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Abstract

Background: Sustained stimulation with tumour necrosis factor alpha (TNF-alpha) induces substantial oscillations—

observed at both the single cell and population levels—in the nuclear factor kappa B (NF-kappa B) system.

Although the mechanism has not yet been elucidated fully, a core system has been identified consisting of a

negative feedback loop involving NF-kappa B (RelA:p50 hetero-dimer) and its inhibitor I-kappa B-alpha. Many

authors have suggested that this core oscillator should couple to other oscillatory pathways.

Results: First we analyse single-cell data from experiments in which the NF-kappa B system is forced by short

trains of strong pulses of TNF-alpha. Power spectra of the ratio of nuclear-to-cytoplasmic concentration of

NF-kappa B suggest that the cells’ responses are entrained by the pulsing frequency. Using a recent model of the

NF-kappa B system due to Caroline Horton, we carried out extensive numerical simulations to analyze the response

frequencies induced by trains of pulses of TNF-alpha stimulation having a wide range of frequencies and

amplitudes. These studies suggest that for sufficiently weak stimulation, various nonlinear resonances should be

observable. To explore further the possibility of probing alternative feedback mechanisms, we also coupled the

model to sinusoidal signals with a wide range of strengths and frequencies. Our results show that, at least in

simulation, frequencies other than those of the forcing and the main NF-kappa B oscillator can be excited via

sub- and superharmonic resonance, producing quasiperiodic and even chaotic dynamics.

Conclusions: Our numerical results suggest that the entrainment phenomena observed in pulse-stimulated

experiments is a consequence of the high intensity of the stimulation. Computational studies based on current

models suggest that resonant interactions between periodic pulsatile forcing and the system’s natural frequencies

may become evident for sufficiently weak stimulation. Further simulations suggest that the nonlinearities of the

NF-kappa B feedback oscillator mean that even sinusoidally modulated forcing can induce a rich variety of

nonlinear interactions.

Background

Nuclear factor kappa B (NF-�B) transcription factors are

critical to the control of response to cellular stress and

are also involved in the regulation of cell-cycle/growth,

survival, apoptosis, inflammation and immunity [1-5].

They are dimeric molecules, composed of either homo-

or hetero-dimers, with the most common form being

the RelA:p50 hetero-dimer.

In resting cells, NF-�B dimers are sequestered in the

cytoplasm by members of a family of molecules, the

inhibitors of �B or I�Bs. When the cells are stimulated

with tumour necrosis factor alpha (TNFa) certain

kinases, the IKKs, are activated and phosphorylate I�Bs,

marking them for degradation. The degraded I�Bs then

release NF-�B dimers which are free to translocate into

the nucleus, where they bind to specific sequences in

the promoter or enhancer regions of target genes,

including those for I�Ba and the zinc finger protein

A20 [6,7]. Newly synthesized I�Ba migrates to the

nucleus, binds to NF-�B dimers and removes them

from the nucleus, while A20 protein stays in cytoplasm

and represses the activity of TNFa receptors [8]. Hence

the NF-�B system includes at least two negative feed-

back loops, one involving cytoplasmic sequestration

mediated by I�Ba and another involving A20.* Correspondence: ywang@mbi.osu.edu; M.Muldoon@Manchester.ac.uk
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Coupled negative feedback loops are known to have

the potential to support oscillations [9,10]. Biological

evidence suggesting NF-�B oscillations was reported by

Hoffmann et al. [11], who did population-level studies

of I�Ba-/-embryonic fibroblasts using electro-mobility

shift assays, and also observed by Nelson et al. [12] in

the cellular concentration and nuclear: cytoplasmic loca-

lisation of I�Ba and RelA-fluorescent fusion proteins in

single SK-N-AS cells. Single cell time-lapse imaging data

showed persistent cycling of NF-�B localisation between

the cytoplasm and nucleus of SK-N-AS cells in response

to continual TNFa stimulation [12,13].

The expression of genes regulated by NF-�B is tightly

coordinated with the activities of many other signalling

and transcription-factor pathways [14-18] including the

p53 signalling pathway. Though the canonical NF-�B

signalling pathway has been studied extensively, the

existence and mechanisms of the interactions between

the NF-�B pathway and other signalling pathways are

unclear.

