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Abstract

In ultra-high dimensional data analysis, it is extremely challenging to identify important
interaction effects, and a top concern in practice is computational feasibility. For a data set with n
observations and p predictors, the augmented design matrix including all linear and order-2 terms
is of size n x (p + 3p)/2. When p is large, say more than tens of hundreds, the number of
interactions is enormous and beyond the capacity of standard machines and software tools for
storage and analysis. In theory, the interaction selection consistency is hard to achieve in high
dimensional settings. Interaction effects have heavier tails and more complex covariance
structures than main effects in a random design, making theoretical analysis difficult. In this
article, we propose to tackle these issues by forward-selection based procedures called iFOR,
which identify interaction effects in a greedy forward fashion while maintaining the natural
hierarchical model structure. Two algorithms, iFORT and iFORM, are studied. Computationally,
the iFOR procedures are designed to be simple and fast to implement. No complex optimization
tools are needed, since only OLS-type calculations are involved; the iFOR algorithms avoid
storing and manipulating the whole augmented matrix, so the memory and CPU requirement is
minimal; the computational complexity is linear in p for sparse models, hence feasible for p > n.
Theoretically, we prove that they possess sure screening property for ultra-high dimensional
settings. Numerical examples are used to demonstrate their finite sample performance.
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1 Introduction

Ultra-high dimensionality is a significant feature of data collected in contemporary scientific
research, owing to rapid advances of technologies and computer power. Big data are
abundant in many areas including biology, genetics, medicine, finance, social science,
environmental science, and so on. One major challenge in dealing with big data sets is that,
the number of predictors p is much larger than the sample size n. In this paper, we allow p to
be as large as O(exp(ng)) for some & €(0,1/2), which is described as nonpolynomial (NP)
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dimensionality in Fan & Song (2010). To extract useful information from such data and
build an interpretable model with high prediction power, variable selection or screening
must be employed. A variety of variable selection methods have been developed and in
common use, such as the LASSO (Tibshirani, 1996), SCAD (Fan & Li, 2001), Dantzig
selector (Candes & Tao, 2007), elastic net (Zou & Hastie, 2005), minimax concave penalty
(MCP) (Zhang, 2010), and others (Zou, 2006; Zou & Li, 2008). Many methods possess
favorable theoretical properties such as model selection consistency (Zhao & Yu, 2006) and
oracle properties (Fan & Lv, 2011). When p is much larger than n, sure screening is a more
realistic goal to achieve than oracle properties or selection consistency (Fan & Lv, 2008;
Wang, 2009). Sure screening assures that all important variables are identified with a
probability tending to one, hence achieving effective dimension reduction without
information loss and providing a reasonable starting point for low-dimensional methods to
be applied.

Most existing methods for variable selection are designed for selecting main effects only.
However, main effects may not be sufficient to characterize the relationship between the
response and predictors in complex situations, where predictors work together. Interaction
models provide a better approximation to the response surface, improve prediction accuracy,
and bring new insight on the interplay between predictors. They are useful in social,
political, and economic problems to identify non-trivial interactions between covariates in
modeling election results, product sales, social networks, stock market changes. One
interesting application is to study the effects of combinations of various behaviors and
exposures on disease rates, commonly needed in bioassay and epidemiology. In genome-
wide association studies (GWAS), there is growing interest to identify the interaction
(epistatic) effects of SNPs (Evans et al., 2006; Manolio & Collins, 2007; Kooperberg &
LeBlanc, 2008; Cordell, 2009), since gene-gene interactions may provide critical insight on
the complex biological pathways that underpin human diseases. A common class of linear
models considering two-way interactions assume

Y=8+5 X1+ + 3, X+ 81 X7+ 812 X1 Xo+ - +8,p X 42 (L1)

where Y is the response, X, -, Xp are covariates, and ¢€1is the error. Marginality principle
(Nelder, 1977, 1994; McCullagh & Nelder, 1989; McCullagh, 2002) or heredity conditions
(Hamada & Wu, 1992; Chipman, 1996; Chipman et al., 1997) are generally employed to
characterize the hierarchical structure between main and interaction effects. In particular, the
strong heredity condition is

i.e., X;X¢ is important only if its both parents X and Xy are important. The weak heredity is

Bre 0= 82452 0,
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i.e., X3 Xy is important only if at least one of X; and Xy is important.

Interaction selection for (1.1) has lately drawn much attention in the literature. Recent works
include Efron et al. (2004), Turlach (2004), Yuan et al. (2007), Yuan et al. (2009), Zhao et
al. (2009), and Choi et al. (2010), among others. In particular, Efron et al. (2004), Turlach
(2004), and Yuan et al. (2007) considered enforcing the strong heredity principle in the
LARS; Yuan et al. (2009) incorporated the structural relationship by imposing linear
inequality constraints on coefficients; Zhao et al. (2009) introduced the Composite Absolute
Penalties (CAP) to achieve hierarchy in variable selection. Choi et al. (2010) employed a
special reparametrization of regression coefficients to enforce the heredity constraint. These
procedures, except Efron et al. (2004), can be described as joint analysis, as they consider
main and interaction effects in (1.1) altogether and make a global search over all candidate
models. When p is small or moderate, joint analysis is effective in identifying important
interaction effects. Some joint-analysis methods can produce consistency selection results
under the strong heredity condition for a fixed p (?). However, joint-analysis methods
become infeasible if p is very large. Two major limiting factors are memory requirement and
computational cost. Joint analysis typically requires to store the entire augmented design
matrix of size n x (p2 + 3p)/2. Take an example of n = 200, p = 10, 000, where the total
number of entries is ~ 1010 and beyond the capacity of standard software such as R and
MATLAB. Since sophisticated programming tools are needed to handle complex penalty
structures (Zhao et al., 2009; Choi et al., 2010) or multiple inequality constraints (Yuan et
al., 2009), joint analysis implementation can be extremely expensive. Furthermore, it is not
clear whether selection consistency would still hold in ultra-high dimensional settings.

An alternative interaction selection tool is two-stage analysis: first select main effects only
(by intentionally leaving interaction terms out) at Stage 1, then select interactions of main
effects identified at Stage 1. When the data dimension is very large, two-stage approaches
are possibly only feasible choices for practitioners (Wu et al., 2009, 2010). Despite their
computational advantages over joint analysis, two-stage procedures have been criticized for
their validity, even for low-dimensional data with p < n (Turlach, 2004).

Motivated by the above practical and theoretical concerns, we propose new greedy-type
model selection procedures for high dimensional interaction selection, study their numerical
properties and performance, and provide rigorous theoretical justifications. In particular, we
consider interaction selection procedures featured with FORward selection, which are
referred to iFOR. Forward selection (FS) is a classical variable selection method in linear
regression and it builds the model sequentially by adding one variable at a time. FS is easy
to implement as it involves only simple OLS-type operations. Though the local search is
sub-optimal, it is a necessary compromise when dealing with high dimensionality for the
sake of computation. In this article, we propose two algorithms: iFORT and iFORM. The
iFORT is a two-stage procedure: at the first stage, it selects only main effects (all quadratic
terms and interactions ignored) by FS; at the second stage, interaction terms generated under
the heredity condition are considered. The iFORM, on the other hand, selects main effects
and interactions altogether in an iterative fashion. Compared to joint analysis procedures, the
iFOR methods can incorporate the strong or weak heredity condition in a much simpler
fashion. Their implementation does not require the storage of the entire augmented matrix,
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making them feasible for large problems. The memory and computational complexity are
shown to be linear in p. In one simulation example with p = 10, 000 and n = 400, it takes
iFOR fewer than 30 seconds to complete the selection process. Numerical examples suggest
promising performance of iFOR in terms of effective coverage. In additional to the new
algorithms and numerical results, another major goal of this work is to investigate
theoretical properties of iFORT and understand their asymptotic behaviors. By rigorously
analyzing the covariance structure between main effects and interaction terms, we prove that
the iFORT has a sure screening property for ultra-high dimensional settings. This is the first
theoretical justification of two-stage approaches.

