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ABSTRACT

Motivation: The noisy nature of transcriptomic data hinders the

biological relevance of conventional network centrality measures,

often used to select gene candidates in co-expression networks.

Therefore, new tools and methods are required to improve the

prediction of mechanistically important transcriptional targets.

Results: We propose an original network centrality measure,

called annotation transcriptional centrality (ATC) computed by

integrating gene expression profiles from microarray experiments

with biological knowledge extracted from public genomic databases.

ATC computation algorithm delimits representative functional

domains in the co-expression network and then relies on this

information to find key nodes that modulate propagation of functional

influences within the network. We demonstrate ATC ability to

predict important genes in several experimental models and provide

improved biological relevance over conventional topological network

centrality measures.

Availability: ATC computational routine is implemented in a publicly

available tool named FunNet (www.funnet.info)

Contact: edi.prifti@crc.jussieu.fr

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

In complex cellular environments, biological functions are emerging

properties that cannot be understood without taking into consid-

eration the system as a whole. Molecular interactions allow for

cellular components to function and for cells to live and perform

their tasks within the organism. It is through chemical and physical

interactions that molecules influence one another and carry out

biological functions. Since some of these influences may have

a greater impact than others, a hierarchical characterization of

their relative importance can be very useful in exploring the

functional architecture of the cellular environments. The concept

of interactional centrality is borrowed from social sciences where

it is used to estimate the relative importance of individuals

within societies (Freeman, 1977). Biological processes, viewed as

∗To whom correspondence should be addressed.

associations of molecules whose relations to each other assure

a particular function (Barabasi and Oltvai, 2004; Hartwell et al.,

1999), have a strong interactional nature. Understanding interaction

patterns is therefore crucial in untangling the functional architecture

of cellular environments.

Network analysis plays an increasingly important role in the

exploration of complex interactional systems in numerous domains.

In biology, they are used to study regulation of the transcriptome,

proteome, metabolome, methylome and other cell systems (Kepes,

2007). Key properties of biological networks are shared with other

complex interaction systems, such as the ‘scale-free’ distribution of

node connectivity (Barabasi and Oltvai, 2004) or the ‘small-world’

aspect of their fast synchronization (Watts and Strogatz, 1998).

Others, like the existence of a hierarchical architecture of modules

formed by functionally related components (i.e. genes, enzymes

and metabolites) (Ravasz et al., 2002), or the presence of various

types of ‘hubs’ (i.e. highly connected or central nodes), which

modulate key interactions at distinct levels in the cell, are thought

to have a particular relevance in biology. The existence of strong

relationships between the biological roles of molecules and the

modular organization of their interactions was demonstrated through

analyses of integrating gene expression patterns with information

on phylogenetic variability, sharing of common transcriptional

binding sites, results from mutagenesis experiments and available

knowledge on genes’ biological roles (Allocco et al., 2004;

Bergmann et al., 2004; Carlson et al., 2006; Guimera and Nunes

Amaral, 2005; Hartwell et al., 1999; Jeong et al., 2001).

Hub molecules with important biological properties are identified

in these networks through topological interactional centrality

measures. Relying on results from mutagenesis experiments, Jeong

et al. (2001) showed that highly connected hub proteins that occupy

central positions in the network architecture of yeast protein–protein

interactions are three times more likely to be biologically essential

than those with only a small number of links in the network. Several

other studies have shown that proteins with high betweenness

centrality scores (i.e. measure of total number of shortest paths that

connect each two nodes in the network passing through a given one)

are more likely to be functionally essential (Joy et al., 2005; Yu et al.,

2007). Others have demonstrated strong correlations of network

topological centrality indices with specific patterns of phylogenetic

variability (Guimera and Nunes Amaral, 2005).

Microarray technology has been very successful in biomedical

research over the past decade. The study of gene expression
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profiles in functional genomics and drug discovery is one of

the most important applications of microarrays. The analysis of

co-expression patterns using network representations is widely

used for exploring the large amount of data produced by this

high-throughput technology. Also called co-expression networks,

these abstractions illustrate the complex relationships between

expression profiles of individual genes. They are built by relating

transcripts (i.e. the nodes of the network) that display similar

expression profiles (i.e. the edges connecting the nodes) following

conventional analytical frameworks (Zhang and Horvath, 2005).

Topological centrality measures computed in network models, such

as node degree and betweenness, are used to identify molecular

targets in well-characterized protein–protein or regulation networks.

