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The nonequilibrium dynamics of integrable systems are highly constrained by the conservation of certain
charges. There is substantial evidence that after a quantum quench they do not thermalize but their asymptotic
steady state can be described by a generalized Gibbs ensemble (GGE) built from the conserved charges. Most of
the studies on the GGE so far have focused on models that can be mapped to quadratic systems, while analytic
treatment in nonquadratic systems remained elusive. We obtain results on interaction quenches in a nonquadratic
continuum system, the one-dimensional (1D) Bose gas described by the integrable Lieb-Liniger model. The
direct implementation of the GGE prescription is prohibited by the divergence of the conserved charges, which
we conjecture to be endemic to any continuum integrable systems with contact interactions undergoing a sudden
quench. We compute local correlators for a noninteracting initial state and arbitrary final interactions as well as
two-point functions for quenches to the Tonks-Girardeau regime. We show that in the long time limit integrability
leads to significant deviations from the predictions of the grand canonical ensemble, allowing for an experimental
verification in cold-atom systems.

DOI: 10.1103/PhysRevB.88.205131 PACS number(s): 67.85.−d, 02.30.Ik, 03.75.−b

I. INTRODUCTION

Whether and how an isolated quantum system equilibrates
or thermalizes are fundamental questions in understanding
nonequilibrium dynamics. The answers can also shed light
on the applicability of quantum statistical mechanics to
closed systems. While these questions are very hard to
study experimentally in the condensed matter setup, they
have become accessible in ultracold quantum gases due to
recent experimental advances.1 Thanks to their unprecedented
tunability, ultracold atomic systems allow for the study of
nonequilibrium quantum dynamics of almost perfectly isolated
strongly correlated many-body systems in a controlled way.
These experiments2–10 triggered a revival of theoretical studies
on issues of thermalization.11–27 The list of fundamental
questions include whether stationary values of local cor-
relation functions are reached in a system brought out of
equilibrium, and if so, how they can be characterized. Can
conventional statistical ensembles describe the state? Is there
any kind of universality in the steady state and the way it is
approached?

The absence of thermalization of a 1D bosonic gas reported
in Ref. 3 brought to light the special role of integrability. The
observed lack of thermalization was attributed to the fact that
the system was very close to an integrable one, the Lieb-Liniger
(LL) model28 which is the subject of our paper. The dynamics
of integrable systems are highly constrained by the presence
of a large number of conserved charges29 in addition to the
total particle number, momentum, and energy, thus they are
not expected to thermalize. The so-called generalized Gibbs
ensemble (GGE) was proposed19 to capture the long-time
behavior of integrable systems brought out of equilibrium.
This ensemble is the least biased statistical representation of
the system once the conserved charges {Q̂m} are taken into

account. The density matrix is

ρ̂GGE = e− ∑
m βmQ̂m

ZGGE
, (1)

where the generalized “chemical potentials” {βm} are fixed by
the expectation values 〈Q̂m〉 in the initial state, and ZGGE =
Tr[e−∑

m βmQ̂m ]. The GGE proposal was tested successfully by
various numerical and analytic approaches.20–23

Recently, locality has emerged as a crucial ingredient in the
understanding of equilibration and the meaning of a steady
state.24 While the whole system starting in an initial pure
state clearly cannot evolve into a mixed state, its subsystems
are fully described by a reduced density matrix obtained by
tracing out the rest of the system that acts as a bath for
the subsystem. There is substantial evidence that this density
matrix is thermal for generic systems and given by the GGE
for integrable systems. In Ref. 16 it has been shown for the
Ising chain in a transverse field that the infinite time limit
of the reduced density matrix of a spatial subsystem is equal
to the reduced density matrix obtained from ρGGE, and thus
the GGE completely captures all observables localized in the
subsystem. Naturally, it is the local conserved charges that are
to be used in the GGE density matrix.

The GGE was studied mostly in models which can be
mapped to quadratic bosonic or fermionic systems where the
conserved charges are given by the mode occupation numbers.
While some of these models are paradigmatic, like the Ising or
Luttinger models, a prominent class of nontrivial integrable
systems has not been sufficiently explored, namely those
solvable by the Bethe ansatz (BA). In these models, the local
conserved charge operators are usually known but cannot be
expressed as mode occupations.
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Reference 22 focused on integrable quantum field theories
with diagonal scattering and demonstrated that the long-time
limit of expectation values are given by a GGE, assuming a
special initial state corresponding to an integrable boundary
state. In Ref. 25 it was shown for BA integrable models
that in the thermodynamic limit the time evolution of local
observables after a quantum quench is captured by a saddle
point state, and their t → ∞ asymptotic values are given by
their expectation values in this state. The saddle point state
can be determined using the expectation values of the charges
in the initial state which connects this method with the GGE
approach. Recently there has been progress on the GGE in the
BA solvable XXZ spin chain.27

In this paper we focus on a BA solvable continuum
model: We derive experimentally testable predictions for the
long time behavior of the LL model after an interaction
quench15 combining Bethe ansatz methods and GGE. For
a noninteracting initial state and arbitrary final interactions
we calculate expectation values of point-localized operators,
while for quenches to the fermionized Tonks-Girardeau regime
we obtain exact results on two-point correlation functions.

The paper is organized as follows. After introducing the
Lieb-Liniger model in Sec. II, in Sec. III we discuss a problem
which turns out to be a particularly interesting feature of this
quench, namely, the divergence of the expectation values of
the conserved charges (this curtailing the application of the
standard GGE methodology to this case). We circumvent this
problem by introducing an integrable lattice regularization of
the model in Sec IV. Within this framework we carry out
the GGE prescription in Sec. V, allowing us to describe
the steady state in terms of a characteristic function ρ,
the so-called density of roots. This allows us to compute
correlation functions in Sec. VI. For infinitely deep quenches
to the Tonks-Girardeau regime we obtain exact results. We
give our conclusions in Sec. VII.