Ashall et al. [19] reported that different patterns of

pulsatile stimulation of the NF-�B system lead to differ-

ent patterns of NF-�B dependent gene expression, sup-

porting the view that the frequency of the oscillations

may have a functional role. It is therefore important to

understand how the system’s response frequencies are

influenced by interactions with other oscillatory path-

ways. If both the NF-�B network and its couplings to

other other oscillatory pathways were purely linear, then

it would be straightforward to use the machinery of

transfer functions to characterise their interactions. In

particular, one would expect the power spectrum of a

periodically stimulated system to have its power concen-

trated at the forcing signal’s frequency and its harmo-

nics. But the NF-�B network is a highly nonlinear

system of coupled chemical reactions and hence, as we

will demonstrate in modelling studies below, its

response to periodic stimulation can include complex

interactions between the intrinsic negative feedback

oscillator and the stimulus. In what follows we work

with a deterministic model first described in [19] and

examine the power spectral densities of the time courses

of NF-�B localisation when the model is subjected to

two types of periodic signals: trains of rectangular pulses

and sinusoidal signals. Both sorts of stimulus are

intended as a proxies for the influence of other oscilla-

tory pathways on the core NF-�B feedback loop and we

find that such interactions can produce a rich variety of

nonlinear dynamical behaviour. Our results on sinusoi-

dal forcing are in broad agreement with those of Fonslet

et al. [20], who applied a related family of sinusoidal sti-

mulation protocols to a reduced model of the core NF-

�B oscillator originally developed in [21].

Results and Discussion

Experimental phenomena and time series analysis

We begin by analyzing the time courses of the localisa-

tion of fluorescently tagged NF-�B in single cells sub-

jected to TNFa stimulation (see [22] for details). The

panels in the top row of Figure 1 show the ratio of

nuclear-to-cytoplasmic fluorescence for three patterns of

stimulation. In all cases the cells received three strong

(10 ng/ml) pulses of TNFa, each of five minute dura-

tion. These pulses were separated by various inter-pulse

intervals—55 minutes for panel (a),95 minutes for panel

(b) and 195 minutes for panel (c)—resulting in net sti-

mulus periods of 60, 100 and 200 minutes. The first of

these is rather shorter than the observed period of the

oscillations induced by constant TNFa stimulation,

which is close to 100 minutes.

The bottom row of Figure 1 shows the corresponding

power spectral densities and makes the point that the

intrinsic oscillation—the one induced by constant stimu-

lation—does not appear to have been excited by these

pulsed stimulation protocols: in all cases the peaks in

the power spectral density appear at multiples of the sti-

mulus frequency. In mathematical terms, the cells

respond as though they have been perturbed away from

a stable resting state and do not offer evidence of any

more complex internal dynamics. Nonetheless, these

data provided crucial input to the development of the

models in [19]. In particular, note that the amplitude of

the response to the second and third pulses of stimula-

tion varies as a function of the inter-pulse period, being

somewhat reduced in panels (a) and (b), but not in (c):

this constrains the rate at which the model should relax

toward equilibrium.

One possibility is that the pulsing signal is too strong

and suppresses the response at the natural frequency.

In the following section we report in numerical ex-

periments, based on the deterministic model in [19],

through which we investigate this possibility by simulat-

ing the system’s response to a periodic train of square

pulses with strength varying from 0 to 10 ng/ml and

inter-pulse intervals ranging from 20 to 295 minutes.

Model Introduction and Bifurcation Analysis

In this section, we introduce a deterministic mathemati-

cal model developed in [19]. It includes two coupled

negative feedback loops—one for NF-�B-I�Ba interac-

tions and another that models the dynamics of A20—as

is illustrated in Figure 2. Here A20 acts by modifying

the activity of I�B kinase (IKK), which transduces the

TNFa signal by phosphorylating I�Ba, thus initiating

the production of free NF-�B. IKK is assumed to exist

in one of three states: neutral IKK (denoted IKKn, a

state ready for activation), active IKK (the state capable
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of phosphorylating I�Ba) and inactive IKK (IKKi, a state

unable to phosphorylate I�Ba and also incapable of

being activated by the TNFa signal). TNFa activates

IKK by transforming neutral IKK into active IKK, which

then acts to liberate NF-�B. Active IKK is assumed to

convert to its inactive form spontaneously, with linear

kinetics. In the absence of A20, this inactive IKK would

then transform back into neutral IKK, also with linear

kinetics. A20 down-regulates NF-�B activity indirectly,

by retarding the transformation of inactive IKK to the

neutral form: Equations (1) provide a simple model for

these dynamics:
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Here we have suppressed the time dependence of the

concentrations of the various forms of IKK and of the

A20 protein. The k* are fixed parameters and TR is a

parameter indicating the presence or absence TNFa sti-

mulation: TR = 1 when the system is being stimulated

with 10 ng/ml TNFa and TR = 0 otherwise. This is a

simplification: TNFa does not act directly on IKK, but

rather produces its effect through a cascade of chemical

reactions that begins when TNFa binds its receptor

at the cell surface.