In transcriptional co-expression networks, the high degree of

experimental noise limits, however, the biological relevance and

robustness of centrality measures, based on topological criteria

alone, in predicting important transcripts (Wu, 2009). Integrating

expression data with available biological knowledge of genes

may help increase the biological pertinence of such measures.

We describe here an integrative approach that relies on a two-

layer network model, built by adding a functional layer on

top of the transcriptional one based on functional annotations

extracted from genomic databases. This approach allows delimiting

functional domains in the co-expression network, and then uses

this information to identify key nodes that play important roles

in the propagation and modulation of functional influences. To

this purpose, an original centrality measure called annotation

transcriptional centrality (ATC) was designed to quantify the

influence of each transcriptional node upon the propagation of

functional themes in the co-expression network. We demonstrate that

in the context of co-expression networks, ATC is more significantly

effective than conventional topological indicators in predicting

functionally important transcripts.

2 METHODS

2.1 ATC

The knowledge gathered on functional roles of genes and proteins has

been structured and made available in public databases such as Gene

Ontology (GO) (Ashburner et al., 2000) and KEGG (Kanehisa and Goto,

2000). GO is organized around three main axes: (i) biological process,

(ii) molecular function and (iii) cellular component. ATC computation

algorithm starts by identifying genomic annotations from public databases,

which are significantly overrepresented in the analyzed expression data.

Transcripts are related to their corresponding annotations, represented as sets

of transcriptional instances, to build a two-layer network model by adding

a functional layer on the top of the transcriptional co-expression network

(Henegar et al., 2008; Prifti et al., 2008) (see also Supplementary Section 3

for more information on the functional annotation procedure). A non-linear

dynamical system is then used to simulate the propagation of these genomic

annotations within the transcriptional co-expression network and compute a

functional measure of interactional centrality for each transcript. The initial

configuration of the dynamic system is generated by assigning weights to

the categorical values of a relational table that represents the annotation

setup (i.e. transcripts and their genomic annotations), illustrated in Figures 1

and 2. The strategy employed for updating intermediary configurations of

the system relies on a transcriptional adjacency matrix representing the co-

expression network, as well as on a combining operator ‘⊕’. The edges

relating transcriptional nodes in the co-expression network can be valued

either in a weighted (i.e. in the interval [0,1], using a soft thresholding

Fig. 1. The initial configuration T0 of the non-linear dynamical system in

which the transcripts {t1,...,ti,...,tn}, represented in the rows, are considered

as instances of their annotating themes {A1,...,Aj,...,Am}, appearing in the

columns, with W
p
i,j =1 if ti ⊂Aj , and W

p
i,j =0 otherwise.

(a)

(b)

Fig. 2. (a) Propagation of the genomic annotations within an example

network composed of 10 transcript nodes. Three annotations represented by

the colors blue, green and red propagate within the network until convergence

is reached after five steps. Node t4 does not change its annotation during the

process since it is not connected to the others. (b) The different configuration

matrices {T0
,T1

,...,Tp} are used to compute ATC scores.

technique) or an unweighted manner (i.e. as 1 or 0 for similar or non-similar,

through a hard thresholding approach) (Zhang and Horvath, 2005). We used

addition as combining operator because of its straightforward interpretation

and the well-understood convergence properties of the associated non-linear

dynamical systems (Gibson et al., 2000; Zhang et al., 2000). Considering this

operator, the amount of weight W
p
i,j of a theme Aj associated with a transcript-

node ti in a configuration Tp (Figs 1 and 2) is computed as the sum of the

weights of Aj available in the previous configuration Tp−1 in all transcript-

nodes connected to ti (i.e. the dot product between the column vector A
p−1
j

and the row vector ti of the adjacency matrix computed from transcriptional

expression measurements). The column vectors of Tp are normalized to the

unit after each step in order to keep constant the total amount of weight

associated with each annotating theme. The dynamical system convergence

is assessed using a combined criterion associating a co-inertia analysis with

a Mantel test. Co-inertia is a multivariate approach that identifies trends

or co-relationships in complex datasets, and is particularly useful when the
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Interactional and functional centrality

number of variables exceeds the number of observations. It is therefore well

suited for a large number of analytical situations involving microarray data

(Culhane et al., 2003). The dynamical system is considered convergent when

the co-inertia of two consecutive configurations is greater than a threshold of

0.9 (i.e. on a [0,1] scale) and they demonstrate a significant similarity assessed

with a Mantel test (Supplementary Fig. S2). The propagation of functional

attributes within the co-expression network is schematized in Figure 2a and

Supplementary Figure S1 where three annotations (represented by colors

blue, green and red) propagate in a 10-node network.