II. THE MODEL

The LL model describes a system of identical bosons in 1D
interacting via a Dirac-δ potential. The Hamiltonian is given
by28

Ĥ = −
N∑
i

∂2

∂x2
i

+ 2c
∑
i<j

δ(xi − xj ), (2)

which in the second quantized formulation takes the form

Ĥ =
∫ L

0
dx(∂xψ̂

†∂xψ̂ + c ψ̂†ψ̂†ψ̂ψ̂), (3)

where c > 0 in the repulsive regime we wish to study, and
for brevity we set h̄ = 1 and the boson mass to be equal to
1/2. In cold atom experiments c is a function of the three-
dimensional (3D) scattering length and the 1D confinement.30

In the thermodynamic limit we will use the dimensionless
coupling constant

γ = c

n
, (4)

where n = N/L is the density of the gas.
The exact spectrum and thermodynamics of the model

can be obtained via Bethe ansatz.28,31 The many-body

eigenfunctions φ({xi}) of Ĥ satisfy the boundary condition

(
∂

∂xj

− ∂

∂xk

− c

)
φ(x1, . . . ,xN )

∣∣∣∣
xj =xk+0

= 0, (5)

whenever the coordinates of two particles coincide, thus the
wave functions have cusps.

The N -particle coordinate space eigenfunctions are super-
positions of plane waves,

φ({xi}; {λ}) ∼
∑
P∈SN

(−1)[P]ei
∑

j xj (Pλ)j

×
∏
j>k

[(Pλ)j − (Pλ)k − ic ε(xj − xk)], (6)

where {λ} is the set of N quasimomenta, ε(x) is the sign
function, and theP ∈ SN are permutations. In the finite volume
case periodic boundary conditions force the quasimomenta to
be solutions of the Bethe ansatz equations:

eiλj L
∏
k �=j

λj − λk − ic

λj − λk + ic
= 1, j = 1, . . . ,N. (7)

In the repulsive case (c > 0) considered here all solutions
of the Bethe equations are given by real quasimomenta.32

The eigenvalues of the mutually commuting local conserved
charges can be computed as 〈Q̂m〉 = ∑

j λm
j , in particular, the

energy is simply31 E = 〈Q̂2〉 = ∑
j λ2

j .

It is useful to define the density of roots,

ρLL(λj ) = 1

L(λj+1 − λj )
, (8)

which quantifies the distribution of quasimomenta. In the
thermodynamic limit (TDL), N,L → ∞ with n = N/L fixed,
the function ρLL(λ) becomes smooth and can describe even
mixed states.32 The expectation values of the conserved
charges in a state having quasimomentum distribution ρLL(λ)
are given by

〈Q̂m〉 = L

∫
dλ ρLL(λ) λm. (9)

All quasimomenta are coupled to each other by the Bethe
equations and thus ρLL(λ) as well as the density of “holes”
satisfies integral equations, the thermodynamic Bethe ansatz
(TBA) equations. This approach was developed for thermal
equilibrium but it can be generalized to the case of the GGE.23

III. DIVERGENCE OF THE LOCAL
CONSERVED CHARGES

The simplest way to bring a system out of equilibrium is a
sudden change of one of its parameters, a quantum quench.13

In a cold atom setting such a quench could be achieved by a
rapid change of the transverse confinement or the scattering
length. We will compute the predictions of the GGE for a
sudden quench of the interaction parameter c starting from
the ground state of the c = 0 system, a pure noninteracting
BEC (although we expect our results to be also valid for small
initial interactions) and compare them with those of the grand
canonical ensemble (GCE).

In order to describe the final state in terms of the distribution
ρLL(λ), one needs to find the expectation values of the
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conserved charges Q̂m right after the quench, i.e., in the
BEC-like ground state of free bosons. The density ρLL(λ) is
then found, in principle, by solving the problem of moments
defined by Eq. (9). The first few Q̂m can be written in terms
of the field operator as

Q̂0 =
∫

dx ψ̂†ψ̂, (10)

Q̂1 = −i

∫
dx ψ̂†∂xψ̂, (11)

Q̂2 = Ĥ , (12)

where H is the Hamiltonian given by Eq. (3). Unfortunately,
similar second quantized expressions do not exist33 for the
operators Q̂m for m � 4. More importantly, their expectation
values can be shown to diverge in almost all states other
than the eigenstates of Ĥ . The reason is that their first
quantized expressions contain products of Dirac-δ and higher
derivatives,33,34 and are only meaningful when evaluated on a
wave function satisfying the cusp condition (5). Clearly any
eigenfunction of the Hamiltonian with a different coupling c,
including the BEC wave function, will violate this condition.
Note that although its expectation value is finite, even the
action of the Hamiltonian is singular on such a state as
it generates Dirac-δ [see Eq. (2)]. The fact that the higher
charges diverge can also be verified for N = 2 particles and
quenches from the c = 0 ground state by explicitly calculating
the overlaps between the eigenstates and the initial state which
is a constant. The overlaps scale as λ−2 for large λ which
implies that 〈Q̂m〉 diverge for m � 4.35

Based on Eq. (9) the diverging expectation values of the
charges imply in general that the density ρLL(λ) has a λ−4

power-law tail instead of the usual exponential fall-off.
The fact that the post-quench expectation values of the

conserved charges are divergent renders the GGE ill-defined.
We expect these divergences to be a generic phenomenon
for sudden interaction quenches of continuum integrable
models having contact interactions. This implies that the GGE
prescription needs to be modified for a large and important
class of the continuum integrable systems, which deserves
further study.

IV. q-BOSON REGULARIZATION

A. The q-boson hopping model

To circumvent the problem of divergences we regularize
them by considering an integrable lattice regularization of the
LL model, the so-called q-boson hopping model36 (see also
Ref. 37). The discussion below follows some parts of Ref. 38.