Following Ashall et al., we treat only the final stages

of this chain. Thus when we model strong stimulation
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Figure 1 Power spectra of single-cell data. Panels (a), (b) and (c) show time courses of the ratio of nuclear-to-cytoplasmic fluorescence

recorded from single cells while panels (d), (e) and (f) show the corresponding power spectral densities, normalized to have unit area beneath

the curve. Note that the frequencies in panels (d)-(f) are measured in units of the stimulus frequency and so the horizontal scale varies from

panel to panel.
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Figure 2 The deterministic, two-loop model of [19]. Proteins are

shown as coloured ovals, while mRNA’s are shown round-cornered

rectangles. In addition to the direct negative feedback through

which nuclear NF-�B leads to the production of I�Ba, and thus to

its own inactivation, the model also includes an indirect negative

feedback mediated by A20’s influence on the signal transduction

machinery.
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by setting TR = 1, we abstract away a great deal of trans-

duction machinery. In the studies that follow we will

want to explore the consequences of weaker stimulation

(TNFa concentrations of 10 ng/ml are orders of magni-

tude higher than physiological levels: Matalka et al. [23]

report measurements from various tissues in healthy

mice and found concentrations in the range 1-5 pg/ml

while Prabha et al. [24] studied the plasma of healthy

human subjects and found TNFa concentrations on the

order of 100 pg/ml.) and it is natural to generalize the

role of TR, allowing it to vary across the interval 0 ≤ TR

≤ 1. In light of the modelling assumptions discussed

above, one should not imagine that TR depends linearly

on the concentration of TNFa, but only that TR

increases monotonically with dose.

The model of Ashall et al. captures two important

dynamical features observed in single cell data [12,19]:

(i) continuous stimulation with high doses of TNFa

leads to sustained oscillations with a period of around

100 minutes and (ii) pulsatile stimulation with the same

high concentration of TNFa leads—as illustrated in Fig-

ure 1—to entrainment of the response by the pulsing

signal. Given that continuous, strong stimulation

induces sustained oscillations, one is prompted to ask

how the existence of these oscillations depends on the

strength of stimulation. We addressed this question by

doing a bifurcation analysis using TR as the parameter:

Figure 3 is the resulting diagram. The model has a Hopf

bifurcation (HB) at TR = T* ≈ 0.366, which means that

for TR > T* the ratio of nuclear-to-cytoplasmic NF-�B

concentration exhibits sustained oscillations, but for TR

< T* only damped oscillations. A forthcoming paper,

Wang et al. [25], will present a comprehensive survey of

the bifurcation structure of this model, but here we will

concentrate on spectral analysis of the responses.

Numerical experiments

All the numerical experiments reported here begin from

the same initial condition, whose preparation is

described in the Methods section. We simulated the

consequences of two TNFa stimulation protocols:

pulse-like stimulation similar to that used in Nelson’s

experiments and sinusoidally modulated stimulation.

Pulsed Stimulation

From the experiments and simulations in [19], we know

that stimulation with a finite train of three strong pulses

tends to entrain the cell’s response. In this section, we

first show that when subjected to a long periodic train

of strong pulses, the model’s response frequencies are

also entrained, but that when the model is driven by

sufficiently weak periodic pulse trains, various resonance

phenomena connected to the underlying natural oscilla-

tions become observable.

Figure 4 illustrates the continuously-pulsed analogue

of the experiments from Figure 1. It shows the spectral

content of the model’s response to a long periodic pulse

train in which five minute periods of strong (TR = 1) sti-

mulation alternate with periods during which TR = 0.

The panel at left shows a typical response to this sort of

strong, pulsed, periodic forcing: after a brief transient

the response is periodic with the same period as the for-

cing pulse train. The right panel, which is a heat map

showing the power spectral density of the response as a

function of pulsing frequency, shows that similar

entrainment occurs over a wide range of frequencies:

the bright lines—which correspond to peaks in the

power spectral density—have integer slopes, indicating

that the power in the response is concentrated at har-

monics of the forcing frequency.