After the system’s convergence the role of each node in the modulation

and propagation of functional attributes within the co-expression network is

quantified by considering: (i) local information showing the amount of weight

associated with each annotation that passes through each node between each

two consecutive configurations and (ii) global information indicating how

much the system as a whole changes after each iteration. The amount of

weight associated with all annotations of a given node is computed using the

Euclidean distance between the annotation vectors ti,Tp−1 and ti,Tp of each

two consecutive configurations and the results are stored in the distance

matrix D, as shown by Equation (1) and Figure 2b.

Di,p =

√

√

√

√

n
∑

i=1

(

ti,Tp −ti,Tp−1

)2
(1)

This matrix is further weighted by multiplying each column vector D[1,n],p

with the global distance between each two consecutive configurations,

computed in relation to their co-inertia Cp =1−co-inertia(Tp−1
,Tp) (vector

C in Fig. 2b). Eventually, the rows of the resulting weighted matrix D′ are

summed to compute the vector of ATC values. The algorithm was written

in R language for statistical computations (R Development Core Team,

2010) and was implemented into the FunNet package starting with version

1.08 (see Supplementary Section 5 for the pseudo code of the dynamical

system and the computation of ATC). It is also available via a web tool at

http://www.funnet.info (Prifti et al., 2008).

2.2 Experimental assessment

To evaluate the usefulness of ATC in spotting key functional transcripts

in co-expression networks, we analyzed its relationships to empirical

indicators of functional essentiality, derived from mutagenesis experiments,

and computational indicators of sequence phylogenetic conservation in

yeast. We used public microarray data related to cell-cycle conditions, since

cell cycle involves both phylogenetically conserved biological processes,

such as metabolism and transportation, as well as less conserved ones,

such as transcriptional regulation and signaling (Lopez-Bigas et al., 2008).

Another biological indicator of relevance in relation to cell cycle is

transcriptional periodicity, a measure of the relation between gene expression

and cell-cycle phases. Data from mutagenesis experiments were provided by

Saccharomyces genome deletion project (Winzeler et al., 1999). Our choice

in selecting these biological indicators was based on previous evidence

from the literature, which demonstrate that biologically essential proteins,

associated with non-viable phenotypes when mutated, are very connected

and central in protein–protein networks (Jeong et al., 2001; Yu et al., 2007).

They are also highly conserved phylogenetically (Drummond et al., 2005;

Jordan et al., 2002) due to a number of mechanisms that operate to restrain

the variability of genomic sequences involved in key cellular processes.

Eventually, robustness to the experimental noise affecting microarray data of

ATC and topological centrality measures was comparatively evaluated. This

assessment was performed by incorporating increasing amounts of random

noise in co-expression networks built from yeast and human microarray data.

2.2.1 Phylogenetic conservation score We defined a phylogenetic

conservation score inspired by existing work on assessing phylogenetic

conservation of genomic sequences (Lopez-Bigas et al., 2008). Each gene

sequence spref ,i of the reference species spref (i.e. Saccharomyces Cerevisiae

in our case) was aligned against the complete genomes of nine other

(a)

(b)

Fig. 3. (a) Schematic illustration of the alignment of i genes from the

studied species and the genomes of other species. (b) Matrix with normalized

alignment scores si,j of all studied genes spref ,i of the reference species

spref (on the rows) against the other species spj (on the columns).

The unified conservation score ci is computed as the Euclidean distance

between the vector of alignment scores for each gene (si,1,si,2,...,si,j)

and the vector containing the highest alignment scores for each species

(max(s1),max(s2),...,max(sj)).

species spi: Caenorhabditis Elegans, Arabidopsis Thaliana, Drosophila

Melanogaster, Gallus Gallus, Danio Rerio, Strongylocentrotus Purpuratus,

Mus Musculus, Canis Familiaris and Homo Sapiens using discontiguous

megablast with a 16 bit long coding template and a word size of 12 (Ma

et al., 2002). Only the best alignment scores sref ,i,j with E-values <1 were

considered for each species (Fig. 3a). Since the alignment score depends

on the sequence length, all similarity scores were normalized by dividing

them with the similarity scores of the sequences aligned to themselves

(2) as proposed by Lopez-Bigas et al. (2008). Considering the fact that

phylogenetic distances between species are variable, we used them to weight

the conservation scores (3). The phylogenetic distance between the reference

species and the nine others is condition relative since it is computed in relation

to a limited number of genes and not to the entire genomes.