The rest of this article is organized as follows. Section 2 introduces the basic model setup
and the new procedures: iFORT and iFORM, under the strong heredity condition. Major
theoretical results are presented in Section 3. Section 4 extends the iFOR to the context of
the weak heredity condition. Numerical results are demonstrated in Sections 5 and .6 Final
remarks are given in Section 7. All technical proofs are relegated to the Appendix.

2 Methodology

2.1 Model Setup and Notations

Given n IID observations (Xq, Y1), ..., (X;, Y;,), we consider a regression model with linear
and second-order terms

Yi=fotx| f+z) B +e;, 1<i<n, e

where Y; is a real-valued response, x; = (X;1, ..., Xjp) is a p-dimensional vector, the vector

zi:{X.fl. XiaXio, ..o, XXy, ng. NinXs, ... .X.?.p}T contains quadratic and two-way
interaction terms, /) is the intercept, A1) and A are respectively regression coefficients of
linear effects and order-2 effects, and ¢&; is the noise with mean zero and finite variance .
The length of z; or f2) is ¢ = (p + p?)/2. The entire parameter vector is f= (FDT, DT,
Throughout this article, we assume that E(X;j) = 0, Var(X;) = 1, E(Y;) =0, Var(¥;) = 1 in
2.1)fori=1,...,nandj=1, ..., p. We also assume that all the quadratic effects and two-
DT

way interactions are centered, i.e., z; = (..., XjXj¢ — E(Xj3X;p), ...) ' . This eliminates the

need of the intercept term /%) in (2.1).

For convenience, denote ([x;r ):;1 as the design matrix containing only linear effects, and

([, 2] j:; as the augmented design matrix. Define the index sets of linear and order-2
terms as

4@1:{1123----})}3 4@2:{'\k()1§k§€§p}

In (2.1), any term f3 #0 or S #0 is regarded as relevant; the corresponding predictor can be
a linear, or quadratic, or interaction effect. We define the nonzero linear and order-2 effects
as

J Am Stat Assoc. Author manuscript; available in PMC 2015 October 20.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Hao and Zhang

Page 5
T1{j:8; 20,5 € 21}, Fa={(j.k):8 £0,(j, k) € Pa}.

The full model is F = 71U P: and the #rue model 7 = iU 7: For any model M, use | M| to
denote its model size, i.e., the number of predictors contained in M. We have | 71| = p, | 72| =
g, and | F| = d = p+q. We assume | Ti| = pg and | 72| = g, and then the true model size| 7| =
do = po +qo- In the literature, variable selection for (2.1) have been studied by penalized least

squares using the augmented matrix ([x;r zj]):; as the covariates and conducting variable
selection under heredity principles. They work quite well when p is moderate. But when p is
big, their implementation becomes infeasible since the full model sized increases

quadratically in p. For example, p = 50 and d = 1, 325, p = 500 and d = 125, 750, and p = 5,

000 and d = 12, 507, 500.

Next we give a review of the FS solution path algorithm (Wang, 2009), which is closely
related to the interaction selection algorithms under consideration. For each 1 <k <n, we
use S+ to denote the index of selected variables at the end of the kth step. Let ESSu be the
residual sum of squares (RSS) using model M to fit the data.

Forward Selection (FS)
Initial step: Set k=0 and S = .

Iterative step k =k + 1: If k > n, stop. Otherwise, given Si-1, for every j € P\ Si1,
construct a candidate model M1 = St U {j}. Compute the #55+.-. for each j. Find a; =
arg mineroso, W50 and update Sk = S U {ay}. Repeat this step until stop.

The FS algorithm produces a solution path consisting of n nested models 1 C, -+ C S»,
where s = {ay,-, ai} for 1 <k <n. When p > n, the FS automatically terminates after n
steps when RSS reduces to zero. Since the solution path of the FS depends only on the
subspaces spanned by the predictor vectors (column vectors in the design matrix), centering
and standardization does not change the solution path. Wang (2009) showed the screening
consistency of the FS for main-effect selection under the ultra-high dimensional setup.

One straightforward way of extending the FS to the interaction selection is to apply FS
directly to model (2.1), ignoring the hierarchical structure. We name this procedure FS2 to
distinguish it from the usual FS for main effect selection. Based on our empirical
experience, FS2 works well for small and moderate p in sparse settings. In Section 3, we
prove that FS2 has a sure screening property for interaction selection under some regularity
conditions. However, similar to joint-analysis methods, the implementation of FS2 requires
to store the entire augmented design matrix or call the features repeatedly during
computation procedure, making it difficult for high dimensional data analysis.

2.2 New Methods: iFOR

We propose two forward selection based algorithms for interaction selection. The new
algorithms naturally incorporate the marginality or heredity principles (Zhao et al., 2009;
Yuan et al., 2009; Choi et al., 2010), without invoking complex constraint or optimization
tools as done in joint analysis. Throughout this section, we use C to denote the candidate
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index set which consists of all the terms to be considered for selection in the immediately
following step.

We first describe the rwo-stage approach (iIFORT) algorithm. At Stage 1, only main effects
are selected by FS, all of the order-2 terms left out of the model. Denote the selected main-
effect set by 4 At Stage 2, we expand . by adding all the two-way interactions within
and then implement FS on the expanded set while forcing i to stay in the final model.

Two-stage iFOR (iFORT)

Stage 1: Define ¢ = Pi. Implement FS on €. The resulting solution path is { ,_Yi_(lj, t=1,
2, -}, and the selected main effects are * = {jy, ..., j;; }.

Stage 2: Update € = v U {(k,]) : k € & and [ € 4 }. Implement FS on ¢ by forcing-in
M. Denote the solution path by { /,Eﬂi, t=1,2,-}.

The iFORT is simple, fast, and feasible to implement for high dimensional data analysis. It
does not require complex optimization tools, and the strong heredity condition is
automatically satisfied in the final model by forcing-in 4. If the model is sparse, the number
of important linear effects py would be small, so the number of terms considered at Stage 2
would be much smaller than (p? + p)/2. Theoretical properties of iFORT are studied in
Section 3.

The iFORT separately selects main effects and order-2 terms at two stages. Alternatively,
one may select them altogether under the marginality principle, and this leads to the
algorithm iFORM. The main idea of the iFORM is to apply FS to a sub-model of model
(2.1) indexed by a dynamic candidate set C. At step ¢, we use S, M: and ¢ respectively to
represent the index set of all selected effects, selected main effects, and current candidate
set. Initially, € = 7, i.e., all the main effects. Then the candidate set ¢ grows gradually by
adding two-way interactions between the main effects already in the model. In other words,
we update ¢ by defining ¢ = P U {(k, £) : k, £ € M.},

iFOR under Marginality Principle (iIFORM)
Step I: (Initialization) Set S = @, Mo = and ¢ = P1,

Step 2: (Selection) In the 7th step with given 51, -1 and M:-1, forward regression is
used to select one more predictor from ¢-1\ Si-1 into the model. We add the selected one
into S-1 to get S. We also update ¢ and M: if the newly selected predictor is a main
effect. Otherwise, ¢ = ¢ and M: = Moy,

Step 3: (Solution path) Iterating Step 2, we get a solution path { S:¢r=1,2, ... D}.

In the above algorithm, D is chosen as a reasonable upper bound of dj, (the total number of
important effects), to terminate the procedure. A direct advantage of the iIFORM is that it
allows the interactions to enter the model early, making it easier to select weak relevant
main effects. Moreover, when we decide the optimal model along the solution path, we only
need to use model size selection criteria, say BIC, once, while for iFORT, we have to use
BIC twice which may cause additional error in practice even if the solution path is correct.
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Our empirical experience also suggest the iFORM has better finite sample performance. The
screening consistency of iFORM is shown in Section 3.3.

