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Abstract

In ultra-high dimensional data analysis, it is extremely challenging to identify important 

interaction effects, and a top concern in practice is computational feasibility. For a data set with n 

observations and p predictors, the augmented design matrix including all linear and order-2 terms 

is of size n × (p2 + 3p)/2. When p is large, say more than tens of hundreds, the number of 

interactions is enormous and beyond the capacity of standard machines and software tools for 

storage and analysis. In theory, the interaction selection consistency is hard to achieve in high 

dimensional settings. Interaction effects have heavier tails and more complex covariance 

structures than main effects in a random design, making theoretical analysis difficult. In this 

article, we propose to tackle these issues by forward-selection based procedures called iFOR, 

which identify interaction effects in a greedy forward fashion while maintaining the natural 

hierarchical model structure. Two algorithms, iFORT and iFORM, are studied. Computationally, 

the iFOR procedures are designed to be simple and fast to implement. No complex optimization 

tools are needed, since only OLS-type calculations are involved; the iFOR algorithms avoid 

storing and manipulating the whole augmented matrix, so the memory and CPU requirement is 

minimal; the computational complexity is linear in p for sparse models, hence feasible for p ≫ n. 

Theoretically, we prove that they possess sure screening property for ultra-high dimensional 

settings. Numerical examples are used to demonstrate their finite sample performance.
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1 Introduction

Ultra-high dimensionality is a significant feature of data collected in contemporary scientific 

research, owing to rapid advances of technologies and computer power. Big data are 

abundant in many areas including biology, genetics, medicine, finance, social science, 

environmental science, and so on. One major challenge in dealing with big data sets is that, 

the number of predictors p is much larger than the sample size n. In this paper, we allow p to 

be as large as O(exp(nξ)) for some ξ ∈(0,1/2), which is described as nonpolynomial (NP) 
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dimensionality in Fan & Song (2010). To extract useful information from such data and 

build an interpretable model with high prediction power, variable selection or screening 

must be employed. A variety of variable selection methods have been developed and in 

common use, such as the LASSO (Tibshirani, 1996), SCAD (Fan & Li, 2001), Dantzig 

selector (Candes & Tao, 2007), elastic net (Zou & Hastie, 2005), minimax concave penalty 

(MCP) (Zhang, 2010), and others (Zou, 2006; Zou & Li, 2008). Many methods possess 

favorable theoretical properties such as model selection consistency (Zhao & Yu, 2006) and 

oracle properties (Fan & Lv, 2011). When p is much larger than n, sure screening is a more 

realistic goal to achieve than oracle properties or selection consistency (Fan & Lv, 2008; 

Wang, 2009). Sure screening assures that all important variables are identified with a 

probability tending to one, hence achieving effective dimension reduction without 

information loss and providing a reasonable starting point for low-dimensional methods to 

be applied.

Most existing methods for variable selection are designed for selecting main effects only. 

However, main effects may not be sufficient to characterize the relationship between the 

response and predictors in complex situations, where predictors work together. Interaction 

models provide a better approximation to the response surface, improve prediction accuracy, 

and bring new insight on the interplay between predictors. They are useful in social, 

political, and economic problems to identify non-trivial interactions between covariates in 

modeling election results, product sales, social networks, stock market changes. One 

interesting application is to study the effects of combinations of various behaviors and 

exposures on disease rates, commonly needed in bioassay and epidemiology. In genome-

wide association studies (GWAS), there is growing interest to identify the interaction 

(epistatic) effects of SNPs (Evans et al., 2006; Manolio & Collins, 2007; Kooperberg & 

LeBlanc, 2008; Cordell, 2009), since gene-gene interactions may provide critical insight on 

the complex biological pathways that underpin human diseases. A common class of linear 

models considering two-way interactions assume

(1.1)

where Y is the response, X1, ···, Xp are covariates, and ε is the error. Marginality principle 

(Nelder, 1977, 1994; McCullagh & Nelder, 1989; McCullagh, 2002) or heredity conditions 

(Hamada & Wu, 1992; Chipman, 1996; Chipman et al., 1997) are generally employed to 

characterize the hierarchical structure between main and interaction effects. In particular, the 

strong heredity condition is

i.e., XkXℓ is important only if its both parents Xk and Xℓ are important. The weak heredity is
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i.e., XkXℓ is important only if at least one of Xk and Xℓ is important.

Interaction selection for (1.1) has lately drawn much attention in the literature. Recent works 

include Efron et al. (2004), Turlach (2004), Yuan et al. (2007), Yuan et al. (2009), Zhao et 

al. (2009), and Choi et al. (2010), among others. In particular, Efron et al. (2004), Turlach 

(2004), and Yuan et al. (2007) considered enforcing the strong heredity principle in the 

LARS; Yuan et al. (2009) incorporated the structural relationship by imposing linear 

inequality constraints on coefficients; Zhao et al. (2009) introduced the Composite Absolute 

Penalties (CAP) to achieve hierarchy in variable selection. Choi et al. (2010) employed a 

special reparametrization of regression coefficients to enforce the heredity constraint. These 

procedures, except Efron et al. (2004), can be described as joint analysis, as they consider 

main and interaction effects in (1.1) altogether and make a global search over all candidate 

models. When p is small or moderate, joint analysis is effective in identifying important 

interaction effects. Some joint-analysis methods can produce consistency selection results 

under the strong heredity condition for a fixed p (?). However, joint-analysis methods 

become infeasible if p is very large. Two major limiting factors are memory requirement and 

computational cost. Joint analysis typically requires to store the entire augmented design 

matrix of size n × (p2 + 3p)/2. Take an example of n = 200, p = 10, 000, where the total 

number of entries is ≈ 1010 and beyond the capacity of standard software such as R and 

MATLAB. Since sophisticated programming tools are needed to handle complex penalty 

structures (Zhao et al., 2009; Choi et al., 2010) or multiple inequality constraints (Yuan et 

al., 2009), joint analysis implementation can be extremely expensive. Furthermore, it is not 

clear whether selection consistency would still hold in ultra-high dimensional settings.

An alternative interaction selection tool is two-stage analysis: first select main effects only 

(by intentionally leaving interaction terms out) at Stage 1, then select interactions of main 

effects identified at Stage 1. When the data dimension is very large, two-stage approaches 

are possibly only feasible choices for practitioners (Wu et al., 2009, 2010). Despite their 

computational advantages over joint analysis, two-stage procedures have been criticized for 

their validity, even for low-dimensional data with p < n (Turlach, 2004).