However, when the stimulating pulses are weaker the

nonlinearity of the system leads to more complex
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Figure 3 Qualitative behaviour as a function of TR. At left, a bifurcation diagram showing how the oscillatory response depends on TR. The

solid black curve in the region 0 ≤ TR ≤ T* represents a branch of stable equilibria-steady, non-oscillating solutions-while the dashed black curve

for TR >T* indicates a branch of unstable steady states. The red curves show the limits-the peak and trough values-of the stable oscillatory

responses that exists for these values of TR. The panel at right shows period of the oscillation as a function of TR.
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patterns of resonance. In particular, both subharmonic

resonance—when periodic forcing excites a response at

a rationally-related lower frequency—and superharmonic

resonance—in which a pure sinusoid excites responses

containing higher harmonics—are possible. Note that

these terms are defined with reference to the forcing fre-

quency, a convention used in, for example, [26]. Super-

harmonic resonance is harder to identify when, as with

the rectangular pulses used here, the periodic forcing

already has power at higher harmonics, but subharmo-

nic resonance occurs when 0.01 < TR < 0.2, as is evident

in the power spectral densities summarized in Figure 5.

In addition to the bright lines with integer slopes, lines

with slopes 1
2

and 3
2

also appear. The first of these

provides evidence that subharmonic resonance occurs

over a wide range of pulsing frequencies.

When TR ≥ 0.2 the power spectral density of the

response shows power only at integer multiples of the

pulsing frequency, indicating that the response is fully

entrained by the forcing. Given that the pulse-strength

used in the experiments corresponds to TR = 1, these

modelling results are in qualitative agreement with the

experimental data in Figure 1: the stimulation was so

strong that we should have expected it to have entrained

the responses completely.

Sinusoidally modulated stimulation

In this section we study the response of Horton’s model

to sinusoidally modulated stimulation of the form

T t tR( ) ( sin( )).   1 2 (2)

Here 0 ≤ ε ≤ 1/(1 + h) is the time average of the sti-

mulus strength while 0 ≤ h ≤ 1 and ν > 0 are, respec-

tively, the relative amplitude and the frequency of the

sinusoidal modulation. With this parameterization TR (t)

has period τ = 1/ν and range

0 1 1 1        ( ) ( ) ( ) .T tR

The roles of the parameters are illustrated in Figure 6.

The case with h = 1 is the straightforward substitution

of pulse trains with sinusoidal waves having peak-to-

trough amplitude 2ε. Our motivations for this formula-

tion are twofold: firstly, provided h < 1 we have TR(t) >

0 at all times and so expect the system more readily to
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Figure 4 Periodic stimulation with strong pulses. The panel at left shows the model’s response to sustained periodic stimulation in which

strong (TR = 1) pulses of 5 minute duration alternate with stimulus-free intervals of 55 minute duration. The panel at right shows the power

spectral density (PSD) of the response as a function of pulsing frequency: a vertical strip cut from this panel provides a colour-coded version of

the PSD of the models’s response to pulsed forcing at the corresponding frequency.

Figure 5 Response to periodic trains of weak pulses. A heat

map summarising the power spectral density of NF-�B localisation

when the model is subjected to pulsed forcing with TR = 0.1. For

forcing frequencies in the range 1.5-3.0 × 10-4. Hz. the lowest-lying

line segment, which has slope ≈ 1/2, provides evidence of

subharmonic resonance.
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exhibit oscillations similar to those induced by constant

stimulation. Secondly, periodic forcing of the form (2)

converts our model into a sinusoidally forced nonlinear

oscillator, a class of systems that has been studied very

extensively (see, for example, Pikovsky et al. [27], Wig-

gins [26] or Nayfeh and Mook [28]).

When h = 0 the forcing (2) reduces to a constant stimu-

lus with TR (t) = ε and the bifurcation analysis illustrated

in Figure 3 leads us to expect stable oscillations when ε >

0.366 and a stable steady-state otherwise. But for h > 0 the

system’s response depends delicately on the relationship

between the forcing frequency ν and the natural frequency

ν0. When the forcing frequency ν and natural frequency ν0
are close (the requisite degree of closeness depends on h)

the response will become mode locked, or synchronized

with the forcing: it will then have the same frequency ν as

the forcing and its power spectral density will be concen-

trated around the harmonics of ν. When the difference (ν

-ν0) is larger—when it lies just outside of a critical interval

around zero whose size depends on h —the response

becomes quasiperiodic and its power spectrum has fea-

tures at frequencies f of the form

f p q   0 (3)

where p and q are integers.