s
′

ref ,i,j =
sim

(

spref ,i,spj

)

sim
(

spref ,i,spref ,i

) (2)

si,j =s
′

ref ,i,j ×
(

1−dist
(

spref ,spj

))

(3)

Similarity scores in relation to the different species were further used to

compute a unified conservation score ci as the Euclidean distance between

the vector of normalized similarity scores (si,1,si,2,...,si,j) for each gene in

all species and the vector containing the highest similarity scores for each

species (max(s1),max(s2),...,max(sj)) (Fig. 3b). This unified conservation

score ranges from 0, when no significant similar sequence is found in the

selected species, to 1 when the very same sequence is found in all the

other species. Genomic datasets as well as the alignment programs were

downloaded from NCBI ftp servers and installed locally. The selection of
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the different organisms was conditioned by the relatively small number of

completely sequenced genomes.

2.2.2 Microarray expression data Microarray expression data from six

different yeast cell-cycle experiments with a total of 123 cDNA-chips were

used in this study (Cho et al., 1998; de Lichtenberg et al., 2005; Pramila et al.,

2006; Spellman et al., 1998). These data were downloaded from Cyclebase

(Gauthier et al., 2008), a centralized database where the authors normalized,

synchronized and assigned periodicity significance P-values illustrating

the relation between gene expression and the cell-cycle phases. Only the

expression profiles of 410 genes, which showed significant periodicity in

all six experiments, were selected to build transcriptional co-expression

network used in subsequent analyses (see Supplementary Section 3). The

robustness of the various centrality measures to the experimental noise

affecting microarray data was evaluated based on yeast expression data,

as well as on a human dataset obtained from a series of white adipose

tissue biopsies performed in a set of 25 morbidly obese and 10 lean subjects

(Henegar et al., 2008).

2.2.3 Biological relevance of ATC Saccharomyces Genome Deletion

Project knocked off 90% of yeast’s genome and revealed that 17% of

the genes are essential for the cell to survive (Winzeler et al., 1999). We

relied on these data to compare ATC scores of essential and non-essential

genes. Non-parametric Wilcoxon rank tests were performed to assess whether

essential genes (74 out of 410) had significantly higher ATC scores than

non-essential ones. ATC scores were computed using annotations from

three different databases: GO Biological Process (GOBP), GO Cellular

Component (GOCC) and KEGG.

Next, we computed the phylogenetic conservation scores for the 410

periodic genes, as explained above, and tested whether genes with the highest

phylogenetic conservation had higher ATC scores than less-conserved ones.

Since the phylogenetic conservation scores are continuous values, we used

the first and last quartiles of the conservation score distribution to label genes

(i.e. conserved and non-conserved genes). Wilcoxon rank test was computed

to compare ATC scores of the two gene categories.

The ability of ATC in predicting biologically important genes linked

to cell cycle was also tested in relation to the transcriptional periodicity

score proposed in Cyclebase (Gauthier et al., 2008) (see also Supplementary

Section 3), based on the assumption that highly periodic genes are the most

functionally important for the cell cycle. Similarly, as for the phylogenetic

conservation scores, genes from the first quartile of the periodicity score

distribution (i.e. those with the smallest periodicity P-values) were labeled

as periodic and those from the last quartile as non-periodic. Wilcoxon rank

tests were computed to compare ATC scores of the two gene categories in this

situation, as well as to test for additional relationships between phylogenetic

conservation, transcriptional periodicity and gene essentiality.

Zotenko et al. (2008) showed that in yeast protein interaction networks,

essential proteins tend to cluster in densely connected subnetworks with

other proteins that are involved in the same biological processes, and that

these subnetworks are rich in hubs. We investigated whether this was also

the case for the transcriptional co-expression network of yeast cell cycle.

A spectral clustering approach (Ng et al., 2001) was used in association

with Silhouette partition quality criteria to identify transcriptional modules

within the network. Fisher’s exact tests were further performed to evaluate the

enrichment of transcriptional modules in essential genes (i.e. to test whether

essential genes tend to cluster together in the same module).

2.2.4 Comparative assessment of topological centrality measures and ATC

Topological centrality measures, such as degree and node betweenness

centrality, were shown to be effective for identifying essential molecules

in well-characterized interaction networks such as yeast protein–protein

interaction or regulation networks (Jeong et al., 2001; Yu et al., 2007).

The same methodological approach as the one used in Section 2.2.3 for

ATC was employed to assess the ability of degree and node betweenness

centralities to predict essential, phylogenetically conserved or periodic genes.