Motivated by the above practical and theoretical concerns, we propose new greedy-type 

model selection procedures for high dimensional interaction selection, study their numerical 

properties and performance, and provide rigorous theoretical justifications. In particular, we 

consider interaction selection procedures featured with FORward selection, which are 

referred to iFOR. Forward selection (FS) is a classical variable selection method in linear 

regression and it builds the model sequentially by adding one variable at a time. FS is easy 

to implement as it involves only simple OLS-type operations. Though the local search is 

sub-optimal, it is a necessary compromise when dealing with high dimensionality for the 

sake of computation. In this article, we propose two algorithms: iFORT and iFORM. The 

iFORT is a two-stage procedure: at the first stage, it selects only main effects (all quadratic 

terms and interactions ignored) by FS; at the second stage, interaction terms generated under 

the heredity condition are considered. The iFORM, on the other hand, selects main effects 

and interactions altogether in an iterative fashion. Compared to joint analysis procedures, the 

iFOR methods can incorporate the strong or weak heredity condition in a much simpler 

fashion. Their implementation does not require the storage of the entire augmented matrix, 
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making them feasible for large problems. The memory and computational complexity are 

shown to be linear in p. In one simulation example with p = 10, 000 and n = 400, it takes 

iFOR fewer than 30 seconds to complete the selection process. Numerical examples suggest 

promising performance of iFOR in terms of effective coverage. In additional to the new 

algorithms and numerical results, another major goal of this work is to investigate 

theoretical properties of iFORT and understand their asymptotic behaviors. By rigorously 

analyzing the covariance structure between main effects and interaction terms, we prove that 

the iFORT has a sure screening property for ultra-high dimensional settings. This is the first 

theoretical justification of two-stage approaches.

The rest of this article is organized as follows. Section 2 introduces the basic model setup 

and the new procedures: iFORT and iFORM, under the strong heredity condition. Major 

theoretical results are presented in Section 3. Section 4 extends the iFOR to the context of 

the weak heredity condition. Numerical results are demonstrated in Sections 5 and .6 Final 

remarks are given in Section 7. All technical proofs are relegated to the Appendix.

2 Methodology

2.1 Model Setup and Notations

Given n IID observations (x1, Y1), …, (xn, Yn), we consider a regression model with linear 

and second-order terms

(2.1)

where Yi is a real-valued response, xi = (Xi1, …, Xip) is a p-dimensional vector, the vector 

 contains quadratic and two-way 

interaction terms, β0 is the intercept, β(1) and β(2) are respectively regression coefficients of 

linear effects and order-2 effects, and εi is the noise with mean zero and finite variance σ2. 

The length of zi or β(2) is q = (p + p2)/2. The entire parameter vector is β = (β(1)⊤, β(2)⊤)⊤. 

Throughout this article, we assume that E(Xij) = 0, Var(Xij) = 1, E(Yi) = 0, Var(Yi) = 1 in 

(2.1) for i = 1, …, n and j = 1, …, p. We also assume that all the quadratic effects and two-

way interactions are centered, i.e., zi = (…, XikXiℓ − E(XikXiℓ), …)⊤. This eliminates the 

need of the intercept term β0 in (2.1).

For convenience, denote  as the design matrix containing only linear effects, and 

 as the augmented design matrix. Define the index sets of linear and order-2 

terms as

In (2.1), any term βj ≠ 0 or βjk ≠ 0 is regarded as relevant; the corresponding predictor can be 

a linear, or quadratic, or interaction effect. We define the nonzero linear and order-2 effects 

as
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The full model is  = ∪  and the true model  = ∪  For any model , use | | to 

denote its model size, i.e., the number of predictors contained in . We have | | = p, | | = 

q, and | | = d = p+q. We assume | | = p0 and | | = q0, and then the true model size| | = 

d0 = p0 +q0. In the literature, variable selection for (2.1) have been studied by penalized least 

squares using the augmented matrix  as the covariates and conducting variable 

selection under heredity principles. They work quite well when p is moderate. But when p is 

big, their implementation becomes infeasible since the full model sized increases 

quadratically in p. For example, p = 50 and d = 1, 325, p = 500 and d = 125, 750, and p = 5, 

000 and d = 12, 507, 500.

Next we give a review of the FS solution path algorithm (Wang, 2009), which is closely 

related to the interaction selection algorithms under consideration. For each 1 ≤ k ≤ n, we 

use  to denote the index of selected variables at the end of the kth step. Let  be the 

residual sum of squares (RSS) using model  to fit the data.

Forward Selection (FS)

Initial step: Set k = 0 and  = ∅.

Iterative step k = k + 1: If k > n, stop. Otherwise, given , for every j ∈ \ , 

construct a candidate model  =  ∪ {j}. Compute the  for each j. Find ak = 

arg   and update  =  ∪ {ak}. Repeat this step until stop.

The FS algorithm produces a solution path consisting of n nested models  ⊂, ··· ⊂ , 

where  = {a1,···, ak} for 1 ≤ k ≤ n. When p ≫ n, the FS automatically terminates after n 

steps when RSS reduces to zero. Since the solution path of the FS depends only on the 

subspaces spanned by the predictor vectors (column vectors in the design matrix), centering 

and standardization does not change the solution path. Wang (2009) showed the screening 

consistency of the FS for main-effect selection under the ultra-high dimensional setup.

One straightforward way of extending the FS to the interaction selection is to apply FS 

directly to model (2.1), ignoring the hierarchical structure. We name this procedure FS2 to 

distinguish it from the usual FS for main effect selection. Based on our empirical 

experience, FS2 works well for small and moderate p in sparse settings. In Section 3, we 

prove that FS2 has a sure screening property for interaction selection under some regularity 

conditions. However, similar to joint-analysis methods, the implementation of FS2 requires 

to store the entire augmented design matrix or call the features repeatedly during 

computation procedure, making it difficult for high dimensional data analysis.

2.2 New Methods: iFOR

We propose two forward selection based algorithms for interaction selection. The new 

algorithms naturally incorporate the marginality or heredity principles (Zhao et al., 2009; 

Yuan et al., 2009; Choi et al., 2010), without invoking complex constraint or optimization 

tools as done in joint analysis. Throughout this section, we use  to denote the candidate 
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index set which consists of all the terms to be considered for selection in the immediately 

following step.