If pν and qν0 are close, the system’s nonlinearity will

permit what is called synchronization of order p/q: there

will be periodic responses in which the intrinsic oscilla-

tor goes through p cycles for every q periods of the for-

cing, so that the response has frequency

f p q   0 (4)

This idea allows us to give precise definitions for the

terms sub-and superharmonic resonance used above:

the former corresponds to resonances where p = 1 and

q > 1 in (4), while the latter corresponds to q = 1 and

p > 1. Finally, when both h and the difference (ν -ν0)

are large, the system’s response can become chaotic, so

that the features in its power spectral density bear no

simple relationship to the frequencies ν and ν0.

Figure 7 which is a heat map of the power spectral

density of the response generated by relatively strong

sinusoidal forcing of the from (2), illustrates many of

the behaviours described above. Consider first the verti-

cal strip with ν/ν0 ≈ 1. In this region the sinusoidal

modulation entrains the NF-�B system essentially com-

pletely and so the heat map resembles the correspond-

ing region in the left panel Figure 4: the power in the

response is concentrated along lines corresponding to

harmonics of the forcing frequency. Away from the

region ν/ν0 ≈ 1 the power spectrum of the response is

considerably more complex: the strong horizontal bands

in Figure 7 which occur at integer multiples of ν0, show

that there is substantial power at the NF-�B system’s

natural frequency and its harmonics. Additionally, the

nonlinearity of the system means that the response has

power at frequencies given by

f q  0 ,

which gives rise to the network of lines with slope of

±1. Finally, Figure 7 also exhibits sub-harmonic reso-

nance: vertical strips for which ν ≈ qν0 (with q a whole

number) show power concentrated at the forcing fre-

quency, but also at frequencies f = ν/p, where p is a

whole number. This is perhaps clearest in the strip ν ≈

2ν0, where the strongest spectral feature lies along the

line f = ν/2 ≈ ν0.
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Figure 6 Sinusoidal forcing function. The function TR (t) for the

parameter values ν = 1, h = 0.5 and ε = 0.6.

Figure 7 Nonlinear resonances to sinusoidal forcing. A heat

map showing the power spectral density of the response of

Horton’s model to forcing of the form (2) with ε = h = 0.5 and

frequencies in the range 0 ≤ ν ≤ 4.5 × ν0.
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The two panels of Figure 8 are analogues of Figure 7

but with especially strong (h = 1, left panel) or weak (h =

0.1, right panel) modulation. The qualitative features are

much the same, though it is interesting to note that in

the limit of very strong modulation—when h = 1 and so

TR (t) vanishes once per forcing period—the system is

very strongly entrained by the forcing and does not show

much power at its natural frequency ν0 or its harmonics

until the forcing frequency ν > 1.5 ν0. By contrast, when

the modulation is weak evidence of modal interaction is

also weak, with very narrow mode-locking regions near

forcing frequencies of the form ν ≈ mν0.

As Figures 7 and 8 illustrate, the susceptibility of

our model NF-�B system to resonance with sinusoidal

modulations depends strongly on the amplitude of the

modulation: Figure 9 provides a quantitative survey

of this phenomenon. The shaded regions are examples

of Arnol’d tongues: their precise shapes can be calcu-

lated with the methods outlined in the Appendix.

When the modulation frequency and amplitude (ν, h)

lie inside these tongues, the response of the system

will be periodic, with a period τ that is an integer

multiple of the modulation period 1/ν and that

also lies close to an integer multiple of the natural

Period 1/ν0:


 

 q p

0

(5)

where p and q are whole numbers. Generally speaking

these periodic responses—which are a nonlinear gener-

alization of the familiar phenomenon of resonance in

linear systems—are easiest to excite when the numbers

p and q are small: the tongues in Figure 9 are labelled

by ratios q:p where p and q are as in (5). Although Fig-

ure 9 illustrates this story for the specific family of mod-

ulations with ε = 0.5, the qualitative picture is essentially

the same for all values in the range of 0.366 < ε < 0.5:

in all cases there will be narrow tongues of parameter

combinations (ν, h) for which the response is periodic

with a period given by a resonance relation like (5). For

modulations whose parameters lie outside the tongues

the qualitative behaviour of the response will be more

Figure 8 Weak and strong modulations. Heat maps showing the power spectral density of the responses to forcing of the form (2) with ε =