The Hamiltonian of the q-boson hopping model is

Hq = − 1

δ2

M∑
j=1

(B†
jBj+1 + B

†
j+1Bj − 2Nj ), (13)

where δ is the lattice spacing of the lattice of length M having
periodic boundary conditions. The operators Bj , B

†
j and the

number operator Nj = N
†
j satisfy the q-boson algebra

BjB
†
j − q−2B

†
jBj = 1, q � 1, (14)

[Nj,Bj ] = −Bj , [Nj,B
†
j ] = B

†
j , (15)

and operators at different sites commute.
We work with the representation on the Fock space gen-

erated by the canonically commuting lattice boson operators
bj ,b

†
j . At site j ,

bj |m〉j = m1/2|m − 1〉j , (16)

b
†
j |m〉j = (m + 1)1/2|m + 1〉j . (17)

The basis states of the whole lattice are given by the tensor
product of the local Fock states:

|0〉 = ⊗M
j=1|0〉j , |m〉 = ⊗M

j=1|m〉j . (18)

In the local on-site Fock space the action of the local
operator Nj entering Eqs. (15) is identical with that of the
operator b

†
j bj , for which

Nj |m〉j = m|m〉j . (19)

The operators B
†
j and Bj in Eqs. (15) act in the local Fock

space as

Bj |m〉j = [m]1/2
q |m − 1〉j , (20)

B
†
j |m〉j = [m + 1]1/2

q |m + 1〉j , (21)

where

[x]q ≡ 1 − q−2x

1 − q−2
. (22)

Clearly [x]q → x as q → 1, so in the limit q → 1, B
†
n → b

†
n,

and Bn → bn. In the Fock space representation it is possible
to express the local q operators as

Bj =
√

[Nj + 1]q
Nj + 1

bj , B
†
j = b

†
j

√
[Nj + 1]q
Nj + 1

, (23)

and give an alternative form of the commutation relation:

[Bj ,B
†
j ] = q−2Nj . (24)

The Hamiltonian is nonpolynomial either in the b or the B

operators, thus the model is interacting and the interaction is
encoded in the deformation parameter q. Indeed, in the naive
limit q → 1 we recover the system of free bosons hopping on
a lattice:

Hq → − 1

δ2

M∑
j=1

(b†j bj+1 + b
†
j+1bj − 2Nj ). (25)

We are interested instead in the following continuum limit:
let δ → 0, M → ∞, and q → 1, while L and c are kept
constant:

L = Mδ, c/2 = κδ−1, as M → ∞ and δ,κ → 0, (26)

where κ is related to q as

q = eκ . (27)

Defining the continuum boson fields ψ̂(x = jδ) = δ−1/2bj ,

and using the small κ expansion√
[Nj + 1]q
Nj + 1

= 1 − κ

2
Nj + κ2

24
Nj (5Nj + 4) + · · · , (28)
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it can be shown that the q-boson Hamiltonian (13) becomes
the LL Hamiltonian in the limit (26).

For a regularized version of the GGE we need to know the
local conserved quantities of the q-boson model. We turn to
these conserved quantities in the next subsection.

B. Local conserved charges in the q-boson hopping model

Integrals of motion of the q-boson hopping model can be
constructed using the quantum inverse scattering method.31

The L operator for the model is given by

Lj (ζ ) =
(

ζ χB
†
j

χBj ζ−1

)
, (29)

where χ =
√

1 − q−2 = √
1 − e−2κ . The monodromy matrix

T (ζ ) is given by the matrix product of the L operators over the
lattice sites,

T (ζ ) = LM (ζ )LM−1(ζ ) · · · L1(ζ ), (30)

and the transfer matrix τ (ζ ) is given by the trace over the
matrix space of the monodromy matrix,

τ (ζ ) = Tr T (ζ ). (31)

For any λ and μ the transfer matrices commute: [τ (λ),τ (μ)] =
0, which implies that τ (λ) is a generating function of the
conserved charges. Many different sets can be generated since
any analytic function of τ (ζ ) can play the role of the generating
function. We consider the set consisting of local charges that
can be written in the form

Im = δ

M∑
j=1

J (m)
j , (32)

where the operatorsJ (m)
j act nontrivially in m + 1 neighboring

lattice sites only. This set is obtained by the formula

Im = 1

(2m)!

d2m

dζ 2m
ln[ζMτ (ζ )]

∣∣∣∣
ζ→0

, m = 1,2,3, . . . . (33)

To give an example we quote the first two local operator
densities J (1)

j and J (2)
j :

J (1)
j = 1

δ
χ2B

†
jBj+1, (34)

J (2)
j = 1

δ
χ2

(
1 − χ2

2

)(
B

†
jBj+2 − χ2

2 − χ2
B

†
jB

†
jBj+1Bj+1

−χ2B
†
jB

†
j+1Bj+1Bj+2

)
. (35)

The charges Im are not Hermitian operators. However, using
the relation [τ (ζ )]† = τ (ζ−1) it can be proved that [I †

m,In] = 0
for any m,n. For convenience, we introduce the notation

I−m ≡ I †
m, m = 1,2,3, . . . . (36)

As the number operator N = ∑
j Nj = ∑

j b
†
j bj is non-

polynomial in the B
(†)
j operators while the charges Im are,

it cannot be expressed as a finite linear combination of the
Im. However, N commutes with any monomial containing an
equal number of the creation and annihilation operators thus

[N,Im] = 0. It is convenient to use the notation N ≡ I0. The
Hamiltonian (13) can then be expressed as

Hq = − 1

χ2δ2
(I1 + I−1 − 2χ2I0). (37)

We would like to point out that the charges are not in simple
one-to-one correspondence with the LL operators Q̂m.

Similarly to the LL model, the common eigenstates of all
Im are defined in the N -particle sector by N quasimomenta
{pi} which are solutions of the q-boson Bethe equations:

eiMpj =
N∏

k=1
k �=j

sin
[

1
2 (pj − pk) + iκ

]
sin

[
1
2 (pj − pk) − iκ

] , j = 1, . . . ,N. (38)

It is easy to see that under the limit (26) we need to rescale
the quasimomenta as λj = pj/δ in order to regain the Bethe
equations of the LL model in terms of the LL rapidites λj . The
eigenvalues of the charges are given by38

Im|ψN 〉 = (1 − q−2|m|)
1

|m|
N∑

j=1

e−impj |ψN 〉 (39)

for m = ±1,±2, . . . .

We will be interested in the thermodynamic limit of the
q-boson system, N,M → ∞, with ν ≡ N/M fixed. In a way
completely analogous to the LL case, one can introduce the
quasimomentum distribution function ρq(pj ):

ρq(pj ) = 1

M(pj+1 − pj )
, (40)

with the normalization∫ π

−π

dp ρq(p) = ν. (41)

In the thermodynamic limit on the lattice, the expectation
values of the integrals of motion 〈Im〉 are given in terms of
ρq(p) as

〈Im〉 = M(1 − q−2|m|)
1

|m|
∫ π

−π

e−impρq(p)dp. (42)

If the parity symmetry is not broken, we expect 〈Im〉 = 〈I−m〉,
thus from now on we will consider only non-negative m � 0,

and for convenience we introduce the notation

ρ0 =
∫ π

−π

dp ρq(p) = ν, (43)

ρm = |m|〈Im〉
M(1 − q−2|m|)

=
∫ π

−π

cos (mp)ρq(p)dp, (44)

which are the Fourier coefficients of ρq(p).