We first describe the two-stage approach (iFORT) algorithm. At Stage 1, only main effects 

are selected by FS, all of the order-2 terms left out of the model. Denote the selected main-

effect set by  At Stage 2, we expand  by adding all the two-way interactions within 

and then implement FS on the expanded set while forcing  to stay in the final model.

Two-stage iFOR (iFORT)

Stage 1: Define  = . Implement FS on . The resulting solution path is { , t = 1, 

2, ···}, and the selected main effects are  = {j1, …, jt1}.

Stage 2: Update  =  ∪ {(k, l) : k ∈  and l ∈ }. Implement FS on  by forcing-in 

. Denote the solution path by { , t = 1, 2, ···}.

The iFORT is simple, fast, and feasible to implement for high dimensional data analysis. It 

does not require complex optimization tools, and the strong heredity condition is 

automatically satisfied in the final model by forcing-in . If the model is sparse, the number 

of important linear effects p0 would be small, so the number of terms considered at Stage 2 

would be much smaller than (p2 + p)/2. Theoretical properties of iFORT are studied in 

Section 3.

The iFORT separately selects main effects and order-2 terms at two stages. Alternatively, 

one may select them altogether under the marginality principle, and this leads to the 

algorithm iFORM. The main idea of the iFORM is to apply FS to a sub-model of model 

(2.1) indexed by a dynamic candidate set . At step t, we use ,  and  respectively to 

represent the index set of all selected effects, selected main effects, and current candidate 

set. Initially,  = , i.e., all the main effects. Then the candidate set  grows gradually by 

adding two-way interactions between the main effects already in the model. In other words, 

we update  by defining  =  ∪ {(k, ℓ) : k, ℓ ∈ }.

iFOR under Marginality Principle (iFORM)

Step 1: (Initialization) Set  = ∅,  = ∅ and  = .

Step 2: (Selection) In the tth step with given ,  and , forward regression is 

used to select one more predictor from \  into the model. We add the selected one 

into  to get . We also update  and  if the newly selected predictor is a main 

effect. Otherwise,  =  and  = .

Step 3: (Solution path) Iterating Step 2, we get a solution path { : t = 1, 2, … D}.

In the above algorithm, D is chosen as a reasonable upper bound of d0 (the total number of 

important effects), to terminate the procedure. A direct advantage of the iFORM is that it 

allows the interactions to enter the model early, making it easier to select weak relevant 

main effects. Moreover, when we decide the optimal model along the solution path, we only 

need to use model size selection criteria, say BIC, once, while for iFORT, we have to use 

BIC twice which may cause additional error in practice even if the solution path is correct. 
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Our empirical experience also suggest the iFORM has better finite sample performance. The 

screening consistency of iFORM is shown in Section 3.3.

To select the optimal model from the FS path, we consider the use of BIC. There are two 

types of BIC proposed in the literature, the standard BIC

and the BIC specially designed for high dimensional data (Chen & Chen, 2008)

where d* is the number of predictors in the full model. The only difference between two 

BICs is the extra term 2 log d* in BIC2. Chen & Chen (2008) derived BIC2 by controlling 

the false discovery rate (FDR) and showed that it is selection consistent if d* = O(nξ) for 

some ξ > 0. Wang (2009) showed its selection consistency for FS under ultra-high 

dimensional setup d* = O(exp(nξ)). Since we deal with the ultra-high dimensional data, we 

use BIC2 for iFORM and the first stage of iFORT. At the second stage of iFORT, since the 

number of candidate predictors is already dramatically reduced after the first stage, BIC1 is 

more appropriate. Section 5 demonstrates their effective performance, in terms of coverage, 

false discovery control, and prediction accuracy.

2.3 Computational Complexity and Practical Issues

We show that the computational complexity of iFOR procedures is linear in p, which 

explains their feasibility for p ≫ n. The FS algorithm described in Section 2.1 is equivalent 

to the following procedure. At each step, the response is regressed on the most correlated 

covariate, and the residual is calculated and used as the new response in next step. After the 

most correlated covariate (say, X1) is selected, all other covariates are regressed on X1, and 

then the covariates are substituted by the corresponding normalized residuals, which are 

used as the new covariates in next step. Note that the computation complexity of each step is 

O(nm), where n is the sample size and m is the number of predictors in the candidate set. 

First, the absolute correlations between the response and all covariates in the current 

candidate set are calculated at each step, so the complexity is O(nm). Once the most 

correlated covariate is selected, the response and all other covariates are regressed on it, 

whose cost is also O(nm). For the iFORT and iFORM algorithms, the number of steps to 

build the whole solution path is at most n, so the number of main effects selected is not 

larger than n. This implies that, at each step, there are at most p + n(n + 1)/2 predictors in the 

candidate set, i.e., m ≤ p + n(n + 1) holds for any step. Therefore, the overall complexity is 

nO(n(p + n(n + 1)) = O(n2p + n4), which is linear in p.

The parameter D controls the length of the solution path for the iFORM. Since the final 

model is chosen based on BIC by comparing all the models along the path, the final model 

select results is not sensitive to the exact value of D as long as it is reasonably large. In 
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practice, though d0 is unknown, it is reasonable to assume that d0 is much smaller than n in 

high dimensional sparse regression problems (Fan & Lv, 2008). In our numerical study, we 

have tried D = n/2, n/3, n/4 and obtained the same results since D > d0. In general, we 

suggest D = n/2.

3 Theoretical Results

We study theoretical properties of iFOR. In literature, a long-term concern about two-stage 

methods is their theoretical validity, as the main effect selection at Stage 1 is conducted 

under a misspecified working model. In Section 3.1, we first prove that the iFORT is able to 

capture all important main effects under ultra-high dimensional settings. This fundamental 

result provides rigorous justifications for two-stage methods. In Sections 3.2, we prove that 

iFORT can identify all important interactions consistently with probability tending to one 

under heredity conditions. The screening consistency of iFORM is shown in Section 3.3.

3.1 Screening Consistency of iFORT for Main Effects

Recall the true model  = ∪ , where  ⊂  and  ⊂ . For any square matrix A, 

denote its smallest and largest eigenvalues respectively by λmin(A) and λmax(A) Denote the 

covariance matrices of main linear effects and interactions (i.e. all degree 2 monomials) 

respectively by Σ(1) and Σ(2). The total covariant matrix is Σ. The following regularity 

conditions are needed.

(C1) Normality: Xi1, …, Xip are jointly normal and marginally standard normal. εi ~ 

N(0, σ2) is independent of Xi1, …, Xip.