The usefulness of ATC and topological centrality measures in predicting

essential genes in co-expression networks was compared through receiver

operating characteristic (ROC) curves analysis (DeLong et al., 1988).

The robustness to noise of the three centrality measures was analyzed

by adding increasing levels of uniform random noise (1, 10, 20, 30, 40

and 50% of the n(n−1) number of possible edges composing of an n-

node network) to the co-expression network computed form the original data

through the hard thresholding approach described in Section 2.1. For each

noise level, we performed 30 consecutive iterations and computed the mean

values of each of the three centrality measures for every transcript. We then

used non-parametric Wilcoxon tests to assess whether the original centrality

values computed without noise, expressed as percentages of the total sum

of nodes’ centrality scores in the network, were significantly different from

those computed after adding increasing levels of noise.

3 RESULTS

3.1 ATC relations with biological indicators of

relevance

Our assessment shows that essential genes have significantly

higher ATC scores than non-essential ones (P < ×10−5, Fig. 4a),

irrespective of the annotation systems used to compute these scores.

Figure 5a shows in red essential genes with ATC values in the

first quartile of the distribution computed with GOCC and in blue

essential genes outside the first quartile of the distribution (48.6%

of essential genes are found in the first quartile of GOCC ATC score

distribution).

The analysis of the phylogenetic sequence conservation, another

indicator of functional importance, demonstrated an equally strong

relationship with ATC regardless of which annotation systems were

used to compute these scores. Figure 5b shows that 51.2% of the

genes belonging to the first quartile of the phylogenetic conservation

score distribution (i.e. red nodes) are also found in the first quartile

of ATC score distribution. Subsequent tests showed that genes with

the highest phylogenetic conservation scores (i.e. the first quartile

of the distribution) also have higher ATC values than those with

lower conservation scores (i.e. the last quartile of the distribution;

P<5×10−10, Fig. 4b).

Furthermore, ATC showed a significant ability to predict

contextual functional importance, represented in our case by the

transcriptional periodicity during cell-cycle phases. Our evaluation

showed that genes with lower periodicity P-values, and thus

higher periodicity ranks, have higher ATC values than less periodic

genes (P<5×10−20, Fig. 4c), with 54.9% of periodic genes

found in the first quartile of ATC distribution (Fig. 5c, nodes in

red).Additional analysis showed that essential genes display strong

phylogenetic conservation of their sequences compared with non-

essential genes (p<8×10−12). This result highlights the biological

relevance of the computational score of sequence phylogenetic

conservation, in agreement with previous work (Guimera and

Nunes Amaral, 2005). Moreover, highly conserved genes among

the 410 displaying significant transcriptional periodicity during cell

cycle (i.e. with sequence conservation scores in the first quartile of

the distribution), demonstrated a significantly higher transcriptional

periodicity than less-conserved genes (P<2×10−16). Finally,

spectral clustering combined with Silhouette optimization criterion

identified two transcriptional modules in the yeast cell-cycle

co-expression network, with a majority of the essential genes

clustering together in one of the modules (P<0.05). The
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Interactional and functional centrality

(a) (b) (c)

Fig. 5. Transcriptional co-expression network of yeast periodic genes: (a) essential genes with high ATC scores are depicted in red while those with low ATC

scores are depicted in blue and non-essential genes in yellow; (b) genes with high phylogenetic conservation and high ATC scores (i.e. the first quartile of

the respective score distributions) are depicted in red, while those with high conservation scores but low ATC values are indicated in blue and those with low

conservation scores in yellow; (c) genes with high transcriptional periodicity and high ATC scores (i.e. the first quartile of the respective score distributions)

are depicted in red, while those with high transcriptional periodicity but low ATC values are indicated in blue and those with low transcriptional periodicity

in yellow. The size of the nodes reflects their ATC scores computed with GOCC annotation system.

functional characterization of these modules showed distinct

functional profiles (see Supplementary Fig. S4). Module 1

regroups transcripts mostly involved in nuclear processes related

to DNA metabolism (i.e. ‘DNA metabolic process’,‘chromatin

assembly’,‘DNA recombination’,‘DNA repair’,‘nucleus’,‘nuclear

(a)

(b)

(c)

Fig. 4. Boxplots with ATC values computed for three annotation systems

GOBP, GOCC and KEGG are plotted for (a) essential versus non-essential,

(b) phylogenetically conserved versus non-conserved and (c) periodic versus

non-periodic genes. The differences between these groups are statistically

significant (*P < 5×10−5, **P < 5×10−10, ***P < 5×10−20).

chromosome part’, ‘nuclear chromatin’,etc.), while module 2 is

mainly annotated by themes associated with cytoplasmic processes

in relation to cell division (i.e. ‘interphase’,‘microtubule-based

movement’,‘cytoskeletal part’,‘microtubule part’,‘cytoplasmic

microtubule’,‘cell division site part’, etc.).

