector, say, F0, is of course the vector located farthest
away from F1 (e.g. F3 in Fig. 2), where in addition to this we
consider that such a vector cannot end (the tip of the arrow)
at the center x nor shift farther away from the center x (with
respect to Uα). For this reason, F0 will end (the tip of the
arrow) on one of the neighboring or nearest-neighboring nodes
(see, e.g., see the F3 in both Fig. 2 and 3). Fortunately, this
is simply equal to the directional unit vector Uα of each ξzα.
Considering this, F0 can then be defined as a vector that starts
at x − ξα + εβ=1 and extends to (ends at) x + εβ=1, where
we set initially εβ=1 = Uα. This vector εzβ then progressively
shifts along N

z until εzβ = N
z , and as such we can define

εzβ : β = 1, . . . , (Ez − 1).

Considering the above, we can express this z̄-group interaction pressure tensor in the following form,

Pint,(z̄)ij (x) = ψ(x)G
∑

α

w̃α
2E z̄ ψ(x+ ξz̄α)ξ

z̄
α,iξ

z̄
α,j +

∑

α

ε
z̄
β=N

z̄

∑

β

w̃α
2E z̄

[

Gψ(x+ εz̄β) · ψ(x− ξz̄α + εz̄β)ξ
z̄
α,iξ

z̄
α,j

]

, (15)

where the first term on the right-hand side is essentially Eq. (13) and the summation over β, from the initial vector εz̄β up to

the vector Nz̄ , allows for all other contributions of any unit area element to be considered for any ξz̄α. Here the sum over α
implies

∑

α ξα =
∑

z

∑

α ξ
z
α, where in direct reference to Q49ZOTT in Fig. 1 this summation defines

∑

α ξ
z̄
α =

∑

α ξα for
α = 9, . . . , 12, 21, . . . , 28, 45, . . . , 48.

The second subgroup, classified as ẑ, consists of diagonal
vectors with mixed components ξα,i 6= ξα,j and ξα,i, ξα,j 6= 0.
In this ẑ-group, consider the two examples illustrated in Fig. 3,
where we can see that there is a total of six (2Ez) force vectors
contributing to the pressure tensor that consist of six different
classes of vectors. It turns out that with both dA(x) and dA(y)

being centered at x does not allow for contributions from F3

[in Fig. 3a] and F2 [in Fig. 3b] to be identified. To correctly
account for these contributions on the lattice we can instead
rely on the idea that if we consider only the unit area element
for which the greatest number of force vectors pass through
(e.g., the vertical dA(y) in Fig. 3), then force vectors passing
through its orthogonal unit area element (e.g., in this case the
horizontal dA(x)) will also be accounted for. To demonstrate
this, we first recall that from previous analysis along any ξα
the number of force vectors through dA(i) and dA(j) is equal
to ξα,j and ξα,i, respectively. If |ξα,i| = E ẑ , then dA(j) shifts
from the center to now start at x = (0, 0) and end at xj = Uα,i
(where Uα,i is the directional unit vector of ξα, see note2). For

2 The directional unit vectorUα of ξα is defined byUα(ξα) = U◦sgn(ξα),
where ◦ is the Hadamard product, U is a vector of 1’s, i.e., U = (1, 1), and
the notation sgn denotes the signum function, which returns the sign of each
element of the input vector, e.g., sgn(−3, 3) = (−1, 1).

example, as illustrated in Fig. 3, to consider contributions along
ξα, the vector dA(y) is shifted upward (red bold solid line) and
along its opposite ξa, the vector dA(y) is shifted downward
(red bold dotted line). As we can see in Fig. 3, by doing so,
along ξ30, three force vectors (F1, F2, and F3) pass through
dA(y) and only one (F1) passes through dA(x). Along ξ38,
three force vectors (F1, F2, and F3) pass through dA(y) and
two (F1 and F3) pass through dA(x). This is consistent with
previous analysis [32] and the same can be done for the z̄-group
where the same equation (15) will be obtained. Visually, from
Fig. 3, contributions for ẑ appear more complex; however, the
same principles used to obtain Eq. (15) apply here with some
additional conditions.

First, similar to the z̄-group, in this ẑ-group the same defini-
tion from Eq. (13) can be used to account for F1 for any ξẑα. A
condition is required on how vectors are shifted during the sum
over β: Any ith component (where i := x, y) in vector εβ at
β > 1 is shifted (with respect to Uα,i) provided εβ−1,i 6= ξẑα,i;
otherwise the ith component at β > 1, remains as it is, i.e.,
εβ,i = εβ−1,i. This can be clearly seen in Fig. 3a, where F3 (at
β = 1), with ε1,y−ξ30,y = 0, and F2 (at β = 2) are not shifted
vertically and ε2,y = ε1,y. There is also one unique condition
around the additional contribution on vectors ξẑ=13

α , such as
ξ38 in Fig. 3b. As we have identified previously, F3 passes



7

(a) (b)

FIG. 3: Illustration of the force vectors along the vectors ξα (of the Q49ZOTT lattice in Fig. 1) that belong to symmetry group
ẑ and pass through (bold solid arrows) the vertical infinitesimal dA(y) unit area element (red bold solid line). The unlabeled
bold dotted arrows which pass through the red bold dotted line (dA(y)) are accounted for along ξa. In both cases, it is clear
that considering contributions to dA(y) correctly accounts for those passing through the horizontal infinitesimal dA(x) unit area
element (red bold solid line) centered at x. (a) For vector ξ30 there are six (2Ez) force vectors with equal contribution to Pint,ẑ=10

ij .

(b) For vector ξ38 there are also six force vectors, however, they do not contribute equally to Pint,ẑ=13
ij . The contributions to

ẑ = 10 are automatically considered in Eq. (16), whereas those in ẑ = 13 can still be obtained with Eq. (16) but require a unique
condition (Cβ) to correct the different contributions of F2 and F3 (see the text).

through both dA(x) and dA(y) whereas F2 passes through
only dA(y) and therefore they do not contribute equally to
Pint,ẑ=13
ij . To account for this unequal contribution we rescale

these contributions but ensure that the overall average along

ξẑ=13
α will correctly reduce to 1

2 . We assume that F1 retains its
contribution, i.e., 1/2Ez . Since F3 passes through both area
elements we assume that its contribution is Ez/(Ez − 1) = 3/2
greater than F1, and the contribution from F2 is half of F1

since (Ez − 1)− (3/2) = 1/2.

This ẑ-group interaction pressure tensor can be expressed in the following form;

Pint(ẑ)ij (x) = ψ(x)G
∑

α

w̃α
2E ẑ ψ(x+ ξẑα)ξ

ẑ
α,iξ

ẑ
α,j +

∑

α

ε
ẑ
β=N

ẑ

∑

β

Cβ
w̃α
2E ẑ

[

Gψ(x+ εẑβ) · ψ(x− ξẑα + εẑβ)ξ
ẑ
α,iξ

ẑ
α,j

]

, (16)

where we introduce an additional constant Cβ in the second term to account for the variation in contributions. The
modified factor Cβ is required only for ẑ = 13, where during the sum over β, the additional contributions, this factor is ini-
tially set toCβ=1 = 3/2, and thenCβ=(3−1) = 1/2. For any other symmetry group ẑ < 13 this factor is set to unit constantCβ = 1.

Finally, the full form of the general expression for the total interaction pressure tensor due to Eq. (11) including all nonideal
interactions, as done in Eq. (14), is shown here as a single equation. We recall that in both Eqs. (15) and (16) the first term is
essentially Eq. (13), which allows us to define the total interaction pressure tensor (12) explicitly by

P intij (x) =

S∑

φ

∑

z

Pφ,int(z)ij (x) =

S∑

φ

{
∑

α

w̃α
2Ez

(

Gφφψφ(x) · ψφ(x+ ξα)ξα,iξα,j +Ψφ(x)

S∑

ϕ 6=φ
GφϕΨϕ(x+ ξα)ξα,iξα,j

)

+
∑

α

ε
z̄
β=N

z̄

∑

β

w̃α
2E z̄

(

Gφφψφ(x+ εz̄β) · ψφ(x− ξz̄α + εz̄β)ξ
z̄
α,iξ

z̄
α,j +

S∑

ϕ 6=φ
GφϕΨφ(x+ εz̄β) ·Ψϕ(x− ξz̄α + εz̄β)ξ

z̄
α,iξ

z̄
α,j

)

+
∑

α

ε
ẑ
β=N

ẑ

∑

β

Cβ
w̃α
2E ẑ

(

Gφφψφ(x+ εẑβ) · ψφ(x− ξẑα + εẑβ)ξ
ẑ
α,iξ

ẑ
α,j +

S∑

ϕ 6=φ
GφϕΨφ(x+ εẑβ) ·Ψϕ(x− ξẑα + εẑβ)ξ

ẑ
α,iξ

ẑ
α,j

) }

.