(C2) Covariance Matrix: We assume that there exist two constants 0 < τmin < τmax < 

∞, such that 2τmin < λmin(Σ(1)) ≤ λmax(Σ(1)) < τmax/2.

(C3) Signal strength: We assume that ||β|| ≤ Cβ for some positive constant Cβ and βmin 

≥ νβn−ξmin, where βmin = |βκ|.

(C4) Dimensionality and sparsity: There exist positive constants ξ, ξ0 and ν such that 

log p ≤ νnξ, d0 ≤ νnξ0 and ξ + 6ξ0 + 12ξmin < 1, .

Remark 3.1: Conditions (C1) to (C4) are standard in the literature of ultra-high dimensional 

inference (Fan & Lv, 2008; Zhang & Huang, 2008). The normality assumption (C1) is 

extensively used in the past literature to facilitate proof (Fan & Lv, 2008; Zhang & Huang, 

2008; Wang, 2009). (C2) requires the design matrix of main effects to be well-behaved. (C1) 

and (C2) together assure the Sparse Riesz Condition (Zhang & Huang, 2008); see the proof 

in Appendix for more details. (C3) requires that the smallest signal should not decay too 

fast, otherwise they can not be consistently identified; see (Fan & Peng, 2004) for more 

discussions. (C4) allows the dimension p to diverge with n at an exponential rate, or the NP 

dimensionality (Fan & Lv, 2008). Intuitively, one would expect that stronger conditions are 

needed to develop theory for interaction selection due to their heavier tails. However, to our 

satisfaction, conditions (C1) to (C4) are comparable to those used in the main-effect 

selection literature (Fan & Lv, 2008; Wang, 2009). The only difference is  in (C4) while 

ξ < 1 is used in Wang (2009), due to heavier tails of interaction terms. Note if X1j are sub-
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Gaussian with  for positive constants a and b, typically, we can only bound a 

product term by E(e2aX1jX1k) < b2.

Theorem 1: (sure screening of main effects) Define . Under 

conditions (C1)–(C4), the first stage of iFORT is screening consistent for the main effects. 

For t1 ≥ Kνn2ξ0+4ξmin,

(3.1)

Next we give insight on why screening consistency (3.1) still holds for selection under a 

mis-specified model. A key observation is Lemma 1 in Appendix, which says, under (C1),

The block structure of Σ guarantees that ignored important interactions terms have minimal 

affects to the procedure at Stage 1. Imaging if there are some nonzero terms on the right top 

corner of Σ, we have to put some strong and complicated conditions on Σ to guarantee 

screening consistency.

Remark 3.2: In general, as long as Σ has a block structure, Theorem 1 holds even without 

normality. Here (C1) is used as a convenient and sufficient condition to assure the 

covariance block structure. There are other weaker but sufficient conditions (C1)′ or (C1)″, 

which can replace (C1):

(C1)′ Xij is sub-Gaussian marginally, and their joint distribution is symmetric with 

respect to 0.

(C1)″ Xij is sub-Gaussian marginally, and their joint distribution has varnished third 

moments.

3.2 Screening Consistency of iFORT for Interaction Effects

After Stage 1, the iFORT essentially reduces the main effect dimensionality from p to 

, which is significant if p ≫ n. Using (C4), it is straightforward to show 

. Next we study the asymptotic behaviors of iFORT for interaction selection 

under the strong heredity:

(H1). Strong heredity condition: βkℓ ≠ 0 ⇒ βkβℓ ≠ 0.

Under (H1), the interaction selection of iFORT at Stage 2 does not need to deal with high 

dimensional predictors any more, since the number of selected main effects is . Even if 

include all interactions within the selected model at Stage 1, the final model has cardinality 

. Corollary 1 gives the fundamental result: the iFORT is screening consistent for 

interaction selection under the heredity condition for ultra-high dimensional settings.
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Corollary 1: (sure screening of interactions) Conditional on (3.1) and (H1), for t2 ≥ 

Kνn2ξ0+4ξmin,

Remark 3.3: The strong heredity is necessary to ensure the consistency of two-stage 

procedures for screening interaction terms. Otherwise, if X1X2 is important but neither X1 

nor X2, then the main effects are not guaranteed to be identified at Step 1, and consequently, 

their interaction X1X2 might not be considered at the second step. We also point out that the 

strong heredity condition is actually not that strong with a simple illustration. Consider the 

case p = 2, where the full model space (for simplicity, ignoring two quadratic terms) can be 

represented by the parameter set (β0, β1, β2, β12)⊤ in ℝ4. The strong heredity condition 

covers the entire ℝ4 except a couple of subsets, such as {β0 = 0, } and {β1β2 

= 0, }. The excluded subsets have zero mass in ℝ4, so the strong heredity condition is 

met by most models. This implies that the iFORT methods work for a generic model.

3.3 Screening Consistency of FS2 and iFORM

Naively, we can use any one-stage variable selection tool to fit (1.1) directly (as long as 

computation is feasible), ignoring the hierarchical structure. Though the model consistency 

or screening consistency result (Zhao & Yu, 2006; Wang, 2009; Fan & Lv, 2011) could be 

generalized to the context of interaction selection, the extension of earlier proofs is not 

straightforward due to heavy tails of interaction effects. Actually, all the existing proof 

technique would require some regularity conditions on the eigenvalues of Σ(2). Next, we 

establish the screening consistency of FS2 under conditions that are related only to Σ(1).

C2a Covariance Matrix: Assume that there exist two constants 

, such that 

.

C4a Dimensionality and sparsity: There exist positive constants ξ, ξ0 and ν, such that 

log p ≤ νnξ, d0 ≤ νnξ0 and .

There is no essential difference between (C2a) and (C2). (C2a) is used only for easy 

presentation. (C4a) is slightly stronger than (C4). A remark is that under (C1) and (C2a), the 

population and sample covariance matrices Σ and Σ̂ can be well controlled because Σ(2) can 

be explicitly represented by Σ(1). See Lemma 3 in the appendix. On the other hand, the 

screening consistency result below strongly depends on the normality condition (C1) since 

there is no easy way to capture the structure of Σ(2) by Σ(1) without normality condition.

Theorem 2: Under conditions (C1), (C2a), (C3), and (C4a), FS2 is screening consistent. For 

t ≥ Kνn2ξ0+4ξmin,
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The screening consistency of iFORM is implied in the proof of Theorem 2, as iFORM is 

similar to FS2 but with a restrictive candidate set each step.