V. THE DENSITY ρLL(λ)

A. Expectation values of the charges in the initial state

The main idea behind our regularized GGE is to use the
local conserved charges of the lattice model {Im} to determine
the ρq(p) density of quasimomenta of q bosons first, and to
take the continuum limit yielding ρLL(λ) only as the last step.

We thus need to evaluate the expectation values of the local
charges Im in a q-boson state which reduces to the free boson
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ground state in the continuum limit (26), i.e., to the BEC state.
There is no unique choice but we pick the lattice BEC state

|BEC〉N = 1√
N !

(
1√
M

∑
i

b
†
i

)N

|0〉, (45)

where b
†
i are creation operators of canonical lattice bosons.

We determined the explicit expressions of the charge
densitiesJ (m)

j in terms of the B
(†)
j operators up to m = 6. Using

Eq. (28), we expand them in terms of b
(†)
j and we normal order

the result. Evaluating the expectation value in the initial state
(45) amounts to a straightforward calculation with canonical
lattice bosons. In this way we obtain series expansions of 〈Im〉
in terms of the small parameter δ. The details of the calculation
can be found in the Appendix. We quote here only the first few
terms in the expansion of the first two nontrivial charges:

ρ1 = ν − 1

2
γ ν3 + 3

16
γ 2ν4 +

(
1

6
γ 2 − 7

192
γ 3

)
ν5 + · · · ,

(46)

ρ2 = ν − 2γ ν3 + 15

16
γ 2ν4 +

(
5

3
γ 2 − 55

192
γ 3

)
ν5 + · · · ,

(47)

where we use the filling fraction ν as a small parameter by the
relation

κ = γ ν/2, (48)

which follows from Eq. (4) and the limit (26).
Naively, in the continuum limit the lattice momentum

becomes small due to the relation p = λ δ, so by combining
various ρm in Eq. (44) and Taylor expanding the integrand
in terms of p, one could obtain moments of the ρLL(λ)
density, i.e., expectation values of the charges Q̂m of the
LL model. However, this must be done with care. First, the
limits of integration are strictly speaking not ±∞, but ±π/δ,

which matters if the LL moments are divergent (as expected).
Second, the scaling limit (26), the relation (48) as well as the
relations λ = p/δ and ρLL(λ) = ρq(δ λ) may have higher order
corrections which would mix the orders.

In spite of these issues, the energy can be obtained if the
ρLL(λ) has at most a λ−4 tail:

−(ρ1 + ρ−1 − 2ρ0)

=
∫ π

−π

dp

(
p2 − p4

12
+ · · ·

)
ρq(p)

=
∫ π/δ+···

−π/δ+···
dλ(δ + · · · )

(
δ2λ2 − λ4δ4

12
+ · · ·

)
[ρLL(λ) + · · · ],

(49)

where the dots stand for higher order terms in δ. The first
parentheses comes from the unknown higher order terms of
the relation p = δ · λ + · · · , this also generates terms in the
middle parentheses. Now let us make the assumption that this
relation, as well as the relation between ρq(p) and ρLL(λ), does
not have higher powers of λ. Then each power λ2n comes with
at least δ2n+1 in the integrand which implies that although the
integrals of higher powers seem to diverge, with the δ powers
in their coefficients all of them scale as δ4, while the quadratic

term scales as δ3. Thus it is safe to take the δ → 0 limit after
dividing by δ3 and we are left with

− 2

δ3
(ρ1 − ρ0) →

∫ ∞

−∞
dλ ρLL(λ)λ2. (50)

Since limδ→0[− 2
δ3 (ρ1 − ρ0)] = n3γ , the energy density is

correctly reproduced, as expected.
In a similar fashion, one can formulate a condition on

whether the 2nth moment of the ρLL(λ) distribution is di-
vergent. For this one again needs to pick the right combination
of ρm with m � n. In particular, Q4 is divergent if

ρ2 + ρ−2 − 2ρ0 − 4(ρ1 + ρ−1 − 2ρ0) ∝ δ4. (51)

From the expansion in Eqs. (A8) we find

ρ2 − ρ0 − 4(ρ1 − ρ0) = 3

16
γ 2n4δ4 + · · · , (52)

thus
∫

dλρLL(λ)λ4 = 〈Q̂4〉/L is divergent. In the next subsec-
tion we find the exact coefficient of the corresponding λ−4 tail
of ρLL(λ).

B. Pattern for expectation values in the BEC state—large
momentum expansion of ρLL(λ)

The Taylor expansions of ρm for m = 1, . . . ,6 in terms of ν

up to O(ν6) are listed in Eqs. (A8) of the Appendix. Based on
them one can find a pattern for the coefficients of the different
orders. They turn out to be low order polynomials in m:

ρm = ν − m2

2
γ ν3 + m3 + 2m − 3

4

12
γ 2ν4

+
(

m2(m2 + 1)

12
γ 2 − m4 + 4m2 − 3m + 3

2

96
γ 3

)
ν5

+O(ν6). (53)

The pattern for the O(ν6) term can be found in the Appendix.
The reasonably simple rational coefficients and their structure
provide strong evidence that the polynomial dependence on
m is correct. The order of the coefficient polynomial of νk

is k − 1 and, interestingly, the subleading orders (mk−2) are
always missing. As we will show now, the first property is
necessary in order to have a finite scaling limit of the ρq(p)
function, i.e., a finite ρLL(λ).

The ρ(p) distribution function is the Fourier sum of the ρm.
It is clear that the scaling limit and this Fourier transformation
do not commute: If we take the limit before computing the
sum we get ρm ≡ 0. For the computation of the Fourier sum
order by order in ν one needs to calculate the building blocks

∞∑
m=−∞

m2l cos(mp) = 0, (54)

∞∑
m=−∞

m2l−1 cos(mp) =
∑l−1

j=0 cj cos(jp)

sin2l
(

p

2

) −→ 22l
∑l−1

j=0 cj

δ2lλ2l
,

(55)

where the cj are real numbers. The second expression must be
multiplied by δ2l to yield neither infinity nor zero. Thus the fact
that in Eq. (A10) the highest power of m in the coefficient of νk

is k − 1 implies that ρLL(λ) is finite. Moreover, only the highest
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powers of m in the coefficient polynomials of the even orders of
ν contributes. This is important, because we know the relation
κ = γ ν/2 only to leading order. Adding potential subleading
terms κ = γ ν/2 + a1ν

2 + a2ν
3 + · · · generates terms in each

order of ν which however have a subleading m dependence,
thus they do not affect the result in the continuum limit. So
the results are robust against higher order corrections in δ of
the relations connecting the q-boson lattice system with the
continuum LL model.