(17)

It is noted that Eq. (15) can account for any z̄-group of interac- tions due to summation over β. However, for ẑ-groups of mixed



8

components larger than those shown in Fig. 3 (i.e., ẑ > 13),
Eq. (16) is limited to vectors that have at least one component
equal to one, e.g., ξẑ=17

α = (4, 1) and ξẑ=50
α = (−1,−7). The

reason is that variation in contributions beyond this condition is
not guaranteed, e.g., currently, Eq. (16) cannot account for the
vector ξẑ=20

α = (4, 2). While a generalized solution can likely
be achieved, such work exceeds the purposes of the present
work. However, we note that with our approach presented in
Fig. 3 (and relevant text), it is possible to correctly identify such
contributions. Nevertheless, the general expression (17) allows
interaction pressure tensors to be readily calculated numerically
on a wide variety of lattice structures, including lattice struc-
tures such as Q49ZOTT in Fig. 1, as well as other shorter lattice
structures such as the popular two-dimensional Q17 [8] and
Q37 [46] [which are able to recover the equilibrium distribution
function Eq. (6) up to third and fourth-order, respectively]. In
fact, Eq. (17) is also naturally applicable to high-isotropy-order
forcing models developed initially for purposes of minimizing
spurious currents [47], since Q49ZOTT shares most of the
velocities with the 12th-order isotropy force interaction model
[see 43]. To demonstrate this we apply Eq. (17) [neglecting
cross-interactions] on the popular eighth-order-isotropy lattice
structure (E8), which in fact covers all vectors in the second
layer of the Q49ZOTT (z = 4, 5 and 8) as shown in Fig. 1. As
shown in Appendix C, this leads to the same pressure tensor
contributions derived by Shan [32]. In addition, we point out
that most current methods of constructing high-order lattice
structures operate on the basis of seeking the least populous
group of vectors [48, 49] and as such many high-order lattice
structures do not contain any symmetry groups that comply with
ẑ. Interested readers may refer to [8, 11, 37, 48–50] for more
details on high-order lattice models, and [43, 47] for details
regarding high-isotropy-order forcing models.

Hereinafter we omit dimensional rank and refer to lattice
models by their number of lattice velocities, e.g., Q49ZOTT.
Force interaction lattices that are constructed for the sake of
isotropy order, rather than the sake of recovering Oth-order
terms in the equilibrium distribution function (6), will be
referred to by their order of isotropy, e.g., for 12th-order isotropy
(E12).

IV. CONTINUUM ANALYSIS

To assess and validate the definition of the interaction pressure
tensor Eq. (17) on multiple high-order lattice structures, we need
to obtain a general solution to the continuum approximation. In
addition, as stated in the Introduction, such a solution also allows
more convenient control of the model as it allows for transport
equations to be derived, an important feature that can allow for
high-order lattice models to be more readily applicable. These
include solutions to the coexistence curve, equation of state,
diffusion coefficients, interface profile, and surface tension. To
approximate for the pressure tensor in the continuum limit two
options are available, both of which require spatial derivatives
to be approximated. Following previous work [43, 51], we can
approximate the spatial derivatives by Taylor expansion around

ψ(x± ξα∆t),

ψ(x+ ξα∆t) ≈ ψ(x) + ∆tξα,i∂iψ(x)

+
∆t2

2!
ξα,iξα,j∂i∂jψ(x) +

∆t3

3!
ξα,iξα,jξα,k∂i∂j∂kψ(x)

+ · · ·+Om. (18)

The first option, which is also the traditional approach [43,
51], is to link the interaction force [e.g., Eq. (11)] to the
interaction pressure tensor through the continuum derivatives
using Eq. (2). Note that this also appears to be the most
logical since, as stated earlier, the interaction force Eq. (11) is
directly applicable on any lattice structure. This requires the
approximation of the derivatives represented in

∑

α w̃αψ(x+
ξα)ξα in the interaction force Eq. (11), obtained from applying
the Taylor expansion Eq. (18). We will call this the standard
solution for the continuum approximation of the interaction
pressure tensor. This solution has already been shown in various
previous works [readers may refer to 43, for full details] and here,
for the sake of comparison, we provide the normal component
(i.e., a one-dimensional problem with all gradients in x) of the
standard solution, marked with an asterisk superscript,

P ∗(int)
xx = C2

G
2
ψ2 + C4

G
4

[

2ψ
∂2ψ

∂x2
−
(
∂ψ

∂x

)2
]

. (19)

The second approach is to approximate derivatives in the
interaction pressure tensor at the discrete level directly, i.e., the
derivatives representing the term

∑

α w̃αψ(x+ξα)ξαξα. This
requires the prior knowledge of the discrete ‘on-lattice’ pressure
tensor from the definition Eq. (1). Having now provided
(in Sec. III) a universal definition in Eq. (17), allows for the
second approach to be applied in a generalized way, which we
demonstrate in this section.

Similar to the approach taken in Sec. III, we consider a key
portion of the interaction pressure tensor individually based
on the type of symmetry group. To this aim, as a starting
point for our analysis, we consider any symmetry group z ≤ 2,
which, again, we classify by z̃, and is defined at the discrete
level by Eq. (13). The impact of z̄ and ẑ will be investigated in
detail later in this section. Note that, similar to the preceding
section, for typographical convenience, we use ψ to denote any
form of pseudopotential throughout this section. We apply this
expansion series (18) up to third-order derivatives directly in
the ‘on-lattice’ pressure tensor Eq. (13) and obtain (we omit the
explicit dimensional dependence x)

Pint(z̃)ij =
G
2
ψ
∑

α

w̃αξ
z̃
α,iξ

z̃
α,jψ(x+ ξz̃α)

≈ G
2
ψ

(
∑

α

w̃αξ
z̃
α,iξ

z̃
α,jψ +∆t

∑

α,k

w̃αξ
z̃
α,iξ

z̃
α,jξ

z̃
α,k∂kψ

+
∆t2

2!

∑

α,k,l

w̃αξ
z̃
α,iξ

z̃
α,jξ

z̃
α,kξ

z̃
α,l∂klψ

+
∆t3

3!

∑

α,k,l,m

w̃αξ
z̃
α,iξ

z̃
α,jξ

z̃
α,kξ

z̃
α,lξ

z̃
α,m∂klmψ+ · · ·+Om

)

,

(20)
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where the shorthand notation ∂klm = ∂k∂l∂m is used. Notice
that in this equation we absorbed directly the additional ξα,iξα,j
terms, which come from the ‘on-lattice’ pressure tensor.

