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Abstract This study investigated the interactions between

two arbuscular mycorrhizal fungi (AMF) (Glomus aggrega-

tum and Glomus mosseae) and a P-solubilizing fungus

(Mortierella sp.), with respect to their effects on growth of

Kostelelzkya virginica and urease, invertase, neutral phos-

phatase, alkaline phosphatase, and catalase activities of

rhizosphere and bulk soils at different salinity levels (i.e.,

0, 100, 200, and 300 mM NaCl). Percentage of AMF

colonization, Mortierella sp. populations, pH, electrical

conductivity, and available P concentration in soil were also

determined. Combined inoculation of AMF and Mortierella

sp. increased the percentage of AMF colonization and

Mortierella sp. populations under salt stress (i.e., 100, 200,

and 300 mM NaCl). The dual inoculation of Mortierella sp.

with AMF (G. aggregatum or G. mosseae) had significant

effects on shoot and root dry weights and available P

concentrations, pH values, and electrical conductivities of

rhizosphere and bulk soils under salt stress. The inoculation

of Mortierella sp. significantly enhanced the positive effects

of AMF on some enzyme activities (i.e., neutral phospha-

tase, alkaline phosphatase, and catalase in bulk soil; neutral

phosphatase and urease in rhizosphere soil); on the contrary,

it produced negative effects on urease activities in bulk soil

and invertase activities in bulk and rhizosphere soils. The

results indicated that the most effective co-inoculation was

the dual inoculation with Mortierella sp. and G. mosseae,

which may help in alleviating the deleterious effects of salt

on plants growth and soil enzyme activities.
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Introduction

Phosphorus (P) is one of the most essential macronutrients

limiting plant growth owing to its low bioavailability in soils

(Feng et al. 2004; Rodriguez and Fraga 1999). Nevertheless,

the repeated and not proper applications of chemical P

fertilizers is expensive and can lead to the loss of soil fertility

by disturbing microbial diversity and reducing crops yield

(Gyaneshwar et al. 2002a). Consequently, the use of

environment-friendly alternative to applications of P fertil-

izers is gaining increasing attention (Barea et al. 1997).

Phosphorous-solubilizing microorganisms (PSM) are able to

replenish soil solution P by solubilizing insoluble native and

applied rock phosphate (Rao 1992; Gyaneshwar et al.

2002b; Khan et al. 2007). Although P-solubilizing bacteria

(PSB) have received greater attention than P-solubilizing

fungi (PSF), the latter are more effective in solubilizing P

compounds (Kucey 1983; Whitelaw et al. 1997). Moreover,
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PSF do not lose the P dissolving activities upon repeated

subculturing under laboratory conditions as the PSB do

(Kucey 1983; Rashid et al. 2004).

Approximately 7% of the global land surface is covered

with saline soil (Ruiz-Lozano et al. 1996); the soil salinity

is becoming one of the major limiting factors for crop

production and an appropriate solution to this situation is to

use PSF as bioinoculants. Rietz and Haynes (2003) and

Tripathi et al. (2006) had reported that soil microbial

communities and their activities are greatly influenced by

salinity. Therefore, poor growth and survival of PSF may be

a conceivable result. Nevertheless, no information is

available on PSF isolated from saline soil.

Arbuscular mycorrhizal fungi (AMF) can form a

symbiotic association with most plant species and improve

the efficiency of associated plants to assimilate P from the

soil solution (Manjunath et al. 1989; Habte and Osorio

2001). Studies have showed that AMF widely occur in salt

environments (Rozema et al. 1986; Wang and Liu 2001)

and can improve growth and productivity in both glyco-

phytes and halophytes under salt stress (Asghari et al. 2005;

Sannazzaro et al. 2006; Giri et al. 2007). Rodriguez and

Fraga (1999) suggested that the inoculated rhizobacteria

could release P ions from insoluble P sources and the

released P was taken up by the external arbuscular

mycorrhizal mycelium because the rhizobacteria cannot

transfer P to roots. Previous studies showed that co-

inoculation of AMF and PSF could enhance plant biomass,

P concentration of plant tissues (e.g., Piccini and Azcon

1987; Singh and Kapoor 1999; Osorio and Habte 2001;

Kohler et al. 2007), soil microbial activities (Kohler et al.

