Supplementary information

Interactions between $\boldsymbol{\beta}$-cyclodextrin as a carrier for anti-cancer drug delivery: A molecular dynamics simulation study

Tahereh Boroushaki, Mohammad Ghorban Dekamin*
${ }^{\text {a }}$ Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran

*Corresponding Author:

Email: mdekamin@iust.ac.ir

Contents

Table S1: The components of each simulated system in this study \qquad

Table S2: Number of water molecules in different spheres inside β-CD. .4

Figure S1: Position of drugs in the equilibrium distance from center of the $\beta \mathrm{CD}$ during the different time .5

Figure S2: The Root mean square deviation (RMSD) of β-CD in different simulated and reference system 14

Figure S3: The Root mean square deviation (RMSD) of drugs in different simulated and reference system. .15

Table S1: The components of each simulated system in this study

	Components Systems	Number of Drug molecule	Number of $\beta C D$ molecule	Number of Water molecule
1	β CD + 5-Fu + Water	1	1	4000
2	5-Fu + Water	1	0	4000
3	$\beta C D+$ Ald + Water	1	1	4000
4	Ald + Water	1	0	4000
5	β CD + TMZ + Water	1	1	4000
6	TMZ + Water	1	0	4000
7	$\beta C D+$ Water	0	1	4000

Table S2: Number of water molecules in different spheres inside β-CD

System	$\mathbf{0 - 0 . 5}$	$\mathbf{0 . 5 - 0 . 8}$	$\mathbf{0 . 8 - 0 . 9}$	$\mathbf{0 . 9 - 1 . 0}$	$\mathbf{0 - 1 . 0}$
$\beta-\mathrm{CD}+5-\mathrm{FU}+$ water	$3.620(\pm 0.247)$	$20.269(\pm 0.001)$	$23.175(\pm 0.021)$	$47.115(\pm 0.000)$	$94.179(\pm 0.225)$
$\beta-\mathrm{CD}+\mathrm{Ald}+$ water	$2.476(\pm 0.089)$	$18.461(\pm 0.005)$	$23.262(\pm 0.038)$	$46.870(\pm 0.009)$	$91.069(\pm 0.047)$
$\beta-\mathrm{CD}+\mathrm{TMZ}+$ water	$1.404(\pm 0.025)$	$19.131(\pm 0.006)$	$23.509(\pm 0.002)$	$46.416(\pm 0.005)$	$90.460(\pm 0.026)$
$\beta-\mathrm{CD}+$ water (reference $)$	$9.728(\pm 0.012)$	$20.481(\pm 0.004)$	$22.659(\pm 0.004)$	$47.385(\pm 0.006)$	$100.253(\pm 0.026)$

Figure S1a

(5-Fu in β CD at 20 ns)

Figure S1a

(5-Fu in β CD at 60 ns)

Figure S1a

(5-Fu in β CD at 100 ns)

Figure S1b
(Ald in β CD at 20 ns)

Figure S1b
(Ald in β CD at 60 ns)

Figure S1b
(Ald in β CD at 100 ns)

Figure S1c
(TMZ in $\beta C D$ at 60 ns)

Figure S1c

(TMZ in $\beta \mathrm{CD}$ at 100 ns)

Figure S2: The Root mean square deviation of β-CD in different simulated and reference

Figure S3: The Root mean square deviation of drugs in different simulated and reference systems