If we identify that,
∑

α

w̃αξα,iξα,j · · · ξα,(Om) = Cm△(m)
ij...(Om),

then at any order of isotropy (m) we can remove the sum by the
corresponding coefficient Cm and the isotropic delta function

△(m)
ij...(Om) [43, 52] (refer to Appendix B for details). Given

that the isotropy conditions are already known, odd orders
m = 2n±1 sum to zero (=0) and related derivatives vanish. As
such, we consider only even orders m = 2n hereinafter. We are
now left with zeroth-order and second-order derivatives [where
first-order ∂k and third-order ∂klq derivatives in Eq. (20) vanish
due to the aforementioned odd isotropy orders, namely, the
third and fifth order of isotropy, respectively]. From Eq. (20)
the continuum approximation of the total interaction pressure
tensor (assuming that the entire lattice is made up of symmetry
groups z ≤ 2) is

Pint(z)ij = C2
G
2
ψ2δij+C4

G
2

∆t2

2!
ψ∂klψ△(4)

ijkl. (21)

Under the usual scenario of a one-dimensional problem [refer to
Appendix A in Sbragaglia et al. [43]] with all gradients directed
in x, such that ijkl := x, we obtain the normal component of
Eq. (21),

Pint(z)xx = C2
G
2
ψ2 + 3C4

G
4
ψ
∂2ψ

∂x2
. (22)

We recall that Eq. (20) accounts for only Pint(z)ij ∀z ≤ 2 and is
insufficient to define the pressure tensor on a lattice structure
z > 2. It is however capable of completely describing the
pressure tensor on the Q9 lattice structure. Using Q9 as an
example here with corresponding coefficients C2 = 1 and
C4 = c2s =

1
3 (see Appendix B) substituted into Eq. (22) then

yields,

P intxx =
G
2
ψ2 +

G
4
ψ
∂2ψ

∂x2
, (23)

which was already found in Shan [32]. The result was also
found in Sbragaglia and Belardinelli [34] [see Eq. (13) therein],
where the only difference is the constant 1

6 appearing in front

of the term Gψ ∂2ψ
∂x2 . The different constant is due to the fourth-

order-isotropy coefficient in [34] set to C4/2 = c4s.
Comparing Eq. (23) against the standard continuum approxi-

mation P ∗(int)
xx [Eq. (19)] obtained from the interaction force

Eq. (11) directly, we see that P ∗(int)
xx includes an extra first-

order derivative term ∂ψ
∂x . As mentioned in the Introduction, the

Q9 lattice has insufficient interaction vectors to be consistent
with the theory in Eq. (2) [32, 34]; however, perplexingly, the
on-lattice pressure tensor (13) is exact for z < 2 [34]. Ac-
cording to Shan [32], increasing the interaction range results in
the on-lattice pressure tensor to include this mix of first-order
(∂iψ)

2 and second-order ψ∂ijψ derivatives.
The following question then arises: Does the proposed

general expression (17) produce the correct continuum approx-
imation? We answer the question in the affirmative, which

we demonstrate here. To this aim, we consider the additional
contributions that appear for symmetry groups z > 2, but only
the portions, say, Z ∈ (z̄, ẑ), of the pressure tensor where we
have interaction terms that involve sums of the general form

Pint(Z)
ij (x) = G

∑

α

w̃α
2EZ

[

ψ(x− eAα )ψ(x+ eBα)

]

ξZα,iξ
Z
α,j ,

(24)
where the sum of eAα and eBα , of any form (axial, diagonal, or
mixed), will be equal to the length of ξZα , i.e., |ξZα | = |eAα |+|eBα |.
The above is essentially a simplified general expression for the
two last terms in both Eqs. (15) and (16) with β = 1. Applying
the Taylor expansion to the term in square brackets in Eq. (24)
around (x− eAα ) and (x+ eBα) up to second-order derivatives,

Pint(Z)
ij (x) ≈ G

∑

α

w̃α
2EZ ξ

Z
α,iξ

Z
α,j

×
([

ψ(x)−∆t∂kψ(x)e
A
α,k +

∆t2

2!
∂klψ(x)e

A
α,ke

A
α,l

]

×
[

ψ(x) + ∆t∂kψ(x)e
B
α,k +

∆t2

2!
∂klψ(x)e

B
α,ke

B
α,l

])

,

and multiplying through both sets of expansion, we obtain
(negative signs are already absorbed)

G
∑

α

w̃α
2EZ ξ

Z
α,iξ

Z
α,j

(

(
ψ
)2

+∆tψ

[

∂kψe
B
α,k − ∂kψe

A
α,k

]

+
∆t2

2!
ψ

[

∂klψe
B
α,ke

B
α,l + ∂klψe

A
α,ke

A
α,l

]

−∆t2
(
∂kψ

)2
eAα,ke

B
α,k

+∆t
∆t2

2!

[

∂kψ∂klψe
B
α,ke

A
α,ke

A
α,l − ∂kψ∂klψe

A
α,ke

B
α,ke

B
α,l

]

+

(
∆t2

2!

)2
(
∂klψ

)2
eAα,ke

A
α,le

B
α,ke

B
α,l

)

.

After rearranging and removing odd isotropy orders (that sum
to zero) related to, namely, the product of mixed derivatives
ψ∂kψ and ∂kψ∂klψ, we obtain

Pint(Z)
ij = G

∑

α

w̃α
2EZ

(

ψ(x− eAα ) · ψ(x+ eBα)

)

ξZα,iξ
Z
α,j

≈ G 1

2EZ

(
∑

α

w̃α
(
ψ
)2
ξZα,iξ

Z
α,j

−∆t2
∑

α,k

w̃α
(
∂kψ

)2
eAα,ke

B
α,kξ

Z
α,iξ

Z
α,j

+
∆t2

2!

∑

α,k,l

w̃αψ

[

∂klψe
B
α,ke

B
α,l + ∂klψe

A
α,ke

A
α,l

]

ξZα,iξ
Z
α,j

+

(
∆t2

2!

)2 ∑

α,k,l

w̃α
(
∂klψ

)2
eAα,ke

A
α,le

B
α,ke

B
α,lξ

Z
α,iξ

Z
α,j

)

.

(25)

We now have terms related to the second, fourth, and sixth order
of isotropy and consequently obtain zeroth-, first-, and second-
order derivatives.3 Most important is that the first derivative,
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∂k, which previously vanished due to odd isotropy order in
Eq. (20), is now present as a result of the increase in isotropy
gradient. As such, the following continuum approximation of
Eq. (24) in general form is

Pint(Z)
ij =

G
2EZ

(

C2ψ
2δij − C4∆t

2(∂kψ)
2△(2)

kk△
(2)
ij

+C4
2∆t2

2!
ψ∂klψ△(2)

kl △
(2)
ij +C6

∆t4

4

(
∂klψ

)2△(4)
kkll△

(2)
ij

)

,

(26)

where Cm are unique coefficients for P(Z)
ij that describe the

fragment of coefficients from the contribution from a portion Z
of sum lattice weights at any given order of isotropy (m), i.e.,
∑

α w̃αeα,(Om−2)ξ
Z
α,iξ

Z
α,j = Cm△(m−2)

···Om−2△(2)
ij .

For the sake of completeness, the normal component of
Eq. (26) is

Pint(Z)
xx =

GC2

2EZ ψ
2 +

GC4

2EZ

[

ψ
∂2ψ

∂x2
−
(
∂ψ

∂x

)2
]

, (27)

where in order to directly compare against Eq. (19) we have
left out the sixth order isotropy related to the term (∂ijψ)

2.
Evidently, we have demonstrated that indeed the additional
contributions, i.e., ψ(x− eAα ) · ψ(x+ eBα), that are present at
interaction range z > 2, introduce an additional derivative in
the interaction pressure tensor.

Upon summing all contributions from all various symmetry
groups z [i.e., Eq. (12)], including the additional contributions

P(Z)
ij [such as Eq. (26) above], then C2/2EZ will reduce to
∑

Z C
(Z)
2 /2EZ = C2/2. However, the same does not hold for

C4. Instead, we can present a generalized form of the continuum
approximation of the total interaction pressure tensor truncated
up to fourth-order isotropy gradients (normal component for
the sake of consistency)

P intxx =
∑

z

Pint(z)xx = G C2
2
ψ2 + G

[

Aψ∂
2ψ

∂x2
− B

(
∂ψ

∂x

)2
]

.

(28)
For the sake of completeness, we provide the solution of the
above in terms of a nonideal fluid mixture; including intra-
and inter-interactions as done in Eq. (17), and using the same

3 The even order of isotropy from terms in Eq. (25) is explicitly (for brevity
we omit here the dependence on Z), for second order; ξα,iξα,j ; for

fourth order, −eA
α,k

eB
α,k

ξα,iξα,j =
−ξα,k

2

ξα,k

2
ξα,iξα,j , returning a

negative constant, and (eA
α,k

eA
α,l

+ eB
α,k

eB
α,l

)ξα,iξα,j = (
−ξα,k−ξα,l

4
+

ξα,kξα,l

4
)ξα,iξα,j , returning a positive constant; and finally for sixth

order, eA
α,k

eA
α,l

eB
α,k

eB
α,l

ξα,iξα,j = (
−ξα,k

2

−ξα,l

2
)(

ξα,k

2

ξα,l

2
)ξα,iξα,j ,

returning also a positive constant.

notation, Eq. (28) then takes the form

P intxx =

S∑

φ

∑

z

Pφ,int(z)xx =

S∑

φ

{

Gφφ C2
2
(ψφ)2 + Gφφ

[

Aψφ ∂
2ψφ

∂x2
− B

(
∂ψφ

∂x

)2
]

+

S∑

ϕ 6=φ

(

Gφϕ C2
2
ΨφΨϕ+Gφϕ

[

AΨφ
∂2Ψϕ

∂x2
−B∂Ψ

φ

∂x

∂Ψϕ

∂x

])}

.