To select the optimal model from the FS path, we consider the use of BIC. There are two
types of BIC proposed in the literature, the standard BIC

BIC,(.#)=logs> +nt|.#|log(n)

2
A
and the BIC specially designed for high dimensional data (Chen & Chen, 2008)

BICy (. )=logs” +n |4 |(log(n)+2logd")

2
A
where d" is the number of predictors in the full model. The only difference between two
BICs is the extra term 2 log d* in BIC,. Chen & Chen (2008) derived BIC, by controlling
the false discovery rate (FDR) and showed that it is selection consistent if d* = 0(né) for
some &> 0. Wang (2009) showed its selection consistency for FS under ultra-high
dimensional setup d' = O(exp(nf)). Since we deal with the ultra-high dimensional data, we
use BIC, for iFORM and the first stage of iFORT. At the second stage of iFORT, since the
number of candidate predictors is already dramatically reduced after the first stage, BIC; is
more appropriate. Section 5 demonstrates their effective performance, in terms of coverage,
false discovery control, and prediction accuracy.

2.3 Computational Complexity and Practical Issues

We show that the computational complexity of iFOR procedures is linear in p, which
explains their feasibility for p > n. The FS algorithm described in Section 2.1 is equivalent
to the following procedure. At each step, the response is regressed on the most correlated
covariate, and the residual is calculated and used as the new response in next step. After the
most correlated covariate (say, X) is selected, all other covariates are regressed on X, and
then the covariates are substituted by the corresponding normalized residuals, which are
used as the new covariates in next step. Note that the computation complexity of each step is
O(nm), where n is the sample size and m is the number of predictors in the candidate set.
First, the absolute correlations between the response and all covariates in the current
candidate set are calculated at each step, so the complexity is O(nm). Once the most
correlated covariate is selected, the response and all other covariates are regressed on it,
whose cost is also O(nm). For the iFORT and iFORM algorithms, the number of steps to
build the whole solution path is at most n, so the number of main effects selected is not
larger than n. This implies that, at each step, there are at most p + n(n + 1)/2 predictors in the
candidate set, i.e., m <p + n(n + 1) holds for any step. Therefore, the overall complexity is
nOmnp+nn+1)) = O(n2p + ™), which is linear in p-

The parameter D controls the length of the solution path for the iIFORM. Since the final
model is chosen based on BIC by comparing all the models along the path, the final model
select results is not sensitive to the exact value of D as long as it is reasonably large. In
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practice, though dj is unknown, it is reasonable to assume that d(y is much smaller than 7 in
high dimensional sparse regression problems (Fan & Lv, 2008). In our numerical study, we
have tried D = n/2, n/3, n/4 and obtained the same results since D > dj. In general, we
suggest D = n/2.

3 Theoretical Results

We study theoretical properties of iFOR. In literature, a long-term concern about two-stage
methods is their theoretical validity, as the main effect selection at Stage 1 is conducted
under a misspecified working model. In Section 3.1, we first prove that the iFORT is able to
capture all important main effects under ultra-high dimensional settings. This fundamental
result provides rigorous justifications for two-stage methods. In Sections 3.2, we prove that
iFORT can identify all important interactions consistently with probability tending to one
under heredity conditions. The screening consistency of iFORM is shown in Section 3.3.

3.1 Screening Consistency of iFORT for Main Effects

Recall the true model T = T\U 7:, where 7 C P and 7: C P:. For any square matrix A,
denote its smallest and largest eigenvalues respectively by Apin(A) and A,.x(A) Denote the
covariance matrices of main linear effects and interactions (i.e. all degree 2 monomials)
respectively by X(1) and ©(2). The total covariant matrix is ¥. The following regularity
conditions are needed.

(C1) Normality: Xy, ..., Xj, are jointly normal and marginally standard normal. &; ~
N(0, &) is independent of X;j, ..., Xip-

(C2) Covariance Matrix: We assume that there exist two constants 0 < Zyjp < Tyax <
00, such that 2 7 < Amin(E1) <Anax(ED) < Tax/2.

(C3) Signal strength: We assume that ||| <Cgfor some positive constant Cgand Byin
> Vﬂ/l_étmin’ where ﬂmin = min,; rlﬂkl

(C4) Dimensionality and sparsity: There exist positive constants &, & and v such that
log p sws, dy s and &+ 65 + 12&min < 1, gt

Remark 3.1: Conditions (C1) to (C4) are standard in the literature of ultra-high dimensional
inference (Fan & Lv, 2008; Zhang & Huang, 2008). The normality assumption (C1) is
extensively used in the past literature to facilitate proof (Fan & Lv, 2008; Zhang & Huang,
2008; Wang, 2009). (C2) requires the design matrix of main effects to be well-behaved. (C1)
and (C2) together assure the Sparse Riesz Condition (Zhang & Huang, 2008); see the proof
in Appendix for more details. (C3) requires that the smallest signal should not decay too
fast, otherwise they can not be consistently identified; see (Fan & Peng, 2004) for more
discussions. (C4) allows the dimension p to diverge with n at an exponential rate, or the NP
dimensionality (Fan & Lv, 2008). Intuitively, one would expect that stronger conditions are
needed to develop theory for interaction selection due to their heavier tails. However, to our
satisfaction, conditions (C1) to (C4) are comparable to those used in the main-effect
selection literature (Fan & Lv, 2008; Wang, 2009). The only difference is g<l in (C4) while
&< 1is used in Wang (2009), due to heavier tails of interaction terms. Note if Xj; are sub-
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Gaussian with E(Q“Xi'i )<k for positive constants a and b, typically, we can only bound a
product term by E(e24X1jX1k) < p2,

. . . . V22 4
Theorem 1: (sure screening of main effects) Define A =27,,xC 375,75 . Under

conditions (C1)—(C4), the first stage of iFORT is screening consistent for the main effects.
For #; >Kwn2&0+4émin,

P(A C &ﬁ_ﬁl)) —1 as n—oo @1

Next we give insight on why screening consistency (3.1) still holds for selection under a
mis-specified model. A key observation is Lemma 1 in Appendix, which says, under (C1),

(1) 0
Z: ( ZO ZL'Q) ) '

The block structure of X guarantees that ignored important interactions terms have minimal
affects to the procedure at Stage 1. Imaging if there are some nonzero terms on the right top
corner of X, we have to put some strong and complicated conditions on ¥ to guarantee

screening consistency.

Remark 3.2: In general, as long as X has a block structure, Theorem 1 holds even without
normality. Here (C1) is used as a convenient and sufficient condition to assure the
covariance block structure. There are other weaker but sufficient conditions (C1) or (C1)”,
which can replace (C1):

(C1Y X;jis sub-Gaussian marginally, and their joint distribution is symmetric with

respect to 0.

(C1)” X;;is sub-Gaussian marginally, and their joint distribution has varnished third
moments.

3.2 Screening Consistency of iFORT for Interaction Effects

After Stage 1, the iFORT essentially reduces the main effect dimensionality from p to

tlzo(n%)s which is significant if p > n. Using (C4), it is straightforward to show
260+ 4Emin < Next we study the asymptotic behaviors of iFORT for interaction selection
under the strong heredity:

(H1). Strong heredity condition: Sy #0 = ffp #0.
Under (H1), the interaction selection of iFORT at Stage 2 does not need to deal with high

dimensional predictors any more, since the number of selected main effects is O{n%). Even if
include all interactions within the selected model at Stage 1, the final model has cardinality

o{n.%]' Corollary 1 gives the fundamental result: the iFORT is screening consistent for
interaction selection under the heredity condition for ultra-high dimensional settings.
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Corollary 1: (sure screening of interactions) Conditional on (3.1) and (H1), for t, >
Km250+4§min’

P(7 cC /,EEJL,O) —1 as n—oc.

Remark 3.3: The strong heredity is necessary to ensure the consistency of two-stage
procedures for screening interaction terms. Otherwise, if XX is important but neither X;
nor X,, then the main effects are not guaranteed to be identified at Step 1, and consequently,
their interaction X;X, might not be considered at the second step. We also point out that the
strong heredity condition is actually not that strong with a simple illustration. Consider the
case p = 2, where the full model space (for simplicity, ignoring two quadratic terms) can be
represented by the parameter set (A, £, /. fi2) | in R*. The strong heredity condition

covers the entire R* except a couple of subsets, such as {4 =0, 324+35+33,>0) and {fi/h

=0, ,.-’;’%2>[]}. The excluded subsets have zero mass in R, so the strong heredity condition is
met by most models. This implies that the iFORT methods work for a generic model.