Corollary 2: Under conditions (C1), (C2a), (C3), (C4a), and (H1), iFORM is screening 

consistent. For t ≥ Kνn2ξ0+4ξmin,

4 Extensions to Weak Heredity

In some real applications, the weak heredity provides a useful alternative for the underlying 

model structure. Under the weak heredity, for a two-way interaction effect to be active, at 

least one of the parent effects need to be effective. In this section, we generalize the iFOR 

algorithms described in Section 2 to satisfy the weak heredity condition. Similar to the 

strong heredity situation, both iFOR algorithms under the weak heredity are easy to 

implement.

(H2). Weak heredity condition: .

iFORT Under Weak Heredity (iFORT-w)

Stage 1: Define  = . Implement FS on . The resulting solution path is { , t = 1, 

2, ···}, and the selected main effects are  = {j1, …, jt1}.

Stage 2: Update  =  ∪ {(k, l) : k ∈  or l ∈ }. Implement FS on  by forcing-in . 

Denote the solution path by { , t = 1, 2, ···}.

For the iFORM extension, after selecting any new linear term, we need to expand the 

candidate set by including all of its interactions with the other linear effects. Denote by 

the index set of selected linear effects at Step t. Under the weak heredity condition, we 

update  as

For each t, we use ,  and  to represent the index set of selected model, selected main 

effects and candidates set at Step t, respectively.

iFORM Under Weak Heredity (iFORM-w)

Step 1: (Initialization) Set  = ∅,  = ∅ and  = .

Step 2: (Selection) In the tth step with given ,  and , forward regression is 

used to select one more predictor from \  into the model. We add the selected one 

Hao and Zhang Page 11

J Am Stat Assoc. Author manuscript; available in PMC 2015 October 20.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



into  to get . We also update  and  if the newly selected predictor is a main 

effect. Otherwise,  =  and  = .

Step 3: (Solution path) Iterating Step 2, we get a solution path {  : t = 1, 2, …D}.

Remarks 4.1: The weak heredity condition is slightly more flexible than the strong heredity 

condition, and generally chooses a larger model. In practice, the weak heredity is more 

useful to identify important interactions with one weak parent effect (Yuan, Joseph, and Zou 

2007). With regard to the computation speed, since the candidate set size at each step is 

larger than in the strong heredity case, the iFORT-w and iFORM-w are slower than the 

iFORT and iFORM.

5 Numerical Studies

5.1 Experiments and Setup

We demonstrate performance of the iFOR methods in various p ≫ n scenarios, including 

the regression settings with independent predictors, predictors with autoregressive (AR) 

correlation structure, compound symmetry (CS) correlation, and more complex settings as 

considered in Fan and Song (2010). We consider forward-based joint analysis (FS2), and the 

proposed forward-based procedures iFORT, iFORM, iFORT-w, iFORM-w. In literature, 

there are other two-step procedures which are not based on forward selection such as 

Mendel (Wu et al. 2009) and Screen and Clean (Wu et al. 2010). For comparison, we also 

include two such procedures, iMART1 and iMART2. The iMART1 screens main effects 

based on marginal correlation at Step 1, i.e., those that exceed a threshold are retained as 

candidate predictors, and then conducts the LASSO penalized regression on the expanded 

dictionary consisting of all the candidate predictors and their pairwise interaction terms at 

Step 2. The iMART2 first screens main effects by marginal correlation, then screens the 

pairwise products of the main effect candidates by pairwise correlation, and then implements 

the LASSO to obtain the final model. The standard BIC is used to select the tuning 

parameter of LASSO. The oracle (ORACL) procedure is also presented as the gold standard, 

which is generally not available in practice.

Recall that the full model is  =  ∪ , | | = p, | | = q. The true model is  =  ∪ , | | 

= p0, | | = q0. We run M = 100 Monte Carlo simulations and report their average 

performance in selecting linear effects and interactions, estimating coefficients, and making 

predictions. For the mth replication, let β̂(m) denote the fitted regression coefficients, 

and  respectively denote the selected linear effects and interactions. To evaluate linear 

effect selection, we report the

•
Coverage probability(Cov) ,

•
Percentage of correct zeros (Cor0) ,

•
Percentage of incorrect zeros (Inc0): .
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•
Exact selection probability(Ext) ,

For interaction selection, we report

•
Coverage probability (iCov) ,

• Percentage of correct zeros (iCor0) 

,

•

Percentage of incorrect zeros (iInc0) .

•
Exact selection probability (iExt) ,

The overall model selection is measured by the model size . For 

estimation, we report the mean squared error (MSE) 

. For the prediction error, we report 

the out-of-sample R2 (Rsq):

where the test data ( ), i = 1, ···, n are generated independently from the same 

distribution as the training set, and . A larger Rsq suggests a better 

prediction. The standard error of Rsq is reported as well. We also report the average 

computation time.

5.2 Simulation Results

In all the examples, we generate the response Y from model (2.1) with σ = 2, 3, 4.

Example 1: (Independent predictors) Let (n, p, p0, q0) = (100, 500, 4, 4). X’s are iid 

from MVN(0, Ip). The true β(1) = (3, 0, 3, 0, 0, 3, 0, 0, 0, 3, 0490), so  = {1, 3, 6, 10}. 

The important interaction set  = {(1, 3), (1, 6), (3, 10), (6, 10)} with coefficient 2.

Example 2: (Autoregressive correlation) Consider the same setup as Example 1, except 

that X follows MVN with mean 0 and Cov(Xj, Xk) = 0.5|j−k| for 1 ≤ j, k ≤ p.

Example 3: (High dimensional: AR) Let (n, p, p0, q0) = (400, 5000, 10, 10). We 

generate X from MVN with mean 0 and Cov(Xj, Xk) = 0.5|j−k|. The true β(1) = (3, 3, 3, 3, 

3, 2, 2, 2, 2, 2, 04990). The nonzero interaction set is  = {(1, 2), (1, 3), (2, 3), (2, 5), (3, 

4), (6, 8), (6, 10), (7, 8), (7, 9), (9, 10)}, and their coefficients are (2, 2, 2, 2, 2, 1, 1, 1, 1, 

1).

Example 4: (High dimensional: AR) We increase the dimension p = 10000 in Example 

3.
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Example 5: (High dimensional: FS2010) We use the same setup as in Example 4, except 

that X has a more complex covariance structure as considered in Fan and Song (2010). 

First, we generate Xj, j = 1, ···, 50 independently from the standard normal distribution. 

Then we define

with s = 10 and  follow the standard normal distribution.