Performing the Fourier sum we obtain

2πρ(p) = ρ0 + 2
∞∑

m=1

ρm cos(mp)

= ν + 2
∞∑

m=1

(
1

12
γ 2ν4m3 + γ 3(γ − 24)

960
ν6m5

)
+ · · ·

= ν + 2

(
ν4 γ 2

12

2 + cos(p)

8 sin4(p/2)

− ν6 γ 3(γ − 24)

960

33 + 26 cos(p) + cos(2p)

32 sin6(p/2)
+ · · ·

)
.

(56)

Taking the continuum limit (26) together with p = δλ we find

2πρLL(λ) = n4γ 2

λ4
− n6γ 3(γ − 24)

4λ6
+ · · · . (57)

We see that the expansion of the Fourier modes ρm in terms
of δ or ν is equivalent to a large momentum expansion of the
LL density of roots ρLL(λ). We did find the expected λ−4 tail
together with the subleading λ−6 tail. The coefficients of these
tails in Eq. (57) are exact.

A key step in the calculation above is the rescaling of mo-
menta λ = p/δ. This is how lower orders of ν may eventually
disappear and arbitrary high powers of ν may survive in the
limit. Consequently, the large momentum expansion structure
can be heuristically understood by realizing that we need to
resolve the vicinity of p = 0 very well, because this region
will be blown up to be the entire domain in λ. Thus it is
not very surprising that many Fourier modes are necessary
and one needs to know them very precisely. Any truncation
or approximation affects the small λ region, so we approach
from large λ.

C. Truncated GGE: Padé-Fourier approximation

To find the full ρLL(λ) function one needs a pattern for
the ρm in all orders in κ . This requires the knowledge of the
expectation values of higher charges which are increasingly
hard to the compute. However, for observables of the lattice
model localized on l neighboring sites the truncated GGE
using the first m � l charges Im of size � m + 1 is expected
to give a very good approximation.26 Observables localized at
a point in the LL model, like gk = 〈: [ψ̂(x)†ψ̂(x)]k :〉/nk , are
the limits of operators localized on a few neighboring sites in
the q-boson lattice system, thus we expect to capture the gk

using the first few conserved q-boson charges.
To this end, we approximate ρq(p) by the truncated Fourier

sum using the Fourier-Padé approximation. Let us consider

the truncated Fourier sum,

ρ[l](p) = ρ0 + 2
l∑

m=1

ρm cos(mp) (58)

=
(

ρ0

2
+

l∑
m=1

ρmzm

)
+ {z → 1/z}, (59)

where we introduced z = eip. The parenthesis is a truncated
Taylor expansion to which we apply the Hermite-Padé approx-
imation technique: We find a rational function of z such that
the first l terms in its Taylor expansion matches our truncated
expansion. The (n,m)-type Padé approximant is a ratio of
an nth order and an mth order polynomial (n + m = l). We
reintroduce the variable p in the approximants and then we
take the continuum limit. The (2,2), (3,2), (2,3), (4,2), and
(2,4) Padé approximants all give the same result,

ρ
(1)
LL(λ) = 1

2π

γ 2

λ̄4 + γ (γ /4 − 2)λ̄2 + γ 2
, (60)

where λ̄ = λ/n. Comparing with Eq. (57) this has the correct
λ−4 tail but not the λ−6 one. The latter is reproduced by the
Padé approximant of type (3,3):

ρ
(2)
LL(λ) = 1

2π

4γ 2[λ̄2 + γ (γ + 2)]

(4λ̄2 + γ 2)[λ̄4 + (γ − 4)γ λ̄2 + 4γ 2]
. (61)

The densities are shown for γ = 1 in the inset of Fig. 1 together
with the thermal grand canonical density. The latter is fixed by
the energy and particle number only and is obtained by solving
the standard Yang-Yang TBA equations with fixing the energy
instead of the temperature. All three curves are quite different,
but as we will show below, the truncated GGE solutions give
nearly identical results for certain correlation functions which
are different from the thermal ones.

FIG. 1. (Color online) Quench from a noninteracting initial state
to arbitrary final interactions. Main panel: Local correlations g2 and
g3 as functions of the coupling γ , calculated from the two truncated
generalized Gibbs ensembles (GGE) (red dashed, blue solid) and from
the grand canonical ensemble (GCE) (dot-dashed). The asymptotic
behaviors are also shown (dotted). Inset: Density of quasimomenta,
ρ

(1)
LL(λ),ρ(2)

LL(λ) in the two truncated GGE (red dashed, blue solid) and
ρ th

LL(λ) in the GCE (black dot-dashed) for γ = 1.
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Let us note that, interestingly, the γ → ∞ limit of both
ρ

(1)
LL(λ) and ρ

(2)
LL(λ) gives the Lorentzian form

lim
γ→∞ ρ

(1,2)
LL (λ) = 1

2π

4

(λ/n)2 + 4
. (62)

This form will turn out to be the correct exact ρLL(λ) density
for the quench to γ = ∞.