3.3 Screening Consistency of FS2 and iFORM

Naively, we can use any one-stage variable selection tool to fit (1.1) directly (as long as
computation is feasible), ignoring the hierarchical structure. Though the model consistency
or screening consistency result (Zhao & Yu, 2006; Wang, 2009; Fan & Lv, 2011) could be
generalized to the context of interaction selection, the extension of earlier proofs is not
straightforward due to heavy tails of interaction effects. Actually, all the existing proof
technique would require some regularity conditions on the eigenvalues of ©(2). Next, we
establish the screening consistency of FS2 under conditions that are related only to X(1).

C2a Covariance Matrix: Assume that there exist two constants
0<Tmin< 1T << Tpax <o such that
(1) (1), o
\/Tmin<f\min{z[ ) S /\ma:-:(z‘ }}< ‘\v"'l Tmax./r‘i.
Cda Dimensionality and sparsity: There exist positive constants &, & and v, such that
Ing < mg, do < Vﬂgo and £+6£0+12£min<é'
There is no essential difference between (C2a) and (C2). (C2a) is used only for easy
presentation. (C4a) is slightly stronger than (C4). A remark is that under (C1) and (C2a), the
population and sample covariance matrices 3 and ¥ can be well controlled because %(2) can
be explicitly represented by X(1). See Lemma 3 in the appendix. On the other hand, the

screening consistency result below strongly depends on the normality condition (C1) since
there is no easy way to capture the structure of £ by %(1) without normality condition.

Theorem 2: Under conditions (C1), (C2a), (C3), and (C4a), FS2 is screening consistent. For
t Z[(m250+4§min’
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P(7 c.9F%% 51 as n— .

The screening consistency of iFORM is implied in the proof of Theorem 2, as iFORM is
similar to FS2 but with a restrictive candidate set each step.

Corollary 2: Under conditions (C1), (C2a), (C3), (C4a), and (H1), iIFORM is screening
consistent. For ¢ >K1n20+4émin

P(7C5)—1 as n— oo

4 Extensions to Weak Heredity

In some real applications, the weak heredity provides a useful alternative for the underlying
model structure. Under the weak heredity, for a two-way interaction effect to be active, at
least one of the parent effects need to be effective. In this section, we generalize the iIFOR
algorithms described in Section 2 to satisfy the weak heredity condition. Similar to the
strong heredity situation, both iFOR algorithms under the weak heredity are easy to
implement.

(H2). Weak heredity condition: 8;, # 0 = 52437 # 0.

iFORT Under Weak Heredity (iIFORT-w)

Stage 1: Define ¢ = Pi. Implement FS on €. The resulting solution path is { ,yi_(lj, t=1,
2, -}, and the selected main effects are » = {jy, ..., j; }.

Stage 2: Update ¢ = & U {(k,[) : k € s or ] € s }. Implement FS on ¢ by forcing-in .
. (2
Denote the solution path by { /,LI i t= 1,2, -}.

For the iFORM extension, after selecting any new linear term, we need to expand the
candidate set by including all of its interactions with the other linear effects. Denote by M:
the index set of selected linear effects at Step ¢. Under the weak heredity condition, we
update € as

C=22 U{(k, £ :korf € 4}
For each ¢, we use &, M: and ¢ to represent the index set of selected model, selected main

effects and candidates set at Step ¢, respectively.

iFORM Under Weak Heredity (iFORM-w)
Step I: (Initialization) Set S = @, Mo = and ¢ = P1,

Step 2: (Selection) In the 7th step with given S-1, ¢-1 and M:-1, forward regression is
used to select one more predictor from ¢-1\ Si-1 into the model. We add the selected one
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into S to get . We also update ¢ and M: if the newly selected predictor is a main
effect. Otherwise, ¢ = €1 and M: = M1,

Step 3: (Solution path) Iterating Step 2, we get a solution path { s :¢t=1,2, ...D}.

Remarks 4.1: The weak heredity condition is slightly more flexible than the strong heredity
condition, and generally chooses a larger model. In practice, the weak heredity is more
useful to identify important interactions with one weak parent effect (Yuan, Joseph, and Zou
2007). With regard to the computation speed, since the candidate set size at each step is
larger than in the strong heredity case, the iFORT-w and iFORM-w are slower than the
iFORT and iFORM.

5 Numerical Studies

5.1 Experiments and Setup

We demonstrate performance of the iFOR methods in various p > n scenarios, including
the regression settings with independent predictors, predictors with autoregressive (AR)
correlation structure, compound symmetry (CS) correlation, and more complex settings as
considered in Fan and Song (2010). We consider forward-based joint analysis (FS2), and the
proposed forward-based procedures iFORT, iFORM, iFORT-w, iFORM-w. In literature,
there are other two-step procedures which are not based on forward selection such as
Mendel (Wu et al. 2009) and Screen and Clean (Wu et al. 2010). For comparison, we also
include two such procedures, iMART1 and iMART?2. The iMART1 screens main effects
based on marginal correlation at Step 1, i.e., those that exceed a threshold are retained as
candidate predictors, and then conducts the LASSO penalized regression on the expanded
dictionary consisting of all the candidate predictors and their pairwise interaction terms at
Step 2. The iMART? first screens main effects by marginal correlation, then screens the
pairwise products of the main effect candidates by pairwise correlation, and then implements
the LASSO to obtain the final model. The standard BIC is used to select the tuning
parameter of LASSO. The oracle (ORACL) procedure is also presented as the gold standard,
which is generally not available in practice.

Recall that the full model is F = 71 U P2, | Pi| = p, | P2| = g. The true model is 7 = T U 72, | 7|
=po, | ™| = go- We run M = 100 Monte Carlo simulations and report their average
performance in selecting linear effects and interactions, estimating coefficients, and making

(J’H‘J

predictions. For the mth replication, let # denote the fitted regression coefficients, 5~ i

and jg”” respectively denote the selected linear effects and interactions. To evaluate linear
effect selection, we report the

hd & (),

Mo ,
Coverage probability(Cov) Zm:1 A coy )M,

° ~ ['m,:]

M P : . N T .-
Percentage of correct zeros (Cor0) Zmzlzjzlf (835 "=0,8;=0)/[M(p—po),

A e f'm:]

M ¥l ) W .
Percentage of incorrect zeros (Inc0): Zm:lzjzlf (85 =0,58; #0)/[Mpo,
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° M {m)

Exact selection probability(Ext) Z A (=77 /M ,
For interaction selection, we report

hd M {m),

Coverage probability (iCov) Z I (% C J )M,

e Percentage of correct zeros (iCor()
{m)l
Cor X, 0,000 (014 0),

. {m)l

Percentage of incorrect zeros (ilnc0) Zmzlzw% 1855 =0, 551 #0) /[ ”IIG_'U].

. {(m)

M
Exact selection probability (iExt) Z A(F= T3 )M,

(m) ) .
The overall model selection is measured by the model size Z |7 Uy |/M_ For
estimation, we report the mean squared error (MSE)

M Am) o B
Zm_ ZJ 1\ J 75) +Z (Sjk —Bik) )f‘u. For the prediction error, we report

(F.k)Ee 2P

the out-of-sample R? (Rsq):

* * \2}
100% x 4 1 zial¥i == E e
?‘=1(3’?_}' ]g

where the test data ( X!, }f}*), i=1, -, n are generated independently from the same

distribution as the training set, and V"= L Zn Y. A larger Rsq suggests a better
prediction. The standard error of Rsq is reported as well. We also report the average
computation time.

5.2 Simulation Results

In all the examples, we generate the response Y from model (2.1) with o= 2, 3, 4.

Example I: (Independent predictors) Let (n, p, po, qo) = (100, 500, 4, 4). X’s are iid
from MVN(0, 1,,). The true AV = (3,0, 3,0, 0, 3,0, 0, 0, 3, O490), so i = {1, 3,6, 10}.
The important interaction set 7z = {(1, 3), (1, 6), (3, 10), (6, 10)} with coefficient 2.