(29)

The coefficients A and B account for all additional variations
of C4 for the various arbitrary portions of the pressure tensor

Pint(z)ij ; B appears only for z > 2 [e.g., Eq. (26)]. Since both A
and B are related to fourth-order isotropy, both are proportional
to C4 and, given the analysis above, A 6= B. Fortunately, by
summing all contributions [e.g., Eqs. (21) and (26)] for various
lattices according to the procedure above, it was found that

A =
6C4 + C2

12
, (30a)

B =
3C4 − C2

12
, (30b)

hold on all lattice structures tested in this work (all lattices
presented in Sec. V) and it is expected that (30) holds for any
other lattice structure. The solution (30) coincides exactly
with the coefficients appearing in the continuum approximation
derived for the E8 lattice in [32, see Eq. (22) therein], with
the condition that C2 = 1. Furthermore, it was also found
that both the Q49ZOTT and the 12th-order isotropy forcing
model in [43] do not converge to the solution Eq. (30) unless

contributions F2 and F3 (as illustrated in Fig. 3) are factored
in accordance with requirements (16) detailed in Sec. III A.
Here the C2 in Eq. (30) allow A and B to be determined in the
case of C2 6= 1 , e.g., in many traditional applications of SC
pseudopotentials C2 =

∑

α w̃αξα,iξα,i = c2s since these were
applied directly on the Q9 lattice. In addition, we point out
that with interactions directly on the Q9 lattice (exclusively),
the solution (30) will result in B always being equal to zero,
regardless of isotropy conditions, and Eq. (28) will then reduce
exactly to Eq. (23). The standard solution P ∗int

xx [Eq. (19)]
suggests A = 2B = C4/2; however, from the analysis above,
this is evidently incorrect. We further compare their accuracy
numerically in Sec. V. To close, the continuum approximation
to the exact discrete definition (17), up to fourth-order isotropy
gradients, is shown to surprisingly have a generalized form
defined in Eqs. (28) and (30).

A. Thermodynamic Consistency

With the definitions in Eqs. (9) and (28), it is now possible
to directly assess the thermodynamic consistency following
[27, 32, 36]. For a single-component liquid-gas system in a
one-dimensional interface with gradients only in x, the normal
component of the pressure tensor is constant PTOTxx = Pc

across both phases. Using the relation ∂xxψ = 1
2∂ψ(∂xψ)

2, it
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(a) (b)

FIG. 4: Theoretical prediction of equation of state Po (dashed and dotted curved lines) for a range of G/Gcrit up to
Gmax = Gcrit · 1.225 (red dot-dashed line), solved for (a) the Q9 lattice model (ǫ = 0) with ψ(ρ) = e−1/ρ and (b) the
Q49ZOTT lattice model with Eqs. (30) and (35). The thermodynamic coexistence curve (bold solid green line) drawn
within the shaded region is obtained from the Maxwell construction (34). Numerical simulations were conducted for
G/Gcrit = {1.05, 1.075, 1.1, 1.125, 1.15, 1.175, 1.2, Gmax} where the bulk properties of each phase (•), namely, densities

and corresponding static pressure, are obtained from Eqs. (7a), (9), and (17).

is possible to integrate Eq. (28),

G
(
dψ/dρ

)2

8(1− ǫ)ψǫ

(

∂ρ

∂x

)2

=

∫ (

Pc−ρc2s−GC2
2
ψ2
)dψ

dρ

1

ψ1+ǫ
dρ,

(31)
where the coefficient ǫ with Eq. (30) is defined by

ǫ =
2B
A =

6C4 − 2C2
6C4 + C2

. (32)

Since there are no density gradients in the bulk of each phase
(i.e., ∂ρ

∂x = 0 for gas ρ = ρg and liquid ρ = ρl), to satisfy
mechanical equilibrium on the lattice the integral over the two
phases ρg and ρl has the constraint

∫ ρl

ρg

[

Pc − Po (ρ,G)
]dψ

dρ

1

ψ1+ǫ
dρ = 0, (33)

where the equation of state Po (ρ,G) = ρc2s + G C2

2 ψ
2. Satisfy-

ing Eq. (33) requires the equation of state in both phases to be
equal Po (ρg,G) = Po (ρl,G) = Pc. Moreover, the Maxwell
construction (thermodynamic consistency) can be defined by
[see. e.g., 51],

∫ ρl

ρg

[

Pc − Po (ρ,G)
] 1

ρ2
dρ = 0, (34)

which allows for the coexistence density of each phase (ρg and
ρl) to be approximated theoretically.

The lattice mechanical equilibrium condition (33) will
conform with the Maxwell construction (34) depending on
the choice of ψ. For example, if we choose to set ψ =
ρo(1− e−ρ/ρ

o

), then dψ/dρ = e−ρ/ρ
o

, or if ψ = e−1/ρ, then
dψ/dρ = e−1/ρ/ρ2. According to Eq. (33), the former is
thermodynamically inconsistent [51, 53]. The latter, for the
Q9 lattice where B = 0 (and thus ǫ = 0), does in fact satisfy

thermodynamic consistency (34), which we can demonstrate in
Eq. (33) by dψ

dρψ
−1−ǫ = 1/ρ2 [32, 36, 53]. This, however, is

not the case for higher-order isotropy lattices since ǫ > 0. Sbra-
gaglia and Shan [36] addressed this issue and proposed a general
pseudopotential that satisfies thermodynamic consistency,

ψ =

(
ρ

ǫ+ ρ

)1/ǫ

. (35)

In Fig. 4 we calculate the theoretical thermodynamic phase
coexistence (34) of Q9 with ψ = e−1/ρ and Q49ZOTT using
Eqs. (30) and (35) [refer to 27, for details on the procedure].
The theoretical predictions are then compared against their equi-
librium bulk phase coexistence densities obtained numerically
for a range of interaction strengths beyond the critical limit
G/Gcrit > 1 (refer to details in Fig. 4). The critical interaction
strength Gcrit is the limit at which phase separation occurs
in a single-component two phase system, which is defined
by dPo/dρ = 0. As can be seen in Fig. 4, both the Q9 and
Q49ZOTT lattices are shown to satisfy thermodynamic consis-
tency (34). In addition, although not shown here, we also found
using ψ(ρ) = e−1/ρ with Q49ZOTT to be thermodynamically
inconsistent. In Fig. 4b we see a slight deviation for Q49ZOTT
for G/Gcrit > 1.125, where the absolute relative error remains
less than 0.6% for ρl and less than 2.5% for ρg , with the largest
deviation at Gmax. However, these are similar to the deviations
reported in [36] using the Q9 with E8. As suggested in [36],
these deviations could be the result of a thin interface, which
becomes thinner with increasing G/Gcrit, which may require
higher-order approximations in the Taylor expansion.

As a final note on thermodynamic consistency we mention
that the standard solution (19), as stated earlier, suggests that
A = 2B = C4/2, for which Eq. (32) results in ǫ = 1. Ac-
cording to the standard solution, this suggests that mechanical
equilibrium (33) can only satisfy Eq. (34) if ψ ≈ ρ [51]. In
agreement with [32, 36], from our analysis above and the results
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for the Q9 with ψ = e−1/ρ in Fig. 4a, the definition ψ ≈ ρ
is not a valid pseudopotential to describe a single-component
liquid-gas system.