Example 6: (Weak Heredity) We use the same setup as in Example 3, except the 

nonzero interaction set  = {(1, 2), (1, 13), (2, 3), (2, 15), (3, 4), (6, 10), (6, 18), (7, 9), 

(7, 18), (10, 19)} and the corresponding coefficients (2, 2, 2, 2, 2, 1, 1, 1, 1, 1). Note 

that the weak heredity condition holds here.

Three additional examples, Examples 7 to 9, are listed in the Supplementary Material due to 

the page limit. In particular, the compound symmetry (CS) correlation is considered in 

Examples 7 and 9. The numerical results are summarized in the following Tables 1–6 and 

Tables S1–S3 in the Supplementary Material.

We first summarize the results for Examples 1–5, where the strong heredity condition holds. 

All the methods perform reasonably well in most of the settings, including the high 

dimensional cases with p = 5, 000 and p = 10, 000, as long as the noise level is not too high. 

Overall speaking, the iFORM is the best among all the methods in terms of both model 

selection and prediction performance. The iFORM method has the smallest MSE, the largest 

out-of-the sample R2, and the highest exact coverage probability for main effects and 

interactions. When σ = 2, the iFORM’s performance is quite close to the ORACL procedure. 

The performance of iFORT is sensitive to the dimensionality and noise level. In particular, 

when p is large and the noise level is high, it may miss some important main effects in Stage 

1, although the result may be improved by using less aggressive selection criteria such as 

AIC and standard BIC. On the other hand, iFORM consistently gives higher coverage of 

important main effects and interactions than iFORT, which supports our motivation for the 

dynamic selection procedure. The FS2 has the worst performance, and it fails to run when p 

is 5000 or larger. Both iMART1 and iMART2 are reasonably fast and perform well, 

sometimes quite competitive in prediction. But when the covariance structure is complex, 

their performance is not very good. This can be seen in Example 5, and Examples 7 and 8 in 

the Supplementary Material.

In Example 6, the weak heredity condition holds, and therefore we expect that the iFOR 

under the weak heredity constraint should perform better than those under the strong 

heredity. The results in Table 6 confirm this pattern: iFORM-w (or iFORT-w) gives better 

performance than iFORM (or iFORT) in terms of both model selection and prediction 

accuracy. Since the strong heredity methods make an incorrect model structure assumption, 

they suffer by missing some important interactions. For example, if σ = 2, iFORM-w is the 

only method showing a high exact selection probability (91%) for important interactions.
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Finally, we illustrate the quality of the solution path by the hit-rate plot. In each plot, the x-

axis denotes the solution path steps {1, 2, ···, S}, and the y-axis represents the “hit rate” 

which is defined as the percentage of important terms recovered up to step s. Denote the true 

model size by d0. The ideal hit plot (given by ORACL) should show a linearly increasing 

trend with slope 1/d0 within the first d0 steps and then stays at 1 afterwards. For the graph 

clarity, we only draw the hit rates for the strong heredity methods. Figure 1 plots the hit-

rates for Examples 1 and 2 with the moderate p = 500. Here d0 = 8, so we choose S = 20. 

Based on Figure 1, the iFORM has the highest hit rate among all, very close to the oracle. 

For σ = 2 and 3, its hit rate is more than 95% after 20 steps; for the more difficult case σ = 4, 

iFORM still achieves approximately 90% hit rate. The iFORT is slightly worse than 

iFORM, with rates 90%, 80%, 70% respectively for σ = 2, 3, 4. The FS2 has the lowest hit 

rate, only 20% when σ = 4. Figure 2 plots the hit rates for the large p. Since d0 = 20, we 

choose S = 40. The FS2 is not shown in Figure 2, because it fails to run. Again, iFORM has 

the highest hit rate among all (except the oracle). The iFORT is slightly worse, about 80% 

hit rate in most cases.

The following table summarizes the average computation time (seconds per run) for each 

procedure. The machine we used equips Intel Core (TM) i7-2600 CPU @ 3.40GHZ with 

4.00 GB ram. Since the time difference is small for varying σ, we only present the results for 

σ= 2. When p is moderately large, the FS2 is slowest, taking 16.40 seconds in average for 

Example 1. The iFORT and iFORM are the fastest, taking 0.04 and 0.08 seconds in Example 

1, which is more than 100 times faster than FS2. The weak heredity methods are slower than 

their strong heredity counterparts. When p is large, the FS2 fails to run, while the iFOR 

procedures are still amazingly fast. When p = 5000, it takes 11.39 (and 16.06) seconds for 

iFORT (and iFORM). When p = 10000, it takes 22.13 (and 29.17) seconds for iFORT (and 

iFORM). The weak heredity methods now take significantly more time. Overall, the iFORM 

appears the most promising in terms of both performance and speed.

6 Real Data Analysis

We analyze two real data sets, the inbred mouse microarray gene expression dataset (Lan et 

al. 2006) and the supermarket data (Wang, 2012). The inbred mouse microarray data set 

contains 60 mouse arrays, with 31 from female mice and 29 from male mice, respectively. 

Each array measures the expression values of 22,690 genes. The response is a continuous 

phenotypic variable measured by real-time RT-PCR, stearoyl-CoA desaturase 1 (SCD1). 

The supermarket dataset collects daily sale information of a major supermarket located in 

northern China, with n = 464 and p = 6398. The response Y is the number of customers per 

day, and the predictors X are sale volumes of various products. The supermarket manager is 

interested in the relationship between the number of customers and the sale volume of 

certain products. For convenience, the response and all predictors are centered to zero and 

standardized to have a unit variance prior to the analysis.

The proposed methods are applied to both datasets. To assess the prediction performance of 

the procedures, we randomly sample n1 observations to form the training set, and use the 

remaining n − n1 observations as the test data to compute the out-of-sample R2 for the final 

model. We use n1 = 50 in the inbred mouse data analysis and use n1 = 400 for the 
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supermarket data analysis. The results are summarized in Table 7. It is observed that the 

iFOR methods give similar performance for both data sets.

7 Discussion

In this article, we tackle the important problem of interaction selection for ultra-high 

dimensional data. The task is both computationally and theoretically challenging. We 

propose a new class of procedures, called iFOR, and study their numerical and theoretical 

properties. One major advantages of the proposed methods are their computation feasibility. 

The code is simple and fast. Theoretically we show that the iFOR can discover all relevant 

interactions consistently, even if the dimension increases exponentially fast with the sample 

size. Our numerical examples suggest that the new methods, especially iFORM, give 

promising performance for ultra-high dimensional data.