VI. CORRELATION FUNCTIONS IN THE
ASYMPTOTIC STEADY STATE

A. Ultralocal observables

Knowing the density ρLL(λ) allows us to calculate correla-
tion functions. First we compute point-local correlators using
the results of Ref. 39 which give exact analytic expressions for
the local two- and three-point correlators for arbitrary states
that are captured by a continuous ρLL(λ). We compute

g2 = 〈: (ψ̂†ψ̂)2 :〉/n2, g3 = 〈: (ψ̂†ψ̂)3 :〉/n3, (63)

both for the GGE and the GCE by using the appropriate ρLL(λ).
In the latter only the energy and the particle densities are
fixed to be the same as for the GGE. The results are shown
in the main panel of Fig. 1. The values of the correlators
computed using the two Padé approximants are very close to
each other conforming with the expectation that adding more
charges to the thermal GGE does not significantly change the
result. This is an important consistency check of our truncation
method. The deviations are bigger for g3 which agrees with
the intuition that g3 is more complex than g2. The second
observation is that as the difference between the two truncated
results decreases for increasing γ , their deviation from the
GCE results gth

k (dotted lines) grows, the relative difference
between the g2 values being bigger than 20% for γ > 10.
For strong interactions the asymptotic behavior of gk can be
obtained analytically. For g2 we find

g2 ∼ 8

3γ
vs gth

2 ∼ 4

γ
, (64)

implying a factor of 3/2 between the two. For g3 even the
power laws are different:

g3 ∼ 32

15γ 2
vs gth

3 ∼ 72

γ 3
. (65)

B. Strongly interacting final state

For large coupling the system is in the fermionized
Tonks-Girardeau regime since the strong repulsion induces
an effective Pauli principle in real space.40 In the special case
of the quench from c = 0 to c = ∞ the overlaps between the
initial state and the final TG eigenstates are explicitly known.41

Only states defined by a set of {λi,−λi} pairs have nonzero
overlaps which are 〈λi |BEC〉 ∝ 1/

∏
λi>0 λi . The overlaps are

the necessary ingredients in the formalism of Ref. 25 to
compute the saddle point density. Solving the generalized TBA
equations we obtain the simple result (see also Ref. 42)

ρLL(λ) = 1

2π

1

1 + λ2n2/4
, (66)

which exactly matches the γ → ∞ limit of our Padé ap-
proximants [Eq. (62)]. The fact that the two derivations

are completely independent gives a strong evidence for the
correctness of the result.

Bosonic correlation functions can now be calculated by first
fermionizing the field operators using Jordan-Wigner strings,

ψ̂(x) = eiπ
∫ x

−∞ ψ̂
†
F(z)ψ̂F(z)dzψ̂F(x), (67)

and then exploiting the free fermionic correlators of ψ̂F(x).
Let us first consider the equal time correlation g1(x) =
〈ψ̂†(x)ψ̂(0)〉/n in the saddle point distribution of Eq. (62).
After introducing a lattice discretization, the long chain of
operators is amenable to a Wick expansion using as a building
block the fermionic two-point function. The latter is the Fourier
transform of the fermionic momentum distribution which is
nothing but Eq. (62) since for γ = ∞ the quasimomenta
coincide with the physical momenta. Therefore the fermionic
two-point function is

gFF
1 (x) =

∫
dλρs(λ)eiλx = e−2n|x|. (68)

The Wick expansion of 〈ψ̂†(x)ψ̂(0)〉 can be recast as a
Fredholm-like determinant43 that finally leads to

〈ψ̂†(x)ψ̂(0)〉 = n e−2n|x|. (69)

Note that this simple exponential form is exact42 and holds
even for small x. This result is drastically different from
the corresponding GCE result which approaches an infinitely
narrow Dirac-δ in the TG limit. Since G(x) = GFF(x), the
experimentally accessible bosonic momentum distribution
nB(k) is equal to the Lorentzian ρLL(k) given by Eq. (62),
plotted in the inset of Fig. 2.

We can also compute the density-density correlation
function

g2(x) = 〈ψ̂†(x)ψ̂†(0)ψ̂(0)ψ̂(x)〉/n2 (70)

for large final γ using the first few terms of the infinite series
given in Ref. 44. In the large γ limit the leading order for
arbitrary ρ(λ) is given by g2(x) ≈ 1 − [

∫
dλ ρ(λ)eiλx]2. Using

FIG. 2. (Color online) Quench to the TG regime (γ = ∞). Main
panel: Equal time density-density correlation function. We compare
GGE/saddle point (green solid) values with the large time result of
a numerical solution of the dynamics of Ref. 41 (purple dot-dot-
dashed). Inset: Momentum distribution function.
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ρs(λ) we obtain

g2(x) = 1 − e−4n|x|, (71)

which agrees very well with the large time result of the
numerical solution of the time evolution in Ref. 41 based
on the exact overlaps (see main panel of Fig. 2). To the
best of our knowledge this is one of the first demonstrations
in a continuum integrable model that the GGE value of an
observable agrees with its actual large time asymptotics.

VII. CONCLUSIONS

Extending the studies of the post-quench behavior of
many-body systems to a nonquadratic continuum model,
we investigated the large time behavior of the Lieb-Liniger
model after an interaction quench using analytic techniques
by combining the generalized Gibbs ensemble and Bethe
ansatz integrability of the model and its lattice discretization.
We pointed out the divergence of local charges in the
initial state that prevents the naive application of the GGE
methodology. We expect this to be a generic phenomenon
for interaction quenches in continuum models with contact
interactions which deserves further study. For a noninteracting
initial state and arbitrary final interactions, we evaluated

local correlations and found deviations from the thermal
predictions. These are experimentally accessible through
the measurement of the photoassociation rate (g2) and the
inelastic three-body loss (g3) in cold atom experiments. We
computed two-point correlation functions exactly for quenches
to the femionized Tonks-Girardeau regime and found excellent
agreement with a recent numerical simulation of the time
evolution.
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APPENDIX

In the Appendix we give some details about the calculation of expectation values in the initial lattice BEC state,

|BEC〉N = 1√
N !

(
1√
M

∑
i

b
†
i

)N

|0〉. (A1)

This state has the nice property (established by commuting annihilation operators one by one)

bα
j |BEC〉N =

√
N

M
· · ·

√
N − α + 1

M
|BEC〉N−α ≈ να/2|BEC〉N−α, (A2)

where the approximate relation is valid in the thermodynamic limit when we are interested in α that does not scale proportionally
to the system size. Note that as long as we are interested in the evaluation of expectation values of normal ordered operators over
BEC state in the TDL, one can also use the coherent state form of the BEC,

|BEC,c〉 =
∏
j

e−ν/2+√
νb

†
j |0〉, (A3)

which has the same matrix elements as the state (A2).
In what follows, we compute expectation values of the local charges by computing first the building blocks, on-site monomials,

based on expanding B
(†)
i in terms of b

(†)
i and normal ordering. For most of the matrix elements we can only derive expansions in

powers of κ (but not making any assumptions about ν). We will start from

Bj = bj

√
[N + 1]q
N + 1

≈ bj

(
1 − κ

2
Nj + κ2

24
Nj (5Nj + 4) + · · ·

)
= bj − κ

2
b
†
j bjbj + κ2

24
(5b

†
j b

†
j bjbjbj + 9b

†
j bjbj ) + · · · . (A4)