B. Surface Tension

The surface tension coefficient is an important transport
property in many applications with nonideal fluids and is a fitting
candidate for checking the validity of the interaction pressure
tensor Eq. (17). The surface tension between components
over a one-dimensional interface with all gradients in x can be
described by the Bakker formula [31, 54]

σ =

∫ +∞

−∞

(
PTOTN − PTOTT

)
dx (36)

where the normal component PTOTN = PTOTxx = P kinxx + P intxx

and tangential component PTOTT = PTOTyy = P kinyy + P intyy

[27, 43, 51, 55]. The total momentum flux tensor PTOTij is
obtained from Eq. (9). With Eq. (17) we can numerically
solve for the surface tension (36) directly. Likewise, with the
continuum approximation (29) and (30) defined, a theoretical
approximation of the surface tension can be derived for a multi-
component system with all interactions included. To this end,
taking the mismatch between normal and tangential components
of the total pressure tensor (9), (29), and (30) and assuming a
one-dimensional interface with all gradients along x, we obtain
[see 32, 43]

σ = −
S∑

φ

(

Y4Gφφ
∫ (

∂ψφ

∂x

)2

dx

+

S∑

ϕ 6=φ
Y4Gφϕ

∫ (
∂Ψφ

∂x

)(
∂Ψϕ

∂x

)

dx

)

. (37)

The constant Y4 is a combination of fragments of the various
coefficients [i.e., A and B from Eq. (30)] left over from taking
the mismatch between the normal and tangential components.
However, using the same concept as Eq. (24) and collecting all
various z contributions [e.g., Eq. (25)], a consistent solution is
found,

Y(m)△(m−2)
···Om−2 =

∑

α

w̃α(eα,i)
m−2 (ξα,iξα,i − ξα,jξα,j) ,

(38)
where derivatives are directed in i and eα,i = ξα,i/2. In Eq. (37)
terms are related to fourth-order isotropy, thus m = 4, solving
Eq. (38),

Y4△(2)
xx = Y4 =

∑

α

w̃α(eα,x)
2 (ξα,xξα,x − ξα,yξα,y) =

C4
2
,

where △(2)
xx = δxx = 1 since in Eq. (37) derivatives are

directed in x. This subsequently allows Eq. (37) to coincide
with previous continuum approximations of the surface tension
[27, 32, 33, 43, 51]. It is also interesting to note that for
the flat interface, with Eqs. (29) and (30) the derived surface
tension coefficient in (37) and (38) has essentially the same

form as the one obtain with the standard solution (19) [see. e.g.,
43]. Furthermore, we show that Eq. (38) holds for high-order
terms. To demonstrate this we consider sixth order isotropy
m = 6, which was neglected previously in Eq. (27), and then
the constant Y6, which is related to the additional derivative
(∂ijψ)

2 in Eq. (26), can be defined directly using Eq. (38),

Y6△(4)
xxxx = 3Y6 =

∑

α

w̃α(eα,x)
4 (ξα,xξα,x − ξα,yξα,y) ,

which yields

Y6 =
C6
4
.

This also coincides exactly with that found in a separate study by
Sbragaglia et al. [33] on the conventional eighth-order-isotropy
force interaction stencil. Note that Eq. (38) only holds up to the
same mth-order of isotropy as that of the given lattice structure.

C. Closing Remarks

We point out that the definition for the interaction force (11)
is not dependent on the lattice structure; however, the same is
not true for the consequent interaction pressure tensor based on
the discrete definition (1). For example, consider two lattice
structures with identical accuracy and sound speed cs, such as
Q25ZOT [37] and Q17ZOT [48], which have not only different
velocities but also different sets of symmetry groups where,
unlike Q25ZOT, the Q17ZOT lattice structure does not have
any vectors with mixed components (ẑ) and as such does not
require Eq. (16). Hence, at the discrete level their form is
different. Fortunately, as we have shown here, the continuum
approximation of this discrete definition can be generalized by
Eqs. (29) and (30), allowing the interaction pressure tensor for
Q25ZOT and Q17ZOT to be defined in the same form at the
continuum limit. This is important, because this allows us to
identify key equilibrium transport properties as we have shown
in previous sections, namely, thermodynamic consistency in a
single-component liquid-gas system, the equation of state, and
the surface tension coefficient, as well as other properties which
are beyond the scope of the present work.

V. NUMERICAL EXPERIMENT AND DISCUSSION

To test the validity of the general expression for the interaction
pressure tensor (17), and its continuum approximation (29) and
(30), for a variety of high-order lattice structures, we consider
two common test cases, namely, the flat interface test and a
circular interface, by considering a single-droplet immersed in
a fluid. Note that all results presented throughout this section
are in lattice units.

The initial density field for both cases is achieved using a
hyperbolic tangent function [20]. This allows for a smooth initial
interface, preventing potential instabilities at the start of the
simulations associated with sharp gradients. We defer details of
the functions used for the initial density field to Appendix D. The
computational domain x = (nx, ny) for the flat interface was
set to x = (200, 8) with initial interface widthWo = 10 and for
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FIG. 5: Numerical results at equilibrium for the flat interface test using the Q9 lattice model. The pseudopotential interactions (11)
are deployed (a) directly on the lattice structure (LS) and (b) with the E8 model. The interaction component of PTOTxx obtained
numerically Pxx (×) from Eq. (17) and its continuum approximation PCAxx (◦) obtained from Eqs. (29) and (30) are compared
against the standard solution P ∗CA

xx (solid line) from Eq. (19). (c) Constancy ∆Pxx% of the Pxx obtained numerically (17), tested
for the Q9 LS, E8, E10, and E12 along spatial dimension x. For each lattice, the constancy ∆Pxx% is calculated as the percentage

difference of Pxx along x against the reference Pxx(x) measured at center x = 100.

the circular droplet test x = (100, 100) with Wo = 5. Other
than geometric and stability purposes, the initial conditions for
tests conducted here are unimportant since the simulations will
converge towards equilibrium based on the interactions, i.e.,
although an initial interface widthWo can be set, the actual final
width is purely dependent on model parameters. We emphasize
that the numerical accuracy, stability, and efficiency between
the various lattice structures are not compared in detail as this
is beyond the scope of the present work. For the reasons above,
the size of the computational domain and initial interface width
is kept the same for all lattice structures tested. For all tests
the total pressure tensor PTOTxx is obtained from the definition
(9), with the kinetic part obtained from Eq. (10) at equilibrium
and the interaction part is obtained using different solutions,
namely, numerical results from Eq. (17) and its continuum
approximation defined in Eqs. (29) and (30), and the standard
solution given in Eq. (19). Here the total pressure tensor with
these solutions to the interaction part will be denoted by Pxx,
PCAxx , and P ∗CA

xx , respectively, where the notation CA refers to
the continuum approximation and the asterisk is used to identify
the standard solution.

A. flat interface

A unique feature of the one-dimensional flat interface test is
that, although the pressure tensor is anisotropic at the interface,
the normal component Pxx will remain constant [31] due to
the absence of tensorial ambiguity in the problem [43]. In
our first test, we check this fundamental aspect of the normal
component of the pressure tensor Pxx and compare the general
expression (17) and its continuum approximation (29) and
(30) directly against the standard P ∗

ij solution (19), commonly
used in the literature [see for example 26, 35]. To do this,
we first use Q9 directly on the lattice and in addition to this,
with the higher-isotropy-order lattice structures, namely, 24,
36, and 48 lattice interaction vectors, which comply with eight
order (E8), tenth order (E10), and 12th-order (E12) isotropy
[refer to 43, for details]. Motivation for this follows previous
works where; Sbragaglia and Belardinelli [34] demonstrated
the constant Pxx profile along a flat interface with the Q9
lattice (exclusively) and E8 since it was used in the introduction
of the exact lattice theory by Shan [32]. Hence, we extend
previous works by deploying Q9 with E10 and E12, which
in turn allows us to demonstrate the universality of Eqs. (17),
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FIG. 6: Numerical results at equilibrium for the flat interface test for a variety of lattice structures. (a) Pseudopotential interactions
(11) are deployed directly on the Q25ZOT lattice structure. The interaction component of PTOTxx obtained numerically Pxx (×)
from Eq. (17) and its continuum approximation PCAxx (◦) from Eqs. (29) and (30) are compared against the standard solution P ∗CA

xx

(solid line) from Eq. (19). (b) Constancy ∆Pxx% of the Pxx obtained numerically with Eq. (17) along spatial dimension x, tested
for Q25ZOT on the LS and with E12, in addition to Q17ZOT and Q49ZOTT. Here, for Q49ZOTT, the sound speed cs was modified

to match that of the ZOT variants.