Example 2: (Autoregressive correlation) Consider the same setup as Example 1, except
that X follows MVN with mean 0 and COV(Xj, Xp) = 0.50H for 1 <j, k <p.

Example 3: (High dimensional: AR) Let (n, p, pg, o) = (400, 5000, 10, 10). We
generate X from MVN with mean 0 and Cov(Xj, X)) = 0.50-K_ The true ﬂl) =(3,3,3,3,
3,2,2,2,2,2, 04990). The nonzero interaction set is 7> = {(1, 2), (1, 3), (2, 3), (2, 5), (3,
4), (6, 8), (6, 10), (7, 8), (7,9), (9, 10)}, and their coefficients are (2, 2,2,2,2,1, 1, 1, 1,
1).

Example 4: (High dimensional: AR) We increase the dimension p = 10000 in Example
3.
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Example 5: (High dimensional: FS2010) We use the same setup as in Example 4, except
that X has a more complex covariance structure as considered in Fan and Song (2010).
First, we generate X;, j = 1, ---, 50 independently from the standard normal distribution.
Then we define

&
Xp=Y X;(-1)" /54 V25—5/5ep,  k=p-50,--- ,p.
=

with s = 10 and {&}, }i.ozp_ 49 follow the standard normal distribution.

Example 6: (Weak Heredity) We use the same setup as in Example 3, except the
nonzero interaction set 7= = {(1, 2), (1, 13), (2, 3), (2, 15), (3, 4), (6, 10), (6, 18), (7, 9),
(7, 18), (10, 19)} and the corresponding coefficients (2, 2,2,2,2, 1, 1, 1, 1, 1). Note
that the weak heredity condition holds here.

Three additional examples, Examples 7 to 9, are listed in the Supplementary Material due to
the page limit. In particular, the compound symmetry (CS) correlation is considered in
Examples 7 and 9. The numerical results are summarized in the following Tables 1-6 and
Tables S1-S3 in the Supplementary Material.

We first summarize the results for Examples 1-5, where the strong heredity condition holds.
All the methods perform reasonably well in most of the settings, including the high
dimensional cases with p =5, 000 and p = 10, 000, as long as the noise level is not too high.
Overall speaking, the iFORM is the best among all the methods in terms of both model
selection and prediction performance. The iFORM method has the smallest MSE, the largest
out-of-the sample R2, and the highest exact coverage probability for main effects and
interactions. When o = 2, the iFORM’s performance is quite close to the ORACL procedure.
The performance of iFORT is sensitive to the dimensionality and noise level. In particular,
when p is large and the noise level is high, it may miss some important main effects in Stage
1, although the result may be improved by using less aggressive selection criteria such as
AIC and standard BIC. On the other hand, iFORM consistently gives higher coverage of
important main effects and interactions than iFORT, which supports our motivation for the
dynamic selection procedure. The FS2 has the worst performance, and it fails to run when p
is 5000 or larger. Both iMART1 and iMART?2 are reasonably fast and perform well,
sometimes quite competitive in prediction. But when the covariance structure is complex,
their performance is not very good. This can be seen in Example 5, and Examples 7 and 8 in
the Supplementary Material.

In Example 6, the weak heredity condition holds, and therefore we expect that the iFOR
under the weak heredity constraint should perform better than those under the strong
heredity. The results in Table 6 confirm this pattern: iFORM-w (or iFORT-w) gives better
performance than iFORM (or iFORT) in terms of both model selection and prediction
accuracy. Since the strong heredity methods make an incorrect model structure assumption,
they suffer by missing some important interactions. For example, if o= 2, iFORM-w is the
only method showing a high exact selection probability (91%) for important interactions.
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Finally, we illustrate the quality of the solution path by the hit-rate plot. In each plot, the x-
axis denotes the solution path steps {1, 2, ---, S}, and the y-axis represents the “hit rate”
which is defined as the percentage of important terms recovered up to step s. Denote the true
model size by dj. The ideal hit plot (given by ORACL) should show a linearly increasing
trend with slope 1/d within the first d(y steps and then stays at 1 afterwards. For the graph
clarity, we only draw the hit rates for the strong heredity methods. Figure 1 plots the hit-
rates for Examples 1 and 2 with the moderate p = 500. Here dj = 8, so we choose S = 20.
Based on Figure 1, the iFORM has the highest hit rate among all, very close to the oracle.
For o =2 and 3, its hit rate is more than 95% after 20 steps; for the more difficult case o= 4,
iFORM still achieves approximately 90% hit rate. The iFORT is slightly worse than
iFORM, with rates 90%, 80%, 70% respectively for o= 2, 3, 4. The FS2 has the lowest hit
rate, only 20% when o = 4. Figure 2 plots the hit rates for the large p. Since dj = 20, we
choose S = 40. The FS2 is not shown in Figure 2, because it fails to run. Again, iFORM has
the highest hit rate among all (except the oracle). The iFORT is slightly worse, about 80%
hit rate in most cases.

The following table summarizes the average computation time (seconds per run) for each
procedure. The machine we used equips Intel Core (TM) i7-2600 CPU @ 3.40GHZ with
4.00 GB ram. Since the time difference is small for varying o, we only present the results for
o= 2. When p is moderately large, the FS2 is slowest, taking 16.40 seconds in average for
Example 1. The iFORT and iFORM are the fastest, taking 0.04 and 0.08 seconds in Example
1, which is more than 100 times faster than FS2. The weak heredity methods are slower than
their strong heredity counterparts. When p is large, the FS2 fails to run, while the iFOR
procedures are still amazingly fast. When p = 5000, it takes 11.39 (and 16.06) seconds for
iFORT (and iFORM). When p = 10000, it takes 22.13 (and 29.17) seconds for iFORT (and
iFORM). The weak heredity methods now take significantly more time. Overall, the iIFORM
appears the most promising in terms of both performance and speed.

6 Real Data Analysis

We analyze two real data sets, the inbred mouse microarray gene expression dataset (Lan et
al. 2006) and the supermarket data (Wang, 2012). The inbred mouse microarray data set
contains 60 mouse arrays, with 31 from female mice and 29 from male mice, respectively.
Each array measures the expression values of 22,690 genes. The response is a continuous
phenotypic variable measured by real-time RT-PCR, stearoyl-CoA desaturase 1 (SCD1).
The supermarket dataset collects daily sale information of a major supermarket located in
northern China, with n = 464 and p = 6398. The response Y is the number of customers per
day, and the predictors X are sale volumes of various products. The supermarket manager is
interested in the relationship between the number of customers and the sale volume of
certain products. For convenience, the response and all predictors are centered to zero and
standardized to have a unit variance prior to the analysis.

The proposed methods are applied to both datasets. To assess the prediction performance of
the procedures, we randomly sample 7 observations to form the training set, and use the
remaining n — n; observations as the test data to compute the out-of-sample R? for the final
model. We use n; = 50 in the inbred mouse data analysis and use n| = 400 for the
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supermarket data analysis. The results are summarized in Table 7. It is observed that the
iFOR methods give similar performance for both data sets.

7 Discussion

In this article, we tackle the important problem of interaction selection for ultra-high
dimensional data. The task is both computationally and theoretically challenging. We
propose a new class of procedures, called iFOR, and study their numerical and theoretical
properties. One major advantages of the proposed methods are their computation feasibility.
The code is simple and fast. Theoretically we show that the iFOR can discover all relevant
interactions consistently, even if the dimension increases exponentially fast with the sample
size. Our numerical examples suggest that the new methods, especially iFORM, give
promising performance for ultra-high dimensional data.

We use the extended BIC (Chen and Chen 2008) to select a final model from the solution
path in this work. Since the motivation of the extended BIC is to control FDR, it tends to be
conservative in real data analysis. It would be interesting to study the performance of other
selection criteria such as AIC and cross validation for iFOR methods in the future. Other
works of interest include the generalization of the iFOR to other loss functions in GLM or
nonparametric regression, and how to improve computational efficiency of penalized
methods with the iFOR ideas.