We use the extended BIC (Chen and Chen 2008) to select a final model from the solution 

path in this work. Since the motivation of the extended BIC is to control FDR, it tends to be 

conservative in real data analysis. It would be interesting to study the performance of other 

selection criteria such as AIC and cross validation for iFOR methods in the future. Other 

works of interest include the generalization of the iFOR to other loss functions in GLM or 

nonparametric regression, and how to improve computational efficiency of penalized 

methods with the iFOR ideas.

In practice, higher-order interactions are useful to uncover multi-way relationships among 

predictors for complex problems where two-way interactions are not sufficient. The 

proposed methods can be readily extended to selecting higher-order interactions, by 

including higher-order products of predictors in the candidate set. No essential change is 

needed in the computational algorithm, except that the enlarged candidate set will demand 

extra time. When considering higher-order interaction models, one should tune the model 

properly to avoid the over-fitting. The interpretation of higher-order interactions should be 

cautious as well. The topic is worth a full investigation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A. Total Covariance Matrix

In this section, we work on the total covariance matrix Σ and show it is determined by the 

covariance matrix Σ(1) of main effects under the Gaussian assumption (C1).

Let us temporarily ignore the index labeling the order of observations, and denote by Xj for 1 

≤ j ≤ p the main effects and Zjk = XjXk − E(XjXk) for (j, k) ∈  the interactions. Let Σ(1) = 

(σij) denote covariance matrix of the main effects X1, …, Xp. The first two lemmas help us to 

characterize the total covariance matrix Σ.

Lemma 1

Under the normality condition (C1), for ∀j, k, ℓ, cov(Xj, Zkℓ) = 0 which implies

Proof

cov(Xj, Zkℓ) = cov(Xj, XkXℓ) = E(XjXkXℓ) − E(Xj)E(XkXℓ) = 0. The conclusion still holds if 

the joint density of X1,…, Xp is symmetric with respect to the original point 0.

Lemma 2

Under the normality condition (C1),

(7.1)
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Proof

This lemma follows directly from the following useful formula (Bar & Dittrich, 1971)

Let A = (Aij) be an N × N matrix. In linear algebra, a K × K submatrix is called a principal 

submatrix if it is of the form  = (Aℓiℓj) where  is an index set  = {1 ≤ ℓ1 < ··· < ℓK ≤ N}. 

Here with slight abuse of this conception, we allow arbitrary order for the index set . For 

example, let  = {2, 1} and

is still called a principal submatrix in this paper.

Based on the formula (7.1), we can decompose Σ(2) to a sum . In fact, we have

Lemma 3

Both  and  are principal submatrices of Σ(1) ⊗ Σ(1).

Proof

The Kronecker product (Laub, 2005) Σ(1) ⊗ Σ(1) is a p2 × p2 matrix whose rows and 

columns are both indexed by the set  × . The entry corresponding to the index (ij, kℓ) is 

σijσkℓ. By formula (7.1), both  and  are  principal submatrices of Σ(1) 

⊗ Σ(1).

Lemma 4

Under the conditions (C1) and (C2a), we have

(7.2)

Proof

By Laub (2005) Theorem 13.12, the eigenvalues of Σ(1) ⊗ Σ(1) are λiλj, 1 ≤ i, j ≤ p, if the 

eigenvalues of Σ(1) are λ1, …, λp. Therefore, under condition (C2a), we have
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By Lemma 3, the eigenvalues of  and  are also bounded by τmin and τmax/4, so

It is straightforward to get (7.2).

Appendix B. A Bernstein Inequality and Its Application

In this section, we study a Bernstein-type inequality and its applications in bounding the 

eigenvalues of submatrices of sample covariance matrix Σ̂, which is crucial in the proofs of 

theorems. For any index set ,  denotes the principal submatrix corresponding to .

Lemma 5

Let W1, …, Wn be independent random variables with mean zero and variances bounded by 

σ2 ≥ 1. Assume for some 0 < α < 1,

(7.3)

Then for ,

(7.4)

Proof

Let . Then

(7.5)

For , we have

(7.6)

Note that (7.6) is true also for  because of the monotonicity of function f(u) = eu − 1 − 

u − u2/2.
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It is easy to get  from (7.3). Moreover, we have 

 from definition. Taking expectation of (7.6),

(7.7)

when |tx1−α/T| < 1.

Let . By Markov inequality

Therefore,

Apply the same technique to  and combine the results, we can get (7.4).

The following is the Lemma 1 in Wang (2009), which is useful in the proof of Theorem 1.

Lemma 6

Under condition (C1) and (C2), for ,  ⊂ ,

(7.8)

Furthermore, under condition (C4), (7.8) holds for .
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Lemma 7

Let W1, …, Wn be independent random variables with zero mean such that E(eT0|Wi|α) ≤ A0 

for constants T0 > 0, A0 > 0 and 0 < α < 1. Then, for a sequence an → ∞ with 

, there exist constants c1, c2, such that

(7.9)

Proof

The condition E(eT0|Wi|α) ≤ A0 implies Var(Wi) ≤ σ2, E(|Wi|
2eT|Wi|α) ≤ A and E(|

Wi|
3(1−α)eT|Wi|α) ≤ A for some constants σ2, T and A. By Lemma 5, we have

Let . Then

On the other hand, by Markov inequality

Hence, . And (7.9) is easily obtained.

Remark 1

We are interested in the case that Wi = XijXikXiℓ, where Xij, Xik, Xiℓ are joint normal and 

marginally standard normal. It is easy to see that Wi satisfies  and Var(Wi) 

≤ 30. Therefore, (7.9) holds for c1 = 3, c2 = 1/61 when n is sufficiently large.

In order to show Theorem 2, we have to obtain an analogue of Lemma 6 for arbitrary 

submodel . We start from a generalization of Lemma A3 in Bickel & Levina (2008).

Lemma 8

Let W1, …, Wn be independent random variables with zero mean such that E(eT0|Wi|
α
) ≤ A0 

for constants T0 > 0, A0 > 0 and 0 < α ≤ 1. Then there exist constants c3, c4, for 0 < ε ≤ 1
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(7.10)

Proof

The condition E(eT0|Wi|α</sup>) ≤ A0 implies Var(Wi) ≤ σ2, E(|Wi|
2 eT|Wi|

α
) ≤ A and E(|

Wi|
3(1−α) eT|Wi|

α
) ≤ A for some constants σ2, T and A. When α < 1, by Lemma 5,

Let x = nε. Then

On the other hand, by Markov inequality

Hence, . 