2007), and other soil properties (Matiasa et al. 2009). Thus,

it is necessary to study the effects of AMF and PSF on

microbial activities of saline soil and plant growth for the

development of sustainable management of saline soils. To

the authors' knowledge, however, there is no information of

AMF and PSF combined inoculation in saline soil.

Soil enzyme activities are sufficiently sensitive to

perturbations caused by microbial inoculation (Naseby

and Lynch 1997), and these measurements can give insights

on mineralization of important nutrient elements, such as

carbon, nitrogen, and phosphorus (Ceccanti et al. 1994).

The measurement of enzyme activities and the integration

of the measured activities in a single index can provide

information on microbial activity in soil (Nannipieri et al.

2002, 2003). Microorganisms are activated in the rhizo-

sphere soil (Cordier et al. 2000). Therefore, it is important

to determine enzyme activities of both rhizosphere and bulk

soils, which can affect the concentrations of available P and

other nutrients in soil (Naseby and Lynch 1997; Ceccanti et

al. 1994). However, there is no information regarding the

use of such parameters for monitoring the ecological impact

of AMF and PSF inoculation in saline soil.

Kostelelzkya virginica (L.) Presl. is a perennial herba-

ceous halophyte native to brackish portions of coastal tidal

marshes of the mid-Atlantic and southeastern United States

and belongs to the family Malvaceae (Gallagher 1985). In

1992 it was transplanted on the saline land along coastal

region of Jiangsu Province by Halophyte Research Lab of

Nanjing University, China, to improve coastal tidal flats

and develop biomass energy industry (Ruan et al. 2005). A

few studies of salinity tolerance, delayed selfing, and plant

regeneration of K. virginica have been conducted (Blits and

Gallagher 1990; Ruan et al. 2009a, b). No information is

available on the effects of AMF and PSF on the growth

responses of K. virginica in saline soil. We have hypoth-

esized that (1) inoculation of AMF and PSF can promote

growth of the typical halophyte species (e.g., K. virginica)

under salt stress; and (2) inoculated microorganisms can

synergistically influence enzyme activities (i.e., invertase,

catalase, urease, neutral phosphatase, and alkaline phos-

phatase) and available P concentrations of rhizosphere

saline soil. To verify these hypotheses, two AMF [Glomus

mosseae (Gm) and Glomus aggregatum (Ga)] and one PSF

[Mortierella sp. (Ms)], which was isolated from salt-

affected coastal soil samples collected from seashore of

Jiangsu province, were inoculated in soil–sand culture

watered with four levels of salinity.

Materials and methods

Plant culture

The experiment was conducted from the beginning of

April to the end of December 2009 in a greenhouse at

Halophyte Research Lab of Nanjing University (32°30′ N

and 118°42′ E), Nanjing, China. The used substrate is a

mixture of washed sand and soil (1:1, v:v), which was

sterilized by autoclaving for 1 h at 121°C twice, on two

consecutive days and then sieved (2 mm). Soil was collected

from the botanical garden of Nanjing University with the

following characteristics: pH 7.3, electrical conductivity (EC)

0.02 dS m−1, organic matter 0.4%, total N 13 mg kg−1,

available P 3 mg kg−1, and extractable potassium (K)

25 mg kg−1. K. virginica was used as the host plant. Plants

were grown in a greenhouse under controlled conditions:

16 h at day light intensity of 220 μEm−2 s−1 at 28°C and 8 h

night at 18°C. The relative humidity in the greenhouse during

the experiment was 65–85%.

Fungal inocula

Both G. mosseae (Nicol. and Gerd., originated from saline

soil of Hebei province, China) and G. aggregatum

(originated from saline soil of Hongkong, China) were
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obtained from Bank of Glomales in China. The inocula

consisted of spores (1,256 spores per 100 g−1 soil), hyphae,

and colonized root fragments, and were collected from a

6-month-old pot culture of G. mosseae and G. aggregatum

grown on sorghum in sterile sandy soil.

To prepare liquid inoculum of Mortierella sp., the first

step was to activate strains on slants. The fungus was

inoculated on solid Martin culture medium (K2HPO4 1 g,

MgSO4·7H2O 0.5 g, NaCl 11.5 g, peptone 5 g, glucose10 g,

gelose10 g, 1/30,000 Bengal red water solution 100 ml, and

demineralized water 900 ml), which had been autoclaved

for 30 min at 121°C and then cultured in the dark at 28°C

for 4 days. After activation, 3 ml sterile water was added to

test tube, and then the mixture was poured into 50 ml

Martin broth (MB) which was added to 1.15% NaCl;

Mortierella sp. was grown on a rotating shaker at 180 rpm

for 48 h, and this was the starter culture. It was added (5%

of volume) to MB and then we added 1.15% NaCl, and the

MB was cultured on a shaker for 96 h at 180 rpm. At the

end it contained 2.3×105 colony forming units mL−1 and

the solution was stored at 4°C until use.