(29), and (30). In this test, the initial densities in the bulk
of each phase are ρφo = ρϕo = 1 and viscosities are set to
τφ = τϕ = 1.2. Only inter-interactions Gφϕ are considered

with the pseudopotential form Ψφ = ρo(1− e−ρ
φ/ρo), where

we set ρo = 0.4 to refine the interface resolution [43]. We set
the inter-interaction strength to some value above the immiscible
limit, which is the point where the mutual diffusion between
two fluid components is negative [40]. Following [40], we
approximate this by; Gφϕ ≈ (c2s4/(C2[Ψφ + Ψϕ])), where
the additional c2s/C2 is included to match strengths between
various lattices (since C2 is not set to unity in [40]). The
results are presented in Fig. 5. From Fig. 5a it is clear that the
numerical calculation (17) and its continuum approximation
(29) and (30) are constant throughout the interface, whereas the
standard solution (19) is not. We recall that Eqs. (29) and (30)
directly on the Q9 lattice will reduce to Eq. (23) since B = 0.
The results for Q9 with E8, in Fig. 5b, again demonstrate the
accuracy of the numerical (17), with a constant Pxx profile
throughout the interface, although it is clear that its continuum
approximation (29) and (30), truncated at fourth-order isotropy
gradients, which starts to deviate, is still more accurate than the
standard solution (19). In Fig. 5c the constant profile of Pxx is
tested explicitly by calculating the spatial variation ∆Pxx% of
the numerical (17). Here ∆Pxx% is defined by comparing Pxx
along x against some constant reference value Pxx(x), where
we have chosen this to be at center x = 100 in the bulk of fluid
φ. At the level of deviation seen in Fig. 5c (we recall that it
is on order of 1× 10−13%) the Pxx profiles for the Q9 on the
lattice, and with E8, E10, and E12 interaction models, can all be
deemed to be constant throughout the interface up to machine
accuracy.

We then move on to conduct the same test on higher-order
lattices, which can be seen for the ZOT construction Q25ZOT
[refer to 37, for details] in Fig. 6a. Visually, the numerical
calculation (17) appears to be a constant interface, whereas
some deviation is seen for its continuum approximation (29) and
(30). This observation is similar to that made for Q9 with E8
although not as severe, which is likely due to the lower isotropy
order of Q25ZOT (sixth order) compared to E8 (eight order).
This suggests that higher-order lattices require higher-order
approximations in the continuum limit. In any case, much
larger deviations are observed for the standard solution (19).
Upon investigating the constancy of Pxx directly in Fig. 6b,
it is noticeable that deviations are present at the interface,
unlike the constant Pxx observed for Q9 with high-isotropy-
order interaction models. This suggests that the high-order
lattice models [Fig. 6b] do not satisfy mechanical equilibrium
dPxx/dx = 0, unlike those for Q9 [Fig. 5c]. Typical remedies
for this type of issue include alteration of relaxation τ , spatial
discretization, and interaction strengths, which produce different
results, none of which, however, actually rectify the deviations
observed. This is surprising given that c2s (≈ 0.3675) for the
Q25ZOT lattice is relatively close to c2s (≈ 0.3333) for Q9.
It was found that the deviations at the interface increased for
lattices with larger c2s, such as Q49ZOTT and Q21, which
have twice, if not more, as large c2s compared to Q9. To
demonstrate that these inconsistencies observed at the interface
are independent of the accuracy of Eq. (17), we run the same
simulations for Q25ZOT using the E12 interaction model and
another known as Q17ZOT [refer to 48, for details]. Note that
the ZOT variants Q17ZOT and Q25ZOT, although constructed
on a different basis, have the same accuracy and cs. In addition to
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FIG. 7: (Color online) Single static circular droplet results for Q49ZOTT* with modified cs. (a) Mismatch between normal and
tangential components of the total pressure tensor (9), (10), and (17). (b) Cross-sectional profiles along x at y = ny/2, comparing
the interaction component of PTOTxx obtained numerically Pxx (×) from Eq. (17), its continuum approximation PCAxx (◦) from

Eqs. (29) and (30) and the standard solution P ∗CA
xx (solid line) from Eq. (19).

this, we also run the same simulations using Q49ZOTT but with
its c2s modified to match that of the ZOT lattices c2s (≈ 0.3675),
which can be achieved by changing its reference temperature
To = c2s and recalculating its weights (see Appendix A). We
also note that it was not possible to set c2s in Q49ZOTT equal to
that of Q9 due to instability. As can be seen in Fig. 6b, the result
for Q25ZOT with E12 has the lowest spatial deviation, although,
despite using the same interaction model as Q9 in Fig. 5c, it
does not eradicate the deviations at the interface. Compared to
the rest of the results, the difference in∆Pxx% is very small and
is attributed to the difference in C4 in E12, which, according to
the continuum analysis (29) and (30) and according to Eqs. (37)
and (38), changes the surface tension. It can be seen in Fig. 6b
that the high-order models Q25ZOT, Q17ZOT, and Q49ZOTT,
with interactions directly on the lattice, have indistinguishable
results. The same result, although not shown here, is obtained
when running Q49ZOTT with full fourth-order equilibrium (6).
These results are interesting since both E12 and Q49ZOTT share
most of the same lattice velocities, which includes the unique
conditions applied on ẑ = 13 [refer to details in Fig. 3 and
Eq. (16)]. This demonstrates that the inconsistencies observed
at the interface are not dependent on our proposed generalized
solution (17). These inconsistencies observed at the interface
are unexpected, in particular given that they are not resolved by
usual means, as stated earlier. There is, after all, much more
that is yet to be uncovered with the application of high-order
lattices and perhaps the issue here is one of those. However,
this requires further, and more dedicated, investigations, which
we defer to future work. Nevertheless, it is clear from the above
that these inconsistencies are independent of the accuracy of the
solution from Eq. (17). To close, with Eq. (17) it is possible to
obtain the exact interaction pressure for a variety of high-order
lattice structures. While its continuum approximation (29) and
(30) degrades in accuracy with increasing order of isotropy,
it is consistently shown here to be the more accurate solution
compared to Eq. (19). Considering, in addition, the continuum
analysis in Sec. IV, it can be definitively concluded that the
standard solution (19), even on standard lattices such as the Q9,
does not accurately describe the pseudopotential interaction
pressure tensor.

B. Spherical Interface

We now move on to demonstrating the validity of our gen-
eralized interaction pressure tensor (17) where all possible
symmetries can be considered, e.g., a spherical interface, us-
ing the single droplet test. Here we also consider a nonideal
fluid system that consists of two immiscible components φ
and ϕ with dissimilar viscosities and all possible interactions
included. We set ρφo/ρ

ϕ
o = 1 and ensure that they are dissimilar

fluids by τφ 6= τϕ and as such simply set intra-interactions
(self-interactions)Gφφ = Gϕϕ. Mutual inter-interactions (cross-
interaction) require the condition that strengths Gφϕ = Gϕφ.
Here we test the same lattices as previous tested, namely, Q9 on
the lattice and with E8, E10, and E12, and high-order models:
Q17ZOT, Q25ZOT, and Q49ZOTT. In addition to these we
also test the following common high-order lattices available
from the literature: Q17 [8], Q21 [56], Q25 [11], and Q37 [46].
In addition, we run Q49ZOTT with its standard cs and also
with cs modified to match the ZOT variants which we denote
by Q49ZOTT*. In all tests, it was possible to keep τφ = 0.9
and τϕ = 1.2 for all lattices, except for Q25 due to its high
value in c2s, which requires relaxation to be set to τφ = 1.2 and
τϕ = 1.6. The pseudopotentials of inter and intra-interactions
are set to have the form ψ(ρ) = ρo(1− e−ρ/ρ

o

) and Ψ(ρ) = ρ
for each respective fluid. Since all lattices were applied to
the same computational domain, this meant that lattices with
different sounds speeds do not correspond to the same physical
reference, i.e., only in the case for ZOT lattice variants are
sounds speeds the same. As such, different cs required different
surface tension. With τ fixed, simulations were ensured to
remain stable by using Gφφ and Gφϕ to control the surface
tension coefficient and interface width. We approximate for
appropriate values ofGφφ andGφϕ by first setting the (repulsive)
cross-interaction strength Gφϕ approximately at, or close to,
the immiscible limit4. Depending on the stability, Gφϕ was
altered. Then the self-interaction strength Gφφ was set so that
the initial bulk pressure, in an approximated form, namely,