0.5 and h = 1 (left) or h = 0.1 (right).
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Figure 9 Arnol’d tongues. The qualitative behaviour of Horton’s

NF- �B system when subjected to forcing of the from 2 with ε =

0.5: when the modulation frequency ν and amplitude h lie inside

the shaded regions the response is periodic with a period that is

related, by a relation like (5), to both the modulation’s period and

the system’s natural period.
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complex, having a power spectrum qualitatively similar

to those in Figure 7, with features at harmonics of the

modulation frequency, at harmonics of the natural fre-

quency ν0 (which varies with ε) and at near-resonant

combinations (3) of the two.

When TR < 0.366, the unforced system is a damped

oscillator and so, when subjected to periodic forcing, may

exhibit resonant phenomena. By using the same numeri-

cal simulation and power spectral density analyses as we

did for the case ε = 0.5, we find that the responses of the

pathway to forcing with with TR < 0.366 can be divided

into two groups: those in which harmonic, sub-and

superharmonic resonances can be observed (in the region

0 < ε ≤ 0.01), and those for which only harmonic and

subharmonic resonance can be observed.

We have focussed here on periodic and quasiperiodic

oscillatory interactions amenable to power-spectral ana-

lyses of the sort illustrated in Figures 4, 5, 6, 7, 8 and,

for single-cell recordings, in the lower panels of Figure

1. But there is every reason to expect a much richer

range of dynamical behaviour: Fonslet et al. [20], who

applied forcing of the form (2) with h = 1 to a simpli-

fied NF-�B model, saw evidence of a period-doubling

cascade as well as chaos and strange attractors. Com-

plete analysis of these more complex dynamical regimes

requires tools beyond the power spectrum, and so we

defer their exploration to a future paper.

Conclusions

Given that intrinsically nonlinear chemical kinetics

underpin cell-signalling networks, one shouldn’t expect

these systems to be linear and any analysis of experimen-

tal time series, whether in the time or frequency domain,

must take this intrinsic nonlinearity into account. Our

modelling studies suggest that coupling even the simplest,

sinusoidal signal into the NF-�B network can give rise to

a host nonlinear phenomena, including harmonic, sub-

harmonic and superharmonic resonances as well as qua-

siperiodic and even chaotic behaviour.

The simulation studies reported here used an exter-

nally-imposed oscillatory forcing as a proxy for interac-

tions between the core NF-�B feedback loop and other

oscillatory networks. Our results suggest that interac-

tions between the NF-�B oscillator and other oscillatory

pathways can give rise to extremely rich temporal sig-

nalling programs and so, perhaps, to many distinct pat-

terns of expression for target genes.

Methods

Differential Equations

The model studied in this paper is specified by the fol-

lowing ODEs. External forcing via TNFa stimulation is

represented by the function Tr (t), whose value ranges

between 0 and 1, indicating the strength of stimulation

as a fraction of the maximum possible.
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Initial conditions

All the numerical experiments reported above began

with the initial concentrations

IkBaNFkB 0.1042424 and IKKn 0.1042424 
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while all others start at zero. We then integrated the

ODEs through 2000 minutes of simulated time and used

the result as an initial condition for the various TNFa-

stimulation studies.

Numerics

The bifurcation diagram in Figure 3 and the plot of the

Arnol’d tongues in Figure 9 were prepared using Bard

Ermentrout’s XPPAUT [29], a front end for the power-

ful numerical bifurcation package AUTO [30]. All our

other numerical work used MATLAB© to integrate the

ODEs, compute the power spectra and plot the figures.

Appendix: circle maps

Here we discuss a standard mathematical tool, the circle

map, used to study the response of a nonlinear oscilla-

tor subjected to periodic forcing. The idea is to consider

sufficiently weak forcing that the response is close to

that of the unforced system, and then define a phase

angle j that is close to the phase of the corresponding

unforced oscillator.

If ω0 is the frequency of the unperturbed oscillator

and ω is the forcing frequency then, after one period of

the forcing, j will have advanced by

    

    

 
   

0

0 2

G

G

( )

/ ( )

where τ = 2π/ω is the period of the forcing, ε is a

measure of its amplitude and G(j) is a phase-dependent

function that characterizes the response.