Experimental design and biological treatments

To study the effects of AMF and PSF on K. virginica under

salt stress, the seedlings of K. virginica were watered with

NaCl solutions. The experimental design was full factorial,

with four salinity levels (0, 100, 200, and 300 mM)×eight

microbial treatments: inoculated with 10 g of Gm,

inoculated with 10 g of Ga, inoculated with 10 ml of Ms,

inoculated with 5 g of G. mosseae and 5 g of G.

aggregatum (Gm+Ga), inoculated with 10 g of G. mosseae

and 10 ml of Mortierella sp. (Gm+Ms), inoculated with

10 g of G. aggregatum and 10 ml of Mortierella sp. (Ga+

Ms), inoculated with 5 g of G. mosseae and 5 g of G.

aggregatum and 10 ml of Mortierella sp. (Gm+Ga+Ms),

and no inoculated control (CK). Each treatment was

replicated three times in a randomized block design and

each replicate had three plants.

On April 3, 2009, seeds of K. virginica were surface-

sterilized by soaking in 5% NaOCl solution for 10 min and

rinsed with sterile distilled water. They were then transferred

aseptically to petri dishes filled with water and incubated for

4 days at 25°C. One week after germination, seedlings of

uniform size were transferred to pots (diameter 15 cm, height

15 cm) filled with 900 g sterilized sandy soil; each pot had

three seedlings. According to the design, 10 g mycorrhizal

inoculum or/and 10 ml Mortierella sp. were placed in soil

below the K. virginica seedlings prior to planting. Mean-

while, 10 g mycorrhizal inoculum and 10 ml Ms inoculum,

both autoclaved at 121°C for 90 min three times, were added

to control pots. Each pot was put on a 2-cm-deep plate and

incubated in greenhouse on April 10, 2009.

Plants were irrigated with water for 4 weeks. Then, pots

were watered by a modified (all nutrient solutions without

P) solution of Hoagland and Arnon (1950). For the salinity

treatments, NaCl (Fisher ACS) was added to the Hoagland

nutrient solution to give final NaCl concentrations of 0,

100, 200, and 300 mM, respectively. The salt concentration

is within the range of the habitat of K. virginica, which

extends from Louisiana to Florida and along the Atlantic

Coast to Delaware (Blits and Gallagher 1990). The pH of

the nutrient solution for all treatments was 7.2. All nutrient

solutions were prepared using demineralized water. Plants

were watered with 25 ml NaCl solution at 3-day intervals

for 24 days. The soil was salinized stepwise to avoid

osmotic shock. The leachate was collected and added back

to soil to maintain the salinity near the target level; distilled

water was added as necessary to maintain soil moisture.

Soil samples collection

After 90 days, according to Riley and Barber (1969, 1970),

whole plants were extracted from pots. The soil obtained by

gently shaking roots and collected in sterilized culture dish

was considered “bulk soil.” The rest soil that adhered to

roots was then collected in another sterile culture dish and

termed “rhizosphere soil.” Soil samples were divided into

two parts; one part was stored at 4°C for biological and

biochemical analyses and the other was air-dried at room

temperature for chemical analysis.

Plant analyses

All shoots tissues were dried in a forced-air oven at 80°C

for 72 h for biomass determination. Shoot biomass was the

sum of leaves and stems. The fresh root mass of six plants

was used for determining root dry weight. To assess AMF

colonization, roots from three plants were cleared with 10%

KOH and stained with 0.05% trypan blue (Phillips and

Hayman 1970). The percentage of root length colonized by

AMF was calculated as reported by Mcgonigle et al.

(1990). The roots were cut into 1-cm segments, and 30

fragments were examined for AMF colonization by a

compound microscope (100 magnifications). Positive

counts for AMF colonization included the presence of

vesicles, arbuscules or typical mycelium.

Soil chemical, biological, and biochemical analysis

The available P concentration of soil was determined using

the sodium bicarbonate-extractable P colorimetric method

(Olsen et al. 1954). Soil pH value was measured using a

glass electrode and a soil to water ratio of 1:2.5 (Dick et al.