In practice, higher-order interactions are useful to uncover multi-way relationships among
predictors for complex problems where two-way interactions are not sufficient. The
proposed methods can be readily extended to selecting higher-order interactions, by
including higher-order products of predictors in the candidate set. No essential change is
needed in the computational algorithm, except that the enlarged candidate set will demand
extra time. When considering higher-order interaction models, one should tune the model
properly to avoid the over-fitting. The interpretation of higher-order interactions should be
cautious as well. The topic is worth a full investigation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A. Total Covariance Matrix

In this section, we work on the total covariance matrix 3 and show it is determined by the
covariance matrix (1) of main effects under the Gaussian assumption (C1).

Let us temporarily ignore the index labeling the order of observations, and denote by X; for 1
<j <p the main effects and Zy, = X;X; — E(X;X;) for (j, k) € P: the interactions. Let » =
(al-j) denote covariance matrix of the main effects X1, ..., Xp. The first two lemmas help us to
characterize the total covariance matrix 2.

Lemmal

Under the normality condition (C1), for Vj, k, 0, cov(Xj, Zrp) = 0 which implies

(5 0)

Proof
cov(Xj, Zip) = cov(X;, XiXp) = E(X;XiXo) — B(X))E(XiX¢) = 0. The conclusion still holds if

the joint density of Xi...., X, is symmetric with respect to the original point 0.

Lemma 2

Under the normality condition (C1),

cov(Zij, Zyg)=cov(X; X, Xp Xg) =000 jp+0u0 . (1.1)
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Proof
This lemma follows directly from the following useful formula (Bar & Dittrich, 1971)
Let A = (A;) be an N x N matrix. In linear algebra, a K X K submatrix is called a principal
submatrix if it is of the form 4z = (Ag;;) where 7 is an index set 7 = {1 <l < - < Lg <N}
Here with slight abuse of this conception, we allow arbitrary order for the index set . For
example, let T = {2, 1} and
_/1')2 /1-)1
A= - -
s ( Az An
is still called a principal submatrix in this paper.
(2) 2
Based on the formula (7.1), we can decompose ¥ to a sum 21 J-i-z? . In fact, we have
Lemma 3
(2] (2]
Both 21 “and ZQ are principal submatrices of ©(1) @ »(1),
Proof
The Kronecker product (Laub, 2005) 2! @ () is a p2 x p? matrix whose rows and
columns are both indexed by the set 71 x 71, The entry corresponding to the index (ij, k€) is
2 2
;jok¢- By formula (7.1), both 21 “and ZQ are pir+1l o pr+1) principal submatrices of »M
@z,
Lemma 4
Under the conditions (C1) and (C2a), we have
27n11n<Amin(Z) S AArnax(’Z)<"‘—1116u-:,n"'r2- (7.2)
Proof

By Laub (2005) Theorem 13.12, the eigenvalues of 2(1) @ =) are Aidj, 1 <i,j sp, if the
eigenvalues of M are My oy /11,. Therefore, under condition (C2a), we have

(1) (1) (1) (1) ;
Tmin>”\min(z ] Z ) < /\um}c(z ] Z )<Tmaaq" 4.
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(2] (2]
By Lemma 3, the eigenvalues of 21 “and ZQ are also bounded by 7,i, and 7ya¢/4, SO
. N2 (2)
2"_min</\min(z ) S /\Innx(z ,\J<T1nax,f2-

It is straightforward to get (7.2).

Appendix B. A Bernstein Inequality and Its Application

Lemmab5

Proof

In this section, we study a Bernstein-type inequality and its applications in bounding the
eigenvalues of submatrices of sample covariance matrix X, which is crucial in the proofs of
theorems. For any index set M, . denotes the principal submatrix corresponding to M.

Let Wy, ..., W, be independent random variables with mean zero and variances bounded by
? >1. Assume for some 0 < @ < 1,

E (|H—1|3(1- o-)eth.{'-zlo) <A, forall 1<i<n, 0<t<T. (13
Then for I>(i_4)1+,

°{

T

>w;

i=1

2 T
2 . ..
> I) < 2exp {—m} +> P(Wi| 2 2). a4

Let W=W; - I_s »(W;). Then

P (i:l{’,-_ > r) <P (iﬁ? > :c) +§:P{H} >z). (15)
1 =1

i=1 i=

For 117+ > 0, we have

- 52 . o> ﬁk o . . .
W rE 42 i | kat3(l—a) (k—3)(1—n
e i < 14t -::Jr.—” i +k§ 1T!|I.-T. f:| o ) ! ! (7.6)

Note that (7.6) is true also for 117* <() because of the monotonicity of function f{u) = e* - 1 -
2
u—u</2.
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It is easy to get E|¥T-Tz-|'}“”“r 3(1—a) < & from (7.3). Moreover, we have
E(W}) < 0, Var(W}*) < ¢ from definition. Taking expectation of (7.6),
AW Po? | 24 1(z1=m\F2u
E(e™ ) < l+T+ﬁ§3“ﬁ§( = ) t
1252 tz_x' ppl—ay k=2
<1+t *223( o) .7
o2
< I sgr==my
when |tx! =T < 1.
Leti= e By Markov inequality
n " .
P (EI--T}* > a:) < e’f’"E(ech:H"v‘ )
i=1
< et l[ E(ez‘.l-{-":f)
i=1
—ix 1 22 "
se (1-—2[14.::*“,@))
2 1 2 T
< XD | " giag T wT)
Therefore,
n IQ i
P .Hy.f > <e *— P H:' > 7).
(; ;> r) < exp { 2(?1.(72—%:52—“,’?"_}} Jr; (W; > z)
Apply the same technique to —J17} and combine the results, we can get (7.4).
The following is the Lemma 1 in Wang (2009), which is useful in the proof of Theorem 1.
Lemma 6

Under condition (C1) and (C2), for 3£ , M C P,

m:o(n:lf 3

P (Tmi'n < min /\rnin(z ) < max Ama.x(zﬂ] < Tmax) — 1. (7.8)

|.#|<m A || <m

Furthermore, under condition (C4), (7.8) holds for ,,,_~ (.??_2£n+4£m,-n y=o(n -3¢ -
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Lemma 7

Proof

Remark 1

Lemma 8

Page 22

Let Wy, ..., W, be independent random variables with zero mean such that E(eT0|Wi|“) <Ap
for constants 7 > 0, Ag > 0 and 0 < a@ < 1. Then, for a sequence a,, — oo with

an=0(n Ay y there exist constants ¢, ¢, such that

P(|Wi+- +W,| > vna,) < C16‘X])(—C2{13 1. (19

The condition E(e70I"il®) <A, implies Var(W,) <o?, E(|W;[?eWila) <A and E(|
Wi|3(1‘“)e71wl|“) <A for some constants o2, T and A. By Lemma 5, we have

d

Let z= \/na, Then

2

22 T i
> I) < QEXp {—m} +;P(|nz > 'I]

i 'n'l

i=1

:Ij:) ”'a"ﬂ'zl (}.721
eXP §{ — 55— ¢ =€Xp 4§ — — =exXp 5 2
2(no?+z?~/T) 2(na? +nzTaz__7°‘;"'[) 202 +o(1)

On the other hand, by Markov inequality

AQ exp{—Ta2/o(1)}.

PV = :r):P(‘[-I'feT Wil” < Q‘QeTI”} < Axlexp{—Ta"} <

Hence, Z?—1P(|Wi >x) < ‘:%,L‘Xp{fTaifU[:l)}. And (7.9) is easily obtained.
We are interested in the case that W; = X;;:X;1X;¢, where Xj;, X, X;¢ are joint normal and

marginally standard normal. It is easy to see that W; satisfies (eimk é) < 2 and Var(W;)
<30. Therefore, (7.9) holds for ¢ = 3, ¢, = 1/61 when n is sufficiently large.

In order to show Theorem 2, we have to obtain an analogue of Lemma 6 for arbitrary
submodel M. We start from a generalization of Lemma A3 in Bickel & Levina (2008).