3.2 Comparative assessment of ATC and topological

centrality measures

The individual assessment of the topological centrality measures

(degree and node betweenness centrality) in relation with the

mentioned indicators of biological relevance, demonstrated that

essential genes have higher degree centrality scores than non-

essential ones (P<0.05), but similar node betweenness scores.

This result supports previous work showing higher connectivity

of essential proteins in protein–protein interaction networks (Jeong

et al., 2001).

Furthermore, genes with high phylogenetic conservation scores

also demonstrated significantly higher degree and betweenness

scores than less phylogenetically conserved ones (P<5×10−15).

A similar direct association was observed between transcriptional

periodicity scores and the two topological centrality measures (P <

5×10−30).

Comparative assessment through ROC analysis of ATC and

topological centralities showed significantly better abilities of ATC,

computed either with GOCC or KEGG, to identify essential genes

(P<0.05, Fig. 6a).

Finally, no significant difference between the original ATC scores

and those computed after adding noise was observed, even for a

50% level of random noise (see Supplementary Figs S5 and S6

in Section 4 of the Supplementary Material). In contrast, similar

assessments performed for each of the two topological centrality

measures demonstrated a very significant sensitivity to the random

noise, starting from the lowest noise level of 1%, particularly for

network betweenness that displayed the highest noise sensitivity.
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(a)

(b)

Fig. 6. (a) ROC analysis comparing the abilities of ATC (computed with

GOCC annotations), degree and node betweenness centralities in predicting

essential genes; (b) ROC analysis comparing the abilities of ATC computed

with GOCC, GOBP and KEGG annotation systems in predicting essential

genes. The area under the curve and the 95% confidence intervals are denoted

between parentheses.

4 DISCUSSION

Our assessment shows that conventional topological centrality

indexes are not equally useful in predicting essential genes in

yeast cell-cycle co-expression networks. Indeed, degree centrality

appeared to perform better than betweenness in spotting essential

genes. This finding contradicts previous data published by Yu et al.

(2007), which showed that node betweenness centrality is a better

indicator of functional essentiality than degree in regulatory and

other directed networks. However, as suggested by Zotenko et al.

(2008), in yeast protein interaction networks essential proteins tend

to participate in biological processes that are densely interconnected,

and which are therefore more likely to be hubs (i.e. highly connected

nodes). In our context, the advantage of degree centrality over

betweenness could be explained by an increased sensitivity of

the later to the high amount of noise, which is often wired in

the structure of the co-expression networks. This observation is

also supported by our assessment, which associates the highest

sensitivity to artificial random noise with betweenness centrality (see

Supplementary Tables S1 and S2). On the other hand, ATC predicts

essentiality better than both betweenness and degree centrality in

the transcriptional co-expression network built from cell-cycle data.

Our assessment indicated also that ATC is significantly more robust

to experimental noise than topological measures. This advantage

may be related to the fact that ATC computation relies not only on

the topology of the co-expression network but also on its functional

architecture.

Furthermore, no significant difference between ATC distributions

computed with the three annotation systems (GOCC, GOBP

and KEGG) was observed (Fig. 6b). This finding suggests an

equal usefulness of the available annotation systems, despite the

fragmentary character of the background knowledge on which they

rely. It is expected that annotation coverage and its biological

precision will continue to increase in the future and thus further

improve ATC prediction abilities.

5 CONCLUSIONS

In this study, we proposed an original centrality measure, the

ATC, aiming to improve the prediction of biologically relevant

gene targets within transcriptional co-expression networks. ATC

computation relies on the integration of microarray expression

profiles with biological knowledge extracted from public genomic

databases, which enrich the biological signal in transcriptomic data.

Its predictive abilities were assessed in relation to conventional

centrality measures based on topological criteria alone. It would

be interesting to further test ATC in application to other ‘omic’

networks, such as protein–protein interaction, regulation and

metabolic networks. From a different perspective, the biological

signal encoded in co-expression networks can be further enriched

by integrating other types of data, pertaining to gene transcription

(i.e. DNA methylation), to improve the biological relevance of

interactional centrality measures.
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