2000). EC of soil was measured with a conductivity meter

(Model DDS-11A; Leizi, Shanghai, China). The pour-plate
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technique was applied for estimation of Ms populations in

soil (Pikovskaya 1948). The activities of soil invertase (E.

C. 3.2.1.26), catalase (E.C. 1.11.1.6), urease (E.C. 3.5.1.5),

and phosphatase (E.C. 3.1.3.2) were determined according

to Ohshima et al. (2007), Trasar-Cepeda et al. (1999),

Nannipieri et al. (1980), and Kandeler et al. (1999),

respectively. The activities of soil enzymes were assayed

within 1 week after sampling.

Statistical analysis

All data were statistically analyzed by analysis of variance

using the SPSS software package (SPSS 10.0 for Windows

2001) and means separated by Duncan test at p values <0.05.

Results

AM colonization

Structures characteristic of AMF were not observed in roots

of controls and plants inoculated with Ms alone (data not

shown). Plants inoculated with Ga alone showed significantly

higher root colonization (41.6%) than plants only inoculated

with Gm (30%) at 100 mM NaCl, while there was an

opposite result at 300 mM NaCl (p<0.05, Fig. 1a). Except for

0 mM NaCl, the root colonization of plants co-inoculated

with AMF (Gm and/or Ga) and Ms was significantly higher

than plants inoculated with AMF alone (p<0.05). Plants

inoculated with Gm and Ms showed significantly higher root

colonization (59.6% and 46%) than those inoculated with Ga

and Ms (45.7% and 36.7%) and those inoculated with the

three fungi (50.2% and 38%) at 200 and 300 mM NaCl,

respectively. The percentages of root colonization declined by

increasing salinity level (p<0.05, Fig. 1a).

Ms populations

Both rhizosphere and bulk soils of plants inoculated with

Gm and Ms showed significantly higher Ms populations

than soils of other plants (p<0.05) at each salinity level

(Fig. 1b, c). Rhizosphere soil of plants inoculated with three

fungi showed significantly lower Ms populations than

rhizosphere soil of plants inoculated with AMF and Ms

(p<0.05, Fig. 1c). The highest Ms populations were

presented in rhizosphere and bulk soils of plants inoculated

with Gm and Ms at 100 mM NaCl.

Plant growth

At all levels of salinity, shoot and root dry weights of plants

inoculated with AMF and/or Ms were higher than those of

control plants. Root dry weights of plants inoculated with

Ga alone were significantly higher than those of plants

inoculated with Gm at 0 and 100 mM NaCl, while an

opposite result was observed at 200 and 300 mM NaCl (p<

0.05, Fig. 2b). The inoculation of Ms significantly

improved positive effects of AMF (Gm or Ga) on shoot

and root dry weights under salt stress (i.e., 100, 200, and

300 mM NaCl, as well as below; p<0.05, Fig. 2a, b).
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populations of bulk soil (b), and rhizosphere soil (c) at different

salinities. Data are means ± SE of three replicates. Means followed by

the same letter are not significantly different at the same salinity level

(p<0.05) as determined by Duncan test
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Inoculation with Gm and Ms showed significant higher

plant biomass than inoculation of Ga and Ms (e.g., shoot

dry weights at 200 and 300 mM NaCl and root dry weights

at 100 and 200 mM NaCl, p<0.05).

Soil enzyme activities

All inoculation treatments enhanced urease activities of

soils with respect to noninoculated controls at all salinity

levels (p<0.05, Fig. 3a, b). Mortierella sp. significantly

increased urease activities of rhizosphere soil when inocu-

lated alone or with dual AMF under salt stress (p<0.05,

Fig. 3b). Urease activities increased from 0 to 100 mM

NaCl, and then decreased from 100 to 200 and 300 mM

NaCl.

Except for inoculation with Gm and Ms, the combined

inoculations enhanced invertase activities of all soils with

respect to those of controls. In all soils, Ms decreased the

positive effects of AMF on invertase activities, and

invertase activity showed the lowest values in each salinity

level in the Gm and Ms treatment (p<0.05; Fig. 3c, d).

Invertase activities showed a trend similar to that of urease

activities under salt stress.

All inoculation treatments at all salinity levels (p<0.05)

significantly increased neutral and alkaline phosphatase

activities of both soils with respect to controls (Fig. 3e–h).