Pφo = c2sρ
φ + C2 Gφφ

2 (ψφ)2 + C2 Gφϕ

2 ΨφΨϕ, is a non-zero
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Theoretical Approximation
Q9 E12
Q9 E10
Q9 E8
Q9

(a) Theoretical Approximation ZOT
Theoretical Approximation Q17
Q49ZOTT*
Q17ZOT
Q25ZOT
Q17

(b) Theoretical Approximation
Theoretical Approximation Q36
Theoretical Approximation Q21
Q49ZOTT*
Q49ZOTT
Q37
Q25
Q21

(c)

FIG. 8: (Color online) Laplace experiment for the single static circular droplet test including intra- and inter-interactions for 11
different lattice models. The numerical results (symbols) are obtained by setting the initialRo [in Eq. (D2)] and then at equilibrium,
by postprocessing, measuring the actual R and calculating the difference between the equation of state, computed by Eqs. (9) and
(17), of the two bulk phases, i.e., ∆P = Pφo − Pϕo . The theoretical approximations (lines) are obtained by computing σ from
Eqs. (37) and (38), treated as a one-dimensional problem, using the density profiles from equilibrated numerical results (for each
respective lattice) for the case R ≈ Ro = 25. The Laplace ∆P = σ/R is then solved for the range R = 12, . . . , 25 directly using
this approximated σ. For visual purposes, theoretical approximations between different lattices are differentiated using solid,
dashed, and dotted lines. All 11 different lattices are presented over three plots and we note that in (b) the results for Q49ZOTT*

(�), both the theoretical approximation and the numerical, are the same as those presented in (c).

positive value. To ensure stable solutions the intra- and inter-
interaction strengths for the different lattices are set, for Q9 (in-
cluding on lattice, E8, E10, and E12), Q17, Q17ZOT, Q25ZOT
and Q49ZOTT*, to Gφφ = −0.15046 and Gφϕ = 1.2; for Q21,
Q37, and Q49ZOTT, to Gφφ = −1.0156 and Gφϕ = 1.8; and
for Q25, to Gφφ = −1.3792 and Gφϕ = 2.2. Note that we do
not claim that the simulation parameters provide the optimal
results, but that they are sufficient for the sake of testing the
validity of Eq. (17).

We show the mismatch between the total pressure tensor
components in Fig. 7a, and in Fig. 7b the interface profiles
are shown. We do not expect Pxx to be constant along the
interface in Fig. 7b as there is now ambiguity in symmetry and
because the inner and outer bulk phase densities are no longer
the same, due to dissimilar viscosities and to all interactions
now being included. Nevertheless, we can see clearly in Fig. 7b
that the numerical calculation (17) is far more uniform than its
continuum approximation (29) and (30), although, again, we
see that (29) and (30) are far more accurate than the standard
solution (19), which suffers from large variations.

Furthermore, we assess the ability of our generalized discrete
interaction pressure tensor Eq. (17) to reproduce the Laplace
experiment, which defines the surface tension coefficient σ as
the slope of the pressure difference ∆P as a function of the
inverse radius, that is, ∆P = σ/R. To conduct this test, an

4 The immiscible limit is defined when mutual diffusion is at zero or below,
which, following [40], we approximated byGφϕ > Gφϕ

crit ≈ (c2s4/(C2[ρ
s
o+

ρϕo ])) (since Ψ = ρ) due to the explicit coupling of the forcing term (4), (5),
and (7b,8). This is used purely as an indicator as it does not account for Gss.
The main purpose of Gss and Gφϕ in the tests conducted here is to control
the surface tension coefficient and stability.

approximate theoretical surface tension coefficient σ is obtained
by treating the problem as a one-dimensional problem [34, 43],
similar to the flat interface, where Eqs. (37) and (38) are
then solved along x, at the horizontal cross section, allowing
the Laplace ∆P to be evaluated for a range of R. We then
directly test if Eq. (17) is able to reproduce the slope. A series
of simulations is conducted independently for a range of Ro

where upon reaching equilibrium the actual R is measured. To
compute ∆P we calculate the difference between the equation
of state Po in the bulk of each fluid phase, i.e., ∆P = Pφo −Pϕo .
Since the total pressure tensor is isotropic (PN = PT ) in the
bulk of each phase, which is shown clearly in Fig. 7a, this
allows Po to be defined by Eq. (9), which consists of the kinetic
contribution from Eq. (10) plus P intN from Eq. (17). Here we
have used P intN = P intxx for the sake of consistency. As we can
see in Fig. 8, all 11 lattices tested are capable of reproducing the
Laplace experiment. The theoretical approximations and the
numerical results are in excellent agreement with the percentage
difference observed in Fig. 8 for all 11 lattices tested remained
within less than ±2.5%. The accuracy of the general interaction
pressure tensor expression (17) is further appreciated in Fig. 8b,
where the results for both ZOT lattices and Q49ZOTT* are
essentially the exact same. This is the same feature discussed
earlier in the flat interface test. For comparison, on the same
plot we included results for Q17 where, due to a different
c2s (≈ 0.37025), have slightly different results but are still
within close proximity to the ZOT lattices.
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VI. CONCLUSIONS

We have derived a universal definition for the interaction
pressure tensor for high-order lattice structures in line with the
discrete theory by Shan [32]. We also derived a generalized
form of its continuum approximation truncated at fourth-order-
isotropy gradients. From this it was possible to demonstrate
that thermodynamic consistency is satisfied on higher-order
lattices using the pseudopotential proposed by Sbragaglia and
Shan [36]. The discrete on-lattice interaction pressure tensor
(17) and its continuum approximation (29) and (30) were
validated against theory for the flat interface and single-droplet
test case for a variety of high-order lattice structures. These
tests collectively confirm that our derived general expression
(17) can accurately and consistently calculate the pressure
tensor on high-order lattices. The current definition can be
extended to consider lattices at higher-orders by eliminating
the limitation for symmetry groups of mixed components (ẑ) in
Eq. (16). We point out that our method can already consider
most common high-order lattice structures currently available
from the literature. With our proposed generalized interaction

pressure tensor it is possible to study complex fluid systems with
higher-order lattices using pseudopotentials, such as viscous
coalescence [57] of droplets and binary collisions of immiscible
droplets [18]. With the interaction pressure tensor now more
readily obtained for high-order lattices at the continuum limit
(29) and (30), it is possible to define various other transport
properties, such as the diffusion constants of and between
various components. Such work would further broaden the
applicability of high-order lattice models, in particular for
microscopic fluid dynamic systems involving nonideal fluid
mixtures.
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Appendix A: Q49ZOTT Lattice Structure

The weights for D1Q7 constructed on the ZOTT
{0,±1,±2,±3} lattice are given by [37]

w(0) =
1

36
{c2s[3(14− 5c2s)c

2
s − 49] + 36},

w(±1) =
1

16
{c2s[c2s(5c2s − 13) + 12]},

w(±2) =
1

40
{c2s[5(2− c2s)c

2
s − 3]},

w(±3) =
1

720
{c2s[15(c2s − 1)c2s + 4]},

(A1)

and the reference temperature

To =
2

3
+

1

3
3

√

7

5(3
√
30− 5)

−
3

√
5(3

√
30−5)
7

352/3
, (A2)

where the sound speed is related by To = c2s. We extend this
to two dimensions using the idea that the number of lattice
velocities is QD, where D is the number of spatial dimensions.
Reconstructing the ZOTT D1Q7 lattice in two dimensions
therefore require 72 = 49 lattice velocities, which we can
satisfy by utilizing the first three lattice sites as shown in Fig. 1.
The weights (A1) are then extended into two dimensions by
[37]

wα = w(ξα,i) × w(ξα,j). (A3)

For example, the first two weights of Q49ZOTT in Fig. 1 are;
wα=0 = w(0) × w(0) and wα=1 = w(1) × w(0), and so on.