The evaluation of its expectation value in the state (A3) leads to

〈BEC,c|Bj |BEC,c〉 = √
ν − 1

2
κν3/2 + κ2

24
(9ν3/2 + 5ν5/2) + · · · . (A5)

In a similar way we obtain

〈BEC|B†
jBj |BEC〉 = ν − κν2 + κ2ν2 − 2

3ν2κ3 + 2
3ν3κ2 + · · · . (A6)

We note that for this combination a closed form expression exists, 〈BEC|B†
jBj |BEC〉 = (1 − e−(1−q−2)ν)/(1 − q−2). These and

similar on-site matrix elements are the only type needed to systematically evaluate the expectation values of any polynomial of
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B(†) operators acting on different sites over the BEC. Indeed, due to the factorization of the wave function on different sites in
the coherent state representation (A3) one can treat different sites separately.

Let us now use these matrix elements to evaluate the first ρm, m = 1, . . . ,6. From Eqs. (34) and (35) and from the definition
(44) we have

ρ1 = 1

M

∑
j

〈B†
jBj+1〉, ρ2 = 1

M

∑
j

〈
B

†
jBj+2 − χ2

2 − χ2
B

†
jB

†
jBj+1Bj+1 − χ2B

†
jB

†
j+1Bj+1Bj+2

〉
, etc. (A7)

Due to translational invariance we need to evaluate the expectation value only for a single value of j . We find

ρ1 = ν − 1

2
γ ν3 + 3

16
γ 2ν4 +

(
1

6
γ 2 − 7

192
γ 3

)
ν5 − 11

96
γ 3ν6 + · · · , (A8a)

ρ2 = ν − 2γ ν3 + 15

16
γ 2ν4 +

(
5

3
γ 2 − 55

192
γ 3

)
ν5 +

(
−51

32
γ 3 + 1

16
γ 4

)
ν6 + · · · , (A8b)

ρ3 = ν − 9

2
γ ν3 + 43

16
γ 2ν4 +

(
15

2
γ 2 − 73

64
γ 3

)
ν5 +

(
−859

96
γ 3 + 73

192
γ 4

)
ν6 + · · · , (A8c)

ρ4 = ν − 8γ ν3 + 95

16
γ 2ν4 +

(
68

3
γ 2 − 619

192
γ 3

)
ν5 +

(
−3137

96
γ 3 + 269

192
γ 4

)
ν6 + · · · , (A8d)

ρ5 = ν − 25

2
γ ν3 + 179

16
γ 2ν4 +

(
325

6
γ 2 − 1423

192
γ 3

)
ν5 +

(
−2953

32
γ 3 + 379

96
γ 4

)
ν6 + · · · , (A8e)

ρ6 = ν − 18γ ν3 + 303

16
γ 2ν4 +

(
111γ 2 − 949

64
γ 3

)
ν5 +

(
−21049

96
γ 3 + 299

32
γ 4

)
ν6 + · · · , (A8f)

where we use ν as small parameter by the relation

κ = γ ν/2. (A9)

One can conjecture the pattern for the coefficients of the different orders. They turn out to be low order polynomials in m:

ρm = ν − m2

2
γ ν3 + m3 + 2m − 3

4

12
γ 2ν4 +

(
m2(m2 + 1)

12
γ 2 − m4 + 4m2 − 3m + 3

2

96
γ 3

)
ν5

+
(

−m5 + 5m3 − 5
2m2 + 2

3m + 5
12

40
γ 3 + m5 + 20

3 m3 − 15
2 m2 + 29

6 m − 5

960
γ 4

)
ν6 + O(ν7). (A10)
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G. Pupillo, and H.-C. Nägerl, ibid. 107, 230404 (2011); B. Pozsgay,
J. Stat. Mech. (2011) P01011.

40L. Tonks, Phys. Rev. 50, 955 (1936); M. Girardeau, J. Math. Phys.
1, 516 (1960).

41V. Gritsev, T. Rostunov, and E. Demler, J. Stat. Mech. (2010)
P05012.

42J. De Nardis, B. Wouters, M. Brockmann, and J.-S. Caux,
arXiv:1308.4310.

43A. Imambekov, I. E. Mazets, D. S. Petrov, V. Gritsev, S. Manz,
S. Hofferberth, T. Schumm, E. Demler, and J. Schmiedmayer, Phys.
Rev. A 80, 033604 (2009).

44N. M. Bogoliubov and V. E. Korepin, Theor. Math. Phys. 60, 808
(1984).