Mortierella sp. significantly increased the positive effects

of AMF on neutral phosphatase activity at all salinity

levels (p<0.05).

Catalase activities were reduced by increasing salinity;

and those of both bulk and rhizosphere soils of inoculated

with AMF and/or Ms were significantly higher than those

of controls at all salinity levels (p<0.05; Fig. 3i, j).

Mortierella sp. significantly enhanced the positive effects

of Gm at 300 mM NaCl, Ga at 0 and 300 mM NaCl, and

Gm plus Ga at 200 and 300 mM NaCl on catalase

activities in bulk soil whereas it had no effect in

rhizosphere soil (p<0.05, Fig. 3i).

Available P concentrations

Except for 0 mM NaCl, single inoculation with Ms

significantly increased available P concentrations of all

soils with respect to single inoculation with AMF and

controls (p<0.05; Fig. 4a, b). In all soils at each salinity

level, inoculation with Gm and Ms significantly increased

available P concentrations with respect to single inocula-

tion with Gm or Ms and dual inoculation with Ga and Ms

(p<0.05). The highest available P concentrations were

recorded when plants were inoculated with Gm and Ms at

100 mM NaCl. Bulk soils from treatments involving triple

inoculation had significantly higher available P concen-

trations than those of dual inoculation with Ga and Ms.

Similar results were observed in rhizosphere soil only at

100 mM NaCl (p<0.05).

Soil pH and electricity conductivity

Except for the 300 mM NaCl treatment, in bulk soil, plants

inoculated with Gm and Ms showed significantly lower

pH values than those of other treated soils (p<0.05,

Fig. 5a). The pH values of all inoculated soils were lower

than those of control soils at each salinity level (Fig. 5a,

b). The pH values of rhizosphere soil declined by

increasing salinity.

Electrical conductivities of all rhizosphere or bulk soil

were significantly higher than those of control soils at all

salinity level (p<0.05; Fig. 5c, d). The highest EC values

of soils were recorded when plants were inoculated with

Gm and Ms at all salinity level. For all salinity treatments,

bulk soil of plants inoculated with Ms showed significant-

ly lower EC values than those of other inoculated soils

(p<0.05, Fig. 5c). A similar effect was observed in

rhizosphere soil.
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Discussion

Interaction between AMF and Ms under salt stress

Mycorrhizal symbiosis acts as a key component in helping

plants to cope with adverse environmental condition (Giri

et al. 2003), but the addition of various salts to soils inhibits

hyphal growth with a subsequent decrease in the mycor-

rhizal colonization of plants (Ruiz-Lozano and Azcón

2000). We have shown that salt stress significantly inhibited

AMF colonization of K. virginica roots, probably because

salt inhibited germination of AMF spore (Figs. 1 and 6),

colonization of the plant roots by the fungi and formation of

functional mycorrhizal structures within the roots (Juniper

and Abbott 2006). The mycorrhizal root colonization under

salt stress promoted by combined inoculation of AMF and

Ms, confirmed the finding of Garbaye and Bowen (1987) in

Pinus radiate. The enhanced mycorrhizal root colonization

by inoculation with Ms may be attributed to phytohormone

production to the increase of soil soluble P promoted by Ms

in saline soil (Figs. 2 and 6, Jacobsen et al. 1992; Toro et al.

1996). Inoculation with AMF and Ms also significantly

increased Ms populations of soil, probably because

mycorrhized plants released carbonaceous substances used

as a C source by PSM in the rhizosphere soil (Linderman

1988; Azcon and Barea 1996; Singh and Kapoor 1999).

However, plants inoculated with three fungi showed

significantly lower mycorrhizal colonization and Ms pop-

ulations in rhizosphere soil than plants inoculated with Gm

and Ms. This may be due to the competition among

microorganisms for root exudates or nutrients under salt

stress. It is important to underline that the used method for
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Fig. 3 (continued)

Fig. 3 Effects of arbuscular mycorrhizal fungi and P-solubilizing

fungus (Mortierella sp.) on soil enzyme activities at different

salinities. Urease (a), invertase (c), neutral phosphatase (e), alkaline

phosphatase (g), and catalase (i) activities of bulk soil; urease (b),

invertase (d), neutral phosphatase (f), alkaline phosphatase (h), and

catalase (j) activities of rhizosphere soil. Data are means ± SE of three

replicates. Means followed by the same letter are not significantly

different at the same salinity level (p<0.05) as determined by Duncan

test
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fungus (Mortierella sp.) on available P concentrations in bulk soil (a)
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three replicates. Means followed by the same letter are not

significantly different at the same salinity level (p<0.05) as deter-

mined by Duncan test
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isolating PSM and determining Ms populations is based on

the use of tricalcium phosphate (Pikovskaya 1948), and this

method has been criticized by Collavino et al. (2010).