Let Wy, ..., W, be independent random variables with zero mean such that E(eT0|Wi|a) <Ag
for constants Ty > 0, Ag > 0 and O < @ <1. Then there exist constants c3, ¢4, for 0 < £ <1
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P(|Wi+ . +W7 >ne) < c__n,exp(—q-n”azj. (7.10)

Proof

The condition E(e70IWila</sup>) <A implies Var(W;) sc?, E(Wi2 eTWil”) <A and E(|
Wi|3(1‘“) enWi|a) <A for some constants %, T and A. When a < 1, by Lemma 5,

d

Let x = ne. Then

Th

> oW

i=1

2

22 I .
>z) <2 S P(W,| > 2
= r) = SEXP { 2(na?+x?—e/T) } +§ (Wi 2=

2 2.2
_ x . _ n®gs?
exp { 2(no?4zi—2/T) } =exp { 2(nof4ni a2 a/T) }

nts?
2pe 124222 T

a
ne2

< exp{-gnfyar )

=exp

On the other hand, by Markov inequality

A

P( T'Vi| > ﬁf)ZPU’L’feT Wil” < TQeT-r."*} < A:{tfzexp{—Taz“} < — 2{_1-.“@5&}'
n4e

Hence, Z?:1P('|T.I’I-| > )< ﬁc};p{f%?‘n“aa}cxp{f%Tn”‘aa} < o(l')cxp{f%Tn“az}.
And (7.10) is easily obtained.

When a = 1, E(eT0IWil) <A implies Z:c_n%Tﬁ'E{:ﬂ’i-ﬂk ) < Ag. So

= 1k kiz‘) . . . .
E([W[") < 1! (Tio) % for k >2. By Bernstein’s inequality, Lemma 2.2.11 in van der
Vaart & Wellner (1996), we have

d

T

>

i=1

11252 '??.Ez

— — < 2Z2exp{————
2(2nAy/ T(er-?'asf.fTU)} = 2Zexp{ 440/ TE+2/Ty

I3

> ng) < 26){].){—

Lemma 9
Under condition (C1) and (C2), for 0 < £< 1, we have

d
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d

> (XX X—0)
s=1

> -ua) < G;exp(_—(hnée‘z) (7.12)

siX i X X i — 04 Ohp— 0330 40— 0 g0 1)

p( X
s=1

where Ci, ..., Cg are constants.

1 -
>n.£) < Cgexp(—Cgn?e?) (7.13)

Proof
We show the last inequality here. The first two are similar. Let Wy = XX i X X0 — 0010 —
G050 — 2t Ojk-
Lo L . e o 1
E (E.zll-‘[_.-sh) —E (eleslAng‘X,g-)‘xﬁf—n’é‘;ﬁkf—a.é}ﬁffjf_‘—ﬂ'i&,:o'jk|2)
(. [CL-H))% asa +b2) < E XX X X 2+ |U¢JUI{+0'HO'_;F+U'1#‘UJL|§
. I s v v L
(v |oijonetonaetowo, <3)<eTE Qe4|-‘)‘sf‘xsix-'kx-ﬂ'|2)
DG IR G o
(r abed < @HYEelzdly o R ( S T )
ahp 5 x5 XL oxE
(again abed < CHHEHE) < e TE ( e +e_4&+e_f£]f4)
— \/Epji_s
The inequality follows directly from the last lemma.
Lemma 10
Under condition (C1) and (C2a), for -m:o(n%_T &,
P (Tmi'n S |g{1|1<n /\min(z %) S |§;1|3<X ’\mnx(z ﬁ'} S Tnm.x) — 1. (7.14)
A =T - = 3
Furthermore, under condition (C4), (7.14) holds for m=0(n20HHmin) = o(n%* 53¢ B
Proof

The proof is similar to Lemma 1 in Wang (2009), where the inequality (7.11) plays a crucial

:1|
(|ZU Z ) < Crexp(~ Cone?) "for V1 <i,j

<p. Since the distribution of interactions have heavier tails, we have

role. The inequality (7.11) implies
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p (IZK:ZKJ >c’) < Crexp(~Cynie?), (1.15)

for Vk, y € P1 U P.. For example, if x= (i, j), y= (k, £) € P,

|iﬁ_¢*zﬁ r|: %ZILXQEXGJ L_J,l}/‘] (XakXef Ekf} {Ulkgjf+gffo'ﬂ\)|
(1)

=1 LXs-i s A sk Xsb— LU Lk.e: (Tikojet0ouajp)]
s=1
(L _ . _ (l}
= |::le-‘iiks,j)‘sk‘¥s€ (JLJUA€+O'1AJJP*UQJJJ%J|+|ZU Zk? G'v'jo'.ig.{-‘|
P

v v v : G pENG A, (1)
< |% 21}ﬁs-if‘.sj}ﬁstsf*(U«;jfﬂcfﬂLﬂmffﬂ'*Uii%k)|+|Z;:.j)(Zke - (32 —oij)oke
=

noo . - (1) ~ (1)
<|L Zlk.sa.ﬁ.s-szMsf—(07:.;'ka+5xk0jf:+ﬂzfﬂjﬂ HX ke e+~
=

Therefore,

S LS L ~ ~ e - '-{n = - [1} z
P (IZ.,CH,.—ZH.,.I >€) <P ( -,]jz_:l)isi)(‘sj-xsts{'._(Ui-jo'kf‘l'gfkgjf"'aifo'jk)| >ﬁ) +P (|ZH — 0| >§) +P (|ij —0oij] >{—;j

. ) ,l . 9 ; SEY 2
< Cexp(—Cenz(2/3)°)+2Cexp(—Can(e/3)7)
< C,ve}:p(—an% £2).

Letv=(V1, .0 Vps V115 -0 vpp)T be a p + p(p +1)/2 dimensional vector and Y™ be the
subvector corresponding to index set M C 71 U P: = F. Recall *v is the principle submatrix
corresponding to M. By Lemma 4, we have

Tmin < min mf ({Z Ve S max sup V,;Q’Z Vv, <Tmax/ 2-
MHCF v, |=1 J?| L=t

To show (7.14), it suffices to show

P | max su v v |>e ) —=0 (716
(Wlmlpliz Z)I) (7.16)

for arbitrarily small positive number &. The left-hand side of (7.16) is bounded by

> 2P (‘ZA:-H,,..—ZW,.?%)‘ (7.17)

|| <mk,yeF

Note that the number of possible models with sizes smaller than m is less than (p + p(p +
D2)" <p?™ when p >3. Applying (7.15), we can bound (7.17) further
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Remark 2

Page 26

(7.17) < p>™(p*)Crexp(—Csnie/m?) (1.18)

=Crexp((2m+4))logp—Csnie? /m?)  (1.19)

1 .
< Crexp(2mun®(1— 503 1.'_152?1%_5-”&_3)) . (7.20)

1 1_1lg¢
which converges to zero when n — oo and m=o(ns =3¢

Beyond normality. Lemmas 6, 7, 10 play important roles in the proofs of Theorems 1 and 2.
A key assumption is E(e70|Wi|a) <A where W; is (higher) product of predictors. It is easy to
see that the condition still holds, using the argument of Lemma 9, if the marginal
distributions of X is subGaussian. In particular, Theorem 1 is still true if condition (C1”)
holds and Theorem 2 is still true if (C1”) holds and the total covariance matrix X has

bounded eigenvalues asymptotically.

Appendix C. Proofs of Theorem 1 and 2

With slight abuse of notations, we denote by X the total design matrix including main and
interaction effects. For any index set M C F, ¥u is the submatrix of X whose columns
correspond to M; A is the subvector of B corresponding to M. If M = {j}, we simply use X;

and ﬂj

We first overview the general strategy (in the context of FS2) and then give proofs for
theorems. The goal is to show that all important predictors in the candidate pool are selected
within a number of steps, for FS2 and the first stage of iFORT. By the nature of FS, the
predictors are selected sequentially, one at each step. Therefore, we divide the whole
procedure into a sequence of stages, each of which consists of several steps, starting
immediately after one important term is selected and ending when the next predictor is
identified. If we can show that the length of each stage is less than some integer L, then after
doL steps, all important predictors would have been selected.