The simplest circle map, studied here by way of illus-

tration, is given by a function F : [0, 2π) ® [0, 2π) of

the form of

F( )

sin( )

sin( ),

  
    
   

 
  
  



0

2

(6)

where a = (ω0/ω), and 0 < ε ≪ 2π. The dynamics of a

circle map can be characterized with a single parameter

called the rotation number. For a given initial point j0,

the rotation number is defined as the long-term average

phase shift per one iteration (that is, per one period of

the forcing):

 
 


( ) lim ,0

0

2
 

n

n

n
(7)

where

   n
n n nF F F F F F         ( ) ( ) ....0

1
0

2
0

One can show that the limit in the definition of the

rotation number (7) exists and does not depend on the

initial point j0 [31], p.102. The qualitative dynamics of

the forced system are thus of two types: motions with

rational rotation numbers and those with irrational

ones. Further, the rotation number is retional-say

  p

q
, with p Î N and q Î ℤ

+
—if and only if there

exists some j0 Î [0, 2π) such that

  0 02   p F q . (8)

That is, rational rotation numbers correspond to peri-

odic dynamics: the orbit of j0 is called a (p, q) cycle. On

the other hand, irrational rotation numbers correspond

to quasiperiodic dynamics [27,31,32].

According to a theorem of Denjoy [33], if the rotation

number is irrational there is a continuous, invertible

change of coordinates h: [0, 2π) ® [0, 2π), say, h(j) = θ,

such that

h F h F               2 2or 

Where F h F h       1 . This implies that

forced oscillators whose corresponding circle maps have

irrational rotation number never repeat periodically.

Results of Arnold [31] show that the qualitative beha-

viour of the circle map (6) is stable against arbitrary

small perturbations if and only if the rotation number is

rational. We can thus expect that if F has a rational

rotation number
p

q
, there exists a region of parameter

values (a, ε) such that the all the forced systems whose

parameters lie in this region share the same rational

rotation number: that is, they all have the same sorts of

periodic response. Such regions of parameter values are

called Arnol’d tongues.

A similar story holds for the sinusoidally forced NF-

�B system: when the time-average of the stimulation is

sufficiently strong that the system supports periodic

oscillations with frequency ω0, and when the amplitude

of the forcing is sufficiently weak that it is sensible to

measure a phase j with respect to that of the intrinsic

oscillator, then one can construct numerically a circle

map of the form

        F T G    0 , (9)

where T = 2π/ω is the period of the forcing. Although

the function G’ in (9) is not as simple as the the G (j)

in (6), the map F’ still has (p, q) periodic responses and
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a corresponding system of Arnol’d tongues: Figure 9

shows examples.

We’ll conclude this Appendix by explaining why, at

least for the simple circle map (6), the Arnol’d tongues

are wedge-shaped. Consider the case where F has

rational rotation number   p

q
. Then, as mentioned

above, there exists a periodic point j0 satisfying (8). If

we expand Fq (j0) in powers of ε we find

F qq

q

  

   



0 0

0 1 1

2
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




   
sin sin sin

 

Consider the case where a is very close to a rational

number:   p

q
with |b| ≪ 1/q. Then

F p Gq
p q     0 0 02      / , , ,

Where

G

q

q

p q

q

/ , ,

sin sin

sin

  

    
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0

0 1

0

2

2

  
      
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


    



 ssin F q   





1
0

(10)

It is not hard to show that GP/q is bounded and contin-

uous when regarded as a function of j0 and so attains its

maximum and minimum values on [0, 2π]. Thus, for

each fixed ε, there is an interval of b on which GP/q = 0

for some j Î [0, 2π]. Now consider the way in which the

end points of this interval depend on ε. The case q = 1

and p = 0 is especially clear: Eqn. (10) becomes

Gp q/ , , sin           2 0

which has some solutions j Î [0, 2π] provided that |

2πb| ≤ ε or |b| ≤ ε/2π.

The values q = 1 and p = 1 correspond to the case where

the periodic response has the same frequency as the forced

system and thus undergoes one complete phase-rotation

per period of the forcing. The analysis sketched above

shows that this particular form of mode-locking will per-

tain for (ε, a) in a wedge-shaped region whose width

increases linearly with forcing amplitude ε. For more gen-

eral mode-locking resonances, where q ≥ 2, Arnol’d

showed in [31] that the width of the tongue satisfies:

  q.
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