Effect of inoculation on plant growth under salt stress

Inoculation with AMF improves growth of plants under a

variety of salt stress conditions (Al-Karaki et al. 2001; Giri

et al. 2003; Sannazzaro et al. 2006). We have observed the

same for shoot and root dry weights of K. virginica

inoculated with AMF and/or Ms at all salinity levels. The

dual inoculation with AMF and PSF had positive effects on

alfalfa (Piccini and Azcon 1987), wheat (Singh and Kapoor

1999), and Lactuca sativa (Kohler et al. 2007). Osorio and

Habte (2001) suggested a synergistic interaction between

PSM and AMF. Although Ga had higher colonization rates

than Gm at 100 mM NaCl, plants inoculated with Gm

showed a better resistance to salt stresses than those

colonized by Ga. This may partly explain why the highest

shoot and root biomasses were obtained when plants were

inoculated with Ms and Gm. Plants inoculated with three

fungi had significantly lower root dry matter than plants

inoculated with Gm and Ms, probably due to the lower

mycorrhizal root colonization of the former plants. How-

ever, inoculation of AMF and Ms may increase root

development and nutrient uptake, and this may decrease

root/shoot ratios (Kothari et al. 1990; Berta et al. 1995).

Changes of soil enzyme activities with inoculation under

salt stress

Eizavi and Tabatabai (1977) had reported that acid

phosphatase is predominant in acid soils and alkaline

phosphatase is predominant in alkaline soils. Therefore,

we have only determined neutral and alkaline phosphatase

activities since soil pH was 7.3. Catalase (Frankenberger

and Bingham 1982), alkaline phosphatase (Garcia and

Hernandez 1996), invertase, and urease (Omar et al. 1994)

activities were inhibited by increasing soil salinity. Simi-

larly, we have observed that soil enzyme activities of

control soil decreased proportionately by increasing salin-

ity. The reduced enzyme activities may depend on the
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Fig. 5 Effects of arbuscular mycorrhizal fungi and P-solubilizing

fungus (Mortierella sp.) on pH and electrical conductivity of soil at

different salinities. pH (a) and electrical conductivity (c) of bulk soil;

pH (b) and electrical conductivity (d) of rhizosphere soil. Data are

means ± SE of three replicates. Means followed by the same letter are

not significantly different at the same salinity level (p<0.05) as

determined by Duncan test
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decrease in enzyme synthesis due to the decrease in

abundance and activity of soil microorganisms and/or to

the “salting-out” effects on enzyme proteins (Omar et al.

1994). Microbial inoculation promoted neutral phosphatase,

alkaline phosphatase, urease, and catalase activities in both

bulk and rhizosphere soils (Figs. 5 and 6). Dodd et al.

(1987) and Ezawa and Yoshida (1994) also showed that

phosphatase activities of rhizosphere soil of AMF colonized

plants were higher than those of rhizosphere soil of

noncolonized plants. Microbial inoculation may alleviate

the negative effects of increasing concentration of salt

solutions on enzyme activities, probably because both AMF

(Allen et al. 1981) and Ms inoculations increased soil

microbial biomass. However, further research is required to

understand the relative mechanisms.

In bulk soil, inoculation with Ms significantly increased

the positive effects of AMF on neutral phosphatase, alkaline

phosphatase, and catalase activities under salt stress, while

invertase and urease activities were reduced. The effects of

AMF on neutral phosphatase and urease activities were

enhanced byMs inoculations in rhizosphere soil, but reduced

on invertase activities. It is difficult to explain the different

responses of enzyme activities of bulk and rhizosphere soils

inoculated with PSF and AMF, because the measured

enzyme activities depend on the contribution of both

extracellular and intracellular enzyme activities (Nannipieri

et al. 2003), and stable extracellular enzyme activities are

associated with soil colloids and persist even in harsh

environments that would limit intracellular microbiological

activity (Nannipieri et al. 2002).