Assume that stage 7T is the earliest stage among all that lasts longer than L steps, and T < d.
Working within stage 7', we omit the stage label 7, and denote by & the index set of all
selected predictors up to step ¢ of stage 7. Define

Q(t)=RSS(.%)—RSS(.F41 ).

where RSS( &) is the residual sum of squares of Y regressed on the predictor space spanned
by . A key step is to show that

J Am Stat Assoc. Author manuscript; available in PMC 2015 October 20.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Hao and Zhang

Page 27
nTIQt) > 2L (1—0(1)) forall 1<t<L. (721)

L . . -
Therefore, we have 7 L[|V ||* = Zr:1 n~tQ(t) > 2(1—o(1)) — 2, which contradicts with
the fact Var(Y) = 1. Then we can conclude that every stage contains less than L steps.

The inequalities of type (7.21) are obtained in the following proofs, which lead to Theorems
1 and 2. We illustrate Theorem 2 first, because it is technically more straightforward.

Proof of Theorem 2

Given the regularity conditions and Lemma 10, the proof of Theorem 2 is similar to that of

Theorem 1 in Wang (2009). Let K =27,5x1/C éﬂzi]r', Vg 1and L = Kné0+4émin, Note that | 5 <
doL <Kwn250+4min, 5o the eigenvalues of *+ can be controlled by Lemma 10. Following (B.
1) and (B.2) in Wang (2009), we have

() max ax|HQ,, X .8, (|| —max H'Q, ¢l a2
-1 )] [t xr (21T ()2
where Q,,,=I.—H , =I,-X (Xr o X)) XTJfH;f :X;t’X;' ||X:?.tl|| and

»
x\=(1,~H, )X,

Following the procedure leading to (B.7) in Wang (2009), we have, with probability tending
to1,

max||H"Q

jf

| > 7 /—lC.—QTQ Vﬁ??l §o— 451‘.11'11. (7.23)

(5% ;',yjﬁ.;y.| Z 'max 4 'min

Similar to (B.8) in Wang (2009),

2_ 1 1 T 2
el <7 max max (X;Q &) (724

() —= "min JET || <m*

H(_t]
ﬂllcf%;i|| 5'Q

where m* <TL sdyL. Given X, X Q€ is a normal random variable with mean 0 and
variance || @Xj[[> <[[Xj||%. So (7.24) is further bounded by

S Tmmn 11}33‘){”)( || 111%| 114/713‘( ;’&1

where X1 represents a chi-square random variable with one degree of freedom. By Lemma
10, p~1 maxjer %€ I? <%nax with probablhty tending to one. Moreover the total number of
combinations for j € 7 and | M| <m" is no more than (p%)™ 42 = p2m "+ . Therefore,
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max Imax < 2(2m*+4d)lo
o X7 < 2( Nogp

< 5dgLvnt
< 5K 12ps 280 8min

with probability tending to one. Finally, we have

2

[11]I1 min

1 1
n Q) > nt ((T];_}x *10 I/ﬁ.nlffrﬁ,mn)z (T Tnax 0 12 s+ 28046 }z)

V'anfn 4=£mm(1 2(‘111:1:-: Cﬁ_j_mjl;pﬁ45K.n§73£n+8§mir_fl)i)
=27 (1—o(1)).

IllﬁX Tmin

>r L 1C32

Proof of Theorem 1

Because we concentrate on only main effects in the first stage of iFORT, similar to (7.22),
we have

Q(f) maXHH Q AP CPRC ||—Illax||H{' Q... (X, Byt +e)ll; .25

The first term on the right hand side can be bounded as

() “ rmin
];'Iéa}X”H Q'lf/'i.il :',71_]'6[5‘1,1” 2 Tm'\_'x (Y nlIannl sods - (7.26)
Similar to (7.24),
mag(HH‘t]th{Xfﬂ +€)|| < 7ot n~lmax max (X Qlﬂ.{Xl,,y,ﬂm__-l—s)}Q
e Ry L T jea |%|<_m’“ . ! CFa T (7 27)
™ .2 .
< 3T L?%?%L,Efé’i« ((XJT X.;;.a»zﬁ.:g-g) +X/H , X, B8 ,Z.J +X;Q ¢ )
where m* <TL <poL.
For the first term in (7.27),
2 2
(XTX 5B, =30 X Xbi)” < a0 (maxlXTX,) 18,
KETD
Therefore,
3Tumn Wax max (X; X B, ) 37 'qoCpmax max(X,; X O
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By Lemma 7, Remark 1 and Bonferroni inequality,

P(max max(X X,.)> vn20/logn) < pogodexp(—400logn/61) < exp(2logr+2¢nlogn—2logn) — 0.
JET KRET:

Thus (7.28) can be bounded by 120071 Czn*’logn with probability tending to 1.

min

For the second term,

o ; — [ T 2
(XJ' Hu:.-mxn;ﬁztﬁ..a—z _L 2 XTX I-(X-:,qqf.:-x-:ﬂ‘:) X-: ««;:X'Cﬁlﬁ))

KE T

< g (maxX X (X7, X ) X X) 18,117

Therefore,

3r,mn max max (XJH,_, X 2B, ) < 37,mn 'qCpmax max max(X/X, (X' X

JER || <m* JEF | H|<m* nEF A

2
-1
> 3 an lgpCgmax max max X X Xy m*max XX,
e tanComax max max(IXTX,, (XT, X,,) | maxlX] X,
3 2
< 37t nlguCgm*™?max max XTX XT X " max max(X X)
= Y min q” 3 JET L] < ” u«\'[ ,a«) HcmrezgcyJ1

where ||| denote the vectorized infinity norm. By Lemma 6,

(=4 i

-1
N xI'x XT X
1 7 (.40 [ (-’»_J
X)X, (X!, X ) | < = “ 2 | < TmaxTmin:
>0 T 2
2

with probability tending to one. By Lemma 7,

P(max ma\(Xf w)> 1/ 1000nE) < pggdexp(—

‘wET PP

2000mE
61

Thus, with probability tending to one, (7.29) is further bounded by

30072 72 Cam™ 2t < 30072

max 1111]1 max Ill]Il

3 Ot K208 tE g 50

Following the same steps after (7.24), the third term in (7.27) can be controlled by,

ST 4260 H4E
]OTminTnlaxKV ps TS0 T = min

(7.31)
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Finally, combining all results, we have

1 1—&n—4€min
Q(f ( max C"} HllIl "3”’ —to—dd ))
9 ) 3 v A K2 B0 Rty ] K12 260+ 46| 3
(12 (](],mln ‘g ogn+300 max TminCaY n + STmlnamm( ven : )
] = 1
> nz ( 1£a\ 710 rmu /én7CU74€min)2 X (1_A1_A2_A3_)2

— K — £ ] Fp—
A1:IQODTm;?_Tmaxcg1/211 4280t A8min Nogn, Ay
=300 73 31/; r/’}(():rz("’“Jrl)'E’I‘“‘JrC 1 LAy
i

max ]]1]11

where =157"3+2 K C‘ u A t3o+8min— . Therefore,

Irn Il lna,x

n7iO(t) > 2L (1—0(1)).
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The hit-rate plots for the moderate p for ORACL, iFORM, iFORT, and FS2.
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Ex3:ao=4

= jf 4 y
= o~ . =2 £
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= - = - _| =
o 10 20 30 40 o 10 20 20 40
step step
Exdro =3
< | i i
,:f? g\”"’-
8 g = [£ 8
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= = - _| =
a 10 20 30 -0
step
Figure 2.

The hit-rate rate plots for large p for ORACL, iFORM, iFORT, and FS2.
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Hao and Zhang

Table 8

Prediction performance: the average out-of-sample R? for iFOR methods.

Dataset iFORT iFORT-w iFORM iFORM-w

Inbred Mouse data  60.73 (1.15)  58.46 (1.37) 60.22 (1.15)  60.31 (1.28)
Supermarket data 88.91 (0.17) 88.42(0.19) 88.66(0.18) 86.61 (0.22)
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