And (7.10) is easily obtained.

When α = 1, E(eT0|Wi|) ≤ A0 implies . So 

 for k ≥ 2. By Bernstein’s inequality, Lemma 2.2.11 in van der 

Vaart & Wellner (1996), we have

Lemma 9

Under condition (C1) and (C2), for 0 < ε < 1, we have

(7.11)
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(7.12)

(7.13)

where C1, …, C6 are constants.

Proof

We show the last inequality here. The first two are similar. Let Ws = XsiXsjXskXsℓ − σijσkℓ − 

σikσjℓ − Σiℓ σjk.

The inequality follows directly from the last lemma.

Lemma 10

Under condition (C1) and (C2a), for ,

(7.14)

Furthermore, under condition (C4), (7.14) holds for .

Proof

The proof is similar to Lemma 1 in Wang (2009), where the inequality (7.11) plays a crucial 

role. The inequality (7.11) implies  for ∀1 ≤ i, j 

≤ p. Since the distribution of interactions have heavier tails, we have
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(7.15)

for ∀κ, γ ∈  ∪ . For example, if κ = (i, j), γ = (k, ℓ) ∈ ,

Therefore,

Let v = (v1, …, vp, v11, …, vpp)⊤ be a p + p(p +1)/2 dimensional vector and  be the 

subvector corresponding to index set  ⊂  ∪  = . Recall  is the principle submatrix 

corresponding to . By Lemma 4, we have

To show (7.14), it suffices to show

(7.16)

for arbitrarily small positive number ε. The left-hand side of (7.16) is bounded by

(7.17)

Note that the number of possible models with sizes smaller than m is less than (p + p(p + 

1)/2)m ≤ p2m when p ≥ 3. Applying (7.15), we can bound (7.17) further
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(7.18)

(7.19)

(7.20)

which converges to zero when n → ∞ and .

Remark 2

Beyond normality. Lemmas 6, 7, 10 play important roles in the proofs of Theorems 1 and 2. 

A key assumption is E(eT0|Wi|
α
) ≤ A0 where Wi is (higher) product of predictors. It is easy to 

see that the condition still holds, using the argument of Lemma 9, if the marginal 

distributions of X is subGaussian. In particular, Theorem 1 is still true if condition (C1′) 

holds and Theorem 2 is still true if (C1′) holds and the total covariance matrix Σ has 

bounded eigenvalues asymptotically.

Appendix C. Proofs of Theorem 1 and 2

With slight abuse of notations, we denote by X the total design matrix including main and 

interaction effects. For any index set  ⊂ ,  is the submatrix of X whose columns 

correspond to ;  is the subvector of β corresponding to . If  = {j}, we simply use Xj 

and βj.

We first overview the general strategy (in the context of FS2) and then give proofs for 

theorems. The goal is to show that all important predictors in the candidate pool are selected 

within a number of steps, for FS2 and the first stage of iFORT. By the nature of FS, the 

predictors are selected sequentially, one at each step. Therefore, we divide the whole 

procedure into a sequence of stages, each of which consists of several steps, starting 

immediately after one important term is selected and ending when the next predictor is 

identified. If we can show that the length of each stage is less than some integer L, then after 

d0L steps, all important predictors would have been selected.

Assume that stage T is the earliest stage among all that lasts longer than L steps, and T < d0. 

Working within stage T, we omit the stage label T, and denote by  the index set of all 

selected predictors up to step t of stage T. Define

where RSS( ) is the residual sum of squares of Y regressed on the predictor space spanned 

by . A key step is to show that
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(7.21)

Therefore, we have , which contradicts with 

the fact Var(Y) = 1. Then we can conclude that every stage contains less than L steps.

The inequalities of type (7.21) are obtained in the following proofs, which lead to Theorems 

1 and 2. We illustrate Theorem 2 first, because it is technically more straightforward.

Proof of Theorem 2

Given the regularity conditions and Lemma 10, the proof of Theorem 2 is similar to that of 

Theorem 1 in Wang (2009). Let  and L = Knξ0+4ξmin. Note that | | < 

d0L ≤ Kνn2ξ0+4ξmin, so the eigenvalues of  can be controlled by Lemma 10. Following (B.

1) and (B.2) in Wang (2009), we have

(7.22)

where  and 

.

Following the procedure leading to (B.7) in Wang (2009), we have, with probability tending 

to 1,

(7.23)

Similar to (B.8) in Wang (2009),

(7.24)

where m* ≤ TL ≤ d0L. Given X,  is a normal random variable with mean 0 and 

variance || Xj||
2 ≤ ||Xj||

2. So (7.24) is further bounded by

where  represents a chi-square random variable with one degree of freedom. By Lemma 

10, n−1 ||Xj||
2 ≤ τmax with probability tending to one. Moreover, the total number of 

combinations for j ∈  and | | ≤ m* is no more than (p2)m*+2 = p2m*+4. Therefore,
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with probability tending to one. Finally, we have

Proof of Theorem 1

Because we concentrate on only main effects in the first stage of iFORT, similar to (7.22), 

we have

(7.25)

The first term on the right hand side can be bounded as

(7.26)

Similar to (7.24),

(7.27)

where m* ≤ TL ≤ p0L.

For the first term in (7.27),

Therefore,

(7.28)
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By Lemma 7, Remark 1 and Bonferroni inequality,

Thus (7.28) can be bounded by  with probability tending to 1.

For the second term,

Therefore,

(7.29)

where ||·||∞ denote the vectorized infinity norm. By Lemma 6,

with probability tending to one. By Lemma 7,

Thus, with probability tending to one, (7.29) is further bounded by

(7.30)

Following the same steps after (7.24), the third term in (7.27) can be controlled by,

(7.31)
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Finally, combining all results, we have

where . Therefore,
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Figure 1. 

The hit-rate plots for the moderate p for ORACL, iFORM, iFORT, and FS2.
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Figure 2. 

The hit-rate rate plots for large p for ORACL, iFORM, iFORT, and FS2.
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Table 8

Prediction performance: the average out-of-sample R2 for iFOR methods.

Dataset iFORT iFORT-w iFORM iFORM-w

Inbred Mouse data 60.73 (1.15) 58.46 (1.37) 60.22 (1.15) 60.31 (1.28)

Supermarket data 88.91 (0.17) 88.42 (0.19) 88.66 (0.18) 86.61 (0.22)
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