Osorio and Habte (2001) reported that acid production

was the major mechanism in the solubilization of rock

phosphate by the Ms, and the pH value of the growth

medium decreased as a result of acid production by PSM

[Fig. 6 (6)]. We have shown that pH values of all

inoculation treatments were lower than those of controls

at each salinity level. Soil enzyme activities can be

increased, decreased, or not affected by soil acidity (Kang

and Freeman 1999; Acosta-Martinez and Tabatabai 2000).

In addition, AMF can modify quantity and quality of root

exudation (Mar et al. 2000).

Changes of available P concentrations and electricity

conductivity with inoculation

Arbuscular mycorrhizal fungi can absorb P from the soil

solution, as plant roots do, and there is no evidence of their

ability to solubilize insoluble soil P minerals (Bolan 1991;

Cardoso et al. 2006). However, we have shown that

inoculation with Gm significantly increased available P

concentrations in bulk soil and we are not able to explain

the relative mechanisms. As discussed before, the use of

tricalcium phosphate for determining PSF or PSB has been

criticized (Collavino et al. 2010). The type of phosphate,

the analytical procedure for determining the solubilized P,

the incubation conditions, and medium are all important

factors affecting P solubilization (Ogut et al. 2010). Soils

inoculated with Gm and Ms had significantly higher

available P concentrations than soils only inoculated with

Gm or Ms. Probably, the effectiveness of inoculated PSF

Fig. 6 Schematic view of possible mechanism of co-inoculation of

AMF and P-solubilizing fungus in saline soil. A hyphae of Mortierella

sp.; B hyphae of AMF; 1 inhibition of salt on AMF growth and

colonization; 2 promotion of Mortierella sp. on AMF growth and

colonization; 3 changes in root structure: 3a stimulatory or 3b

inhibitory compounds present in root exudation, 3c supply of

energy-rich carbohydrates via AM fungi hyphae; 4 promotion (4a)

or inhibition (4b) of microbial activity; 5 stimulation of soil enzyme

activities; 6 pH changes; 7 effects on insoluble P; 8 uptake of soluble

P; 9 uptake of other nutrients; 10 stimulation of plant (Fig. 5 is

modified from Jonas et al. 2004)
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can be stimulated by the mycorrhiza (Tarafdar and

Marschner 1995; Osorio and Habte 2001). The P solubiliza-

tion occurs in the rhizosphere soil where organic compounds

are released by roots or mycorrhizae (Nguyen 2003; Amos

and Walters 2006). Many rhizosphere microorganisms are

heterotrophs and might use these organic substrates to

produce organic acids, which would increase P concentra-

tions in solution (Hameeda et al. 2006; Reyes et al. 2006).

Probably Gm was more effective than Ga in stimulating P

solubilization by Ms, but we are unable to explain the

underlying mechanisms. When plants were inoculated with

three fungi, however, there were no significant effects on

available P concentrations in rhizosphere soil. Probably,

changes in quantities and compositions of rhizodepositions

and microbial secretions, which would affect the activities of

PSM in solubilizing insoluble inorganic or organic phos-

phate, were responsible for the different response with three

inoculants. Single inoculation with Ms did not significantly

increase available P concentrations of the bulk and rhizo-

sphere soils compared to single inoculation with AMF at

0 mM NaCl. Probably, Ms was not activated by the

nonsaline conditions, being isolated from saline soil of

seashore. The result that the highest Ms populations were

observed at 100 mM NaCl indirectly confirms the above

assumption. It is conceivable that 100 mM NaCl was the

most effective saline treatment in stimulating Ms activities.

All inoculation treatments significantly enhanced soil

EC. On the contrary, Giri et al. (2003) and Buwalda et al.

(1983) reported that inoculation of mycorrhiza significantly

reduced soil EC. Our results can depend on the fact that

mycorrhized plants decreased the uptake of Na (Al-Karaki

2006; Colla et al. 2008).

Conclusion

The dual inoculation of arbuscular mycorrhizal fungi and

Mortierella sp. significantly affected plant growth, but the

triple inoculation was less effective. The increased enzyme

activities and available P of soil after inoculation with

arbuscular mycorrhizal fungi and Mortierella sp. may

alleviate the negative effects of increasing salinity on plant

growth. To obtain the maximum benefit for plant growth, it is

needed to select the right combination of arbuscular mycor-

rhizal fungi species and phosphorous-solubilizing micro-

organisms to be inoculated in saline soils. However, further

research is needed to understand the underlying mechanisms.
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