205131-10

http://dx.doi.org/10.1103/PhysRevB.85.075117
http://dx.doi.org/10.1103/PhysRevB.85.075117
http://dx.doi.org/10.1103/PhysRevB.85.075117
http://dx.doi.org/10.1103/PhysRevB.85.075117
http://dx.doi.org/10.1103/PhysRevB.85.075117
http://dx.doi.org/10.1103/PhysRevB.85.075117
http://dx.doi.org/10.1103/PhysRevB.85.075117
http://dx.doi.org/10.1103/PhysRevB.85.075117
http://dx.doi.org/10.1103/PhysRevB.85.075117
http://dx.doi.org/10.1103/PhysRevB.85.075117
http://dx.doi.org/10.1103/PhysRevB.85.075117
http://dx.doi.org/10.1088/1742-5468/2012/02/P02017
http://dx.doi.org/10.1103/PhysRevB.85.214435
http://dx.doi.org/10.1103/PhysRevB.86.060408
http://dx.doi.org/10.1103/PhysRevA.86.053615
http://dx.doi.org/10.1103/PhysRevLett.109.260601
http://dx.doi.org/10.1103/PhysRevLett.109.260601
http://dx.doi.org/10.1103/PhysRevB.87.205109
http://dx.doi.org/10.1103/PhysRevLett.100.080406
http://dx.doi.org/10.1103/PhysRevLett.100.080406
http://dx.doi.org/10.1088/1367-2630/12/8/083065
http://dx.doi.org/10.1088/1367-2630/12/8/083065
http://dx.doi.org/10.1103/PhysRevLett.105.150403
http://dx.doi.org/10.1103/PhysRevLett.105.150403
http://dx.doi.org/10.1103/PhysRevLett.109.115304
http://dx.doi.org/10.1103/PhysRevLett.109.115304
http://dx.doi.org/10.1103/PhysRevA.87.053628
http://dx.doi.org/10.1103/PhysRevA.87.053628
http://dx.doi.org/10.1103/PhysRevLett.109.175301
http://dx.doi.org/10.1103/PhysRevLett.109.175301
http://dx.doi.org/10.1088/1367-2630/14/7/075006
http://dx.doi.org/10.1103/PhysRevLett.110.245301
http://dx.doi.org/10.1103/PhysRevLett.110.245301
http://dx.doi.org/10.1088/1742-5468/2013/09/P09025
http://dx.doi.org/10.1088/1742-5468/2012/07/P07022
http://dx.doi.org/10.1088/1742-5468/2012/07/P07022
http://dx.doi.org/10.1103/PhysRevLett.102.127204
http://dx.doi.org/10.1103/PhysRevLett.102.127204
http://dx.doi.org/10.1103/PhysRevB.82.144302
http://dx.doi.org/10.1103/PhysRevLett.106.227203
http://dx.doi.org/10.1103/PhysRevLett.106.227203
http://dx.doi.org/10.1088/1742-5468/2012/07/P07016
http://dx.doi.org/10.1103/PhysRevB.84.212404
http://dx.doi.org/10.1088/1742-5468/2012/09/P09011
http://dx.doi.org/10.1103/PhysRevLett.109.247206
http://dx.doi.org/10.1088/1742-5468/2012/04/P04017
http://dx.doi.org/10.1103/PhysRevLett.110.135704
http://dx.doi.org/10.1103/PhysRevLett.110.135704
http://dx.doi.org/10.1103/PhysRevLett.97.156403
http://dx.doi.org/10.1103/PhysRevA.80.063619
http://dx.doi.org/10.1103/PhysRevLett.109.126406
http://dx.doi.org/10.1103/PhysRevLett.109.126406
http://dx.doi.org/10.1088/1367-2630/14/7/075001
http://dx.doi.org/10.1088/1367-2630/14/7/075001
http://dx.doi.org/10.1103/PhysRevLett.98.050405
http://dx.doi.org/10.1103/PhysRevLett.98.050405
http://dx.doi.org/10.1103/PhysRevLett.98.210405
http://dx.doi.org/10.1103/PhysRevLett.98.210405
http://dx.doi.org/10.1103/PhysRevA.77.041604
http://dx.doi.org/10.1088/1367-2630/12/5/055019
http://dx.doi.org/10.1103/PhysRevLett.106.140405
http://dx.doi.org/10.1103/PhysRevA.84.033640
http://dx.doi.org/10.1103/PhysRevE.85.011133
http://dx.doi.org/10.1103/PhysRevLett.100.120404
http://dx.doi.org/10.1103/PhysRevA.78.013626
http://dx.doi.org/10.1103/PhysRevB.84.054304
http://dx.doi.org/10.1103/PhysRevB.84.054304
http://dx.doi.org/10.1103/PhysRevB.86.115448
http://dx.doi.org/10.1103/PhysRevB.87.165106
http://dx.doi.org/10.1103/PhysRevB.87.165106
http://dx.doi.org/10.1103/PhysRevB.87.165106
http://dx.doi.org/10.1103/PhysRevLett.111.100401
http://dx.doi.org/10.1103/PhysRevLett.111.100401
http://dx.doi.org/10.1088/1367-2630/12/5/055015
http://dx.doi.org/10.1088/1367-2630/12/5/055015
http://dx.doi.org/10.1088/1751-8113/45/25/255001
http://dx.doi.org/10.1103/PhysRevLett.100.100601
http://dx.doi.org/10.1103/PhysRevLett.100.030602
http://dx.doi.org/10.1103/PhysRevLett.100.030602
http://dx.doi.org/10.1088/1367-2630/12/5/055020
http://dx.doi.org/10.1088/1367-2630/12/5/055020
http://dx.doi.org/10.1103/PhysRevLett.110.257203
http://dx.doi.org/10.1103/PhysRevB.87.245107
http://dx.doi.org/10.1088/1742-5468/2013/10/P10028
http://dx.doi.org/10.1088/1742-5468/2013/07/P07012
http://dx.doi.org/10.1103/PhysRev.130.1605
http://dx.doi.org/10.1103/PhysRev.130.1616
http://dx.doi.org/10.1103/PhysRevLett.81.938
http://dx.doi.org/10.1103/RevModPhys.83.1405
http://dx.doi.org/10.1103/RevModPhys.83.1405
http://dx.doi.org/10.1063/1.1664947
http://dx.doi.org/10.1016/0378-4371(90)90126-D
http://arXiv.org/abs/arXiv:1109.6604
http://dx.doi.org/10.1103/PhysRevB.47.11495
http://dx.doi.org/10.1103/PhysRevB.47.11495
http://dx.doi.org/10.1016/S0550-3213(98)00038-8
http://dx.doi.org/10.1007/s00220-012-1630-9
http://dx.doi.org/doi.org/10.1088/1742-5468/2006/08/P08015
http://dx.doi.org/doi.org/10.1088/1742-5468/2006/08/P08015
http://dx.doi.org/10.1103/PhysRevLett.103.210404
http://dx.doi.org/10.1103/PhysRevLett.103.210404
http://dx.doi.org/10.1103/PhysRevA.81.043606
http://dx.doi.org/10.1103/PhysRevLett.107.230405
http://dx.doi.org/10.1103/PhysRevLett.107.230404
http://dx.doi.org/10.1088/1742-5468/2011/11/P11017
http://dx.doi.org/10.1103/PhysRev.50.955
http://dx.doi.org/10.1063/1.1703687
http://dx.doi.org/10.1063/1.1703687
http://dx.doi.org/10.1088/1742-5468/2010/05/P05012
http://dx.doi.org/10.1088/1742-5468/2010/05/P05012
http://arXiv.org/abs/arXiv:1308.4310
http://dx.doi.org/10.1103/PhysRevA.80.033604
http://dx.doi.org/10.1103/PhysRevA.80.033604
http://dx.doi.org/10.1007/BF01018981
http://dx.doi.org/10.1007/BF01018981