To impose conditions on the isotropy coefficients as done in
main text, i.e., C2 = 1 and C4 = c2s, we require w̃α = wα/c

2
s.

It is also possible to change To, which requires us to recalculate
wα from Eq. (A1).

Appendix B: Lattice Isotropy

The isotropy orders (m = 2n, where n is a even integer) of
the lattice structure are defined by

∑

α

w̃αξα,iξα,jξα,k · · · ξα,Om = Cm△(m)
ijk...Om ,

where Cm is the constant for mth order isotropy and △(m)
ij...(Om)

is the product of standard Knocker delta functions δij and is
given by the recursion relation [52]. The orders are to be even,
hence 2n, since odd orders (2n− 1) sum to zero,

∑

α

w̃αξα,iξα,jξα,k · · · ξ(2n−1)
α = 0,

and thus the isotropy of order one
∑

α w̃α(ξα,x)
1 = 0. The

second-, fourth-, sixth-, and eighth-order-isotropies are, respec-
tively,

∑

α

w̃αξα,iξα,j = C2△(2)
ij

= C2δij ,
∑

α

w̃αξα,iξα,jξα,kξα,l = C4△(4)
ijlk

= C4 (δijδkl + δilδkj + δikδjl) ,
∑

α

w̃αξα,iξα,jξα,kξα,lξα,mξα,n = C6△(6)
ijlkmn

= C6 (δijδklδmn + · · · ) ,
∑

α

w̃αξα,iξα,jξα,kξα,lξα,mξα,nξα,sξα,q = C8△(8)
ijlkmnsq

= C8 (δijδklδmnδsq + · · · ) .

Furthermore, isotropy orders beyond second-order involve
constraints due to increasing combination of tensors as shown
above. On a two-dimensional square lattice with components
ijk . . . q := x, y, Sbragaglia et al. [43] showed that

∑

α

w̃α(ξα,x)
(2a)(ξα,y)

(2b) = C(2a+2b)(2b− 1)!!(2b− 1)!!

where m = 2n = 2a + 2b. For example, fourth-order isotropy
(m = 6) satisfies the two constraints (a = 2 and b = 0)

∑

α

w̃αξα,xξα,xξα,xξα,x =
∑

α

w̃α(ξα,x)
4 =

C4 (δxxδxx + δxxδxx + δxxδxx) = 3C4,

and (a = 1 and b = 1)

∑

α

w̃αξα,xξα,xξα,yξα,y = C4.

Due to the fixed condition C2 = 1 set here, we conveniently have
C4 = c2s. The isotropy constraints are best assessed without a
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dependence on Cm, which can be done using basic algebra [see
43, for more details]

∑

α w̃α(ξα,x)
4

∑

α w̃αξα,xξα,xξα,yξα,y
= 3.

Moreover, higher isotropy orders, for example, sixth order
m = 6, are to satisfy the following two constraints (a = 3 and
b = 0)

∑

α

w̃α(ξα,x)
6 = 15C6,

and (a = 2 and b = 1)

∑

α

w̃α(ξα,x)
4(ξα,y)

2 = 3C6,

such that
∑

α w̃α(ξα,x)
6

∑

α w̃α(ξα,x)
4(ξα,y)2

= 5.

Using details provided in Appendix A the high-order lattice
model Q49ZOTT, illustrated in Fig. 1, can be shown to com-
pletely satisfy these fourth- and sixth-order isotropy constraints.

Appendix C: Interaction pressure tensor on the

eighth-order-isotropy lattice structure

To demonstrate that Eqs. (15) and (16) conform with the
methodology in Shan [32], we show the pressure tensor in its
expanded form. To do this, we neglect all cross-interaction
termsGφϕ = 0. For the sake of brevity, a single-component case
is considered and we drop the component-specific superscript
ψ = ψφ and G = Gφφ. In addition, we consider the same
two force interaction vectors as done in Shan [32], namely, a
purely axial vector ξ = (2, 0) and mixed component vector
ξ = (2, 1), which correspond to symmetry groups z̄ = 4 and
ẑ = 5, respectively.

For the vector ξz̄=4
α = (2, 0), in Eq. (15) the variables

have the value; E z̄=4 = maxα(|ξz̄=4
α |) = 2, which leads

to a total of 2 − 1 = 1 additional contribution (and thus
β = 1). Since εz̄=4

β = U ◦ sgn(2, 0) = (1, 0) we identify that

x+εz̄=4
β = x+ ξz̄=4

α /2 and x− ξz̄=4
α +εz̄=4

β = x− ξz̄=4
α /2,

and thus Eq. (15) will reduce to

P z̄=4
ij (x) =

G
4
ψ(x)

∑

α

[

w̃αψ(x+ ξz̄=4
α )

]

ξz̄=4
α,i ξ

z̄=4
α,j

+
G
4

∑

α

[

wαψ

(

x+
ξz̄=4
α

2

)

ψ

(

x− ξz̄=4
α

2

)]

ξz̄=4
α,i ξ

z̄=4
α,j ,

(C1)

For the vector ξẑ=5
α = (2, 1), in Eq. (16) we still have

E ẑ=5 = 1 and now the directional unit vector is equal to
εẑ=5
β = U ◦ sgn(2, 1) = (1, 1). If we consider the center point

x = (0, 0), then x + εẑ=5
β = (1, 1) and x − ξẑ=5

α + εẑ=5
β =

(−1, 0). Expanding the sum of interactions for the entire

symmetry group ẑ = 5, Eq. (16) reduces to [using the same α
index as in Fig. 2 in 32]

P ẑ=5
ij (x) =

G
4
ψ(x)

∑

α

[

w̃α · ψ(x+ ξẑ=5
α )

]

ξẑ=5
α,i ξ

ẑ=5
α,j

+
G
4
w̃α ×

[

[ψ(1, 1)ψ(−1, 0)] ξ17,iξ17,j

+ [ψ(1, 1)ψ(0,−1)] ξ18,iξ18,j

+ [ψ(−1, 1)ψ(0,−1)] ξ19,iξ19,j

+ [ψ(−1, 1)ψ(1, 0)] ξ20,iξ20,j

+ [ψ(−1,−1)ψ(1, 0)] ξ21,iξ21,j

+ [ψ(−1,−1)ψ(0, 1)] ξ22,iξ22,j

+ [ψ(1,−1)ψ(0, 1)] ξ23,iξ23,j

+ [ψ(1,−1)ψ(−1, 0)] ξ24,iξ24,j

]

.

(C2)
Comparing the above directly with equations in Shan [32],

Eq. (C1) is essentially the same as Eq. (18) and (C2) is the
combined form of Eqs. (19) and (20).

Appendix D: Initial density profiles

The initial density profiled for the flat-interface and single-
droplet test in Sec. V was set using a hyperbolic tangent function
[20].

For the flat interface, we set ρφ as the inner fluid with
thickness nx/2 placed in the center by setting xmin = nx/4
and xmax = 3nx/4 using the function

ρφ (x, y) = ρφo

{

cL +
cH − cL

2

[

tanh

(
2(x− xmin)

Wo

)

− tanh

(
2(x− xmax)

Wo

)]}

,

and then set ρϕ as the outer portion by

ρϕ (x, y) = ρϕo

{

cH +
cL − cH

2

[

tanh

(
2(x− xmin)

Wo

)

− tanh

(
2(x− xmax)

Wo

)]}

, (D1)

where Wo is the interface width. We denote the upper and
lower concentrations by cH and cL, which are set to cH = 1
and cL = 1× 10−4 (the standard application of the LB method
requires cL 6= 0). The variables ρφo and ρϕo denote the initial
densities.

Similarly, for the single-droplet test, the droplet with radius
R centered at x is initialized by

ρφ (x, y) =
ρφo
2

{

(cH + cL)

− (cH + cL) tanh

(
2(R∗ −Ro)

Wo

)}

,
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and the surrounding fluid by

ρϕ (x, y) =
ρϕo
2

{

(cL + cH)

− (cL + cH) tanh

(
2(R∗ −Ro)

Wo

)}

. (D2)

where Ro is the initial radius and R∗ =√

(x− xo)2 + (y − yo)2 with the location of the droplet
defined by coordinates xo and yo. In this test the droplet is
placed in the center xo = nx/2 and yo = ny/2.
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