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Abstract 23 

Climate change and habitat loss are both key threatening processes driving the global loss in 24 

biodiversity. Yet little is known about their synergistic effects on biological populations due 25 

to the complexity underlying both processes. If the combined effects of habitat loss and 26 

climate change are greater than the effects of each threat individually, current conservation 27 

management strategies may be inefficient and at worst ineffective. Therefore, there is a 28 

pressing need to identify whether interacting effects between climate change and habitat loss 29 

exist and, if so, quantify the magnitude of their impact. In this paper, we present a meta-30 

analysis of studies that quantify the effect of habitat loss on biological populations and 31 

examine whether the magnitude of these effects depends on current climatic conditions and 32 

historical rates of climate change. We examined 1,319 papers on habitat loss and 33 

fragmentation, identified from the past 20 years, representing a range of taxa, landscapes, 34 

land-uses, geographic locations and climatic conditions. We find that current climate and 35 

climate change are important factors determining the negative effects of habitat loss on 36 

species density and/or diversity. The most important determinant of habitat loss and 37 

fragmentation effects, averaged across species and geographic regions, was current maximum 38 

temperature, with mean precipitation change over the last 100 years of secondary importance. 39 

Habitat loss and fragmentation effects were greatest in areas with high maximum 40 

temperatures. Conversely, they were lowest in areas where average rainfall has increased 41 

over time. To our knowledge, this is the first study to conduct a global terrestrial analysis of 42 

existing data to quantify and test for interacting effects between current climate, climatic 43 

change and habitat loss on biological populations. Understanding the synergistic effects 44 

between climate change and other threatening processes has critical implications for our 45 

ability to support and incorporate climate change adaptation measures into policy 46 

development and management response.  47 
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Introduction 48 

One of the most pressing questions of the twenty-first century in ecology and conservation is 49 

how do multiple stressors interact and cumulatively impact ecosystems and their biodiversity 50 

(Vinebrooke et al. 2004; Brook et al. 2008; Crain et al. 2008)? Climate change, habitat loss, 51 

invasive species, disease, pollution, and overexploitation are typically studied and managed 52 

in isolation, although it is becoming increasingly clear that a single-stressor perspective is 53 

inadequate when ecosystems and species are threatened by multiple, co-occurring stressors 54 

(Sala et al. 2000; Darling et al. 2010).  55 

Processes of climatic change and habitat loss happening concurrently are an important 56 

example where synergistic effects may occur. Yet most studies reporting effects of climate 57 

change (e.g. Williams et al. 2003; Miles et al. 2004; Parmesan 2006) or habitat loss and 58 

fragmentation on biodiversity (e.g. Brooks et al. 2002; Fahrig 2003; Cushman 2006) have 59 

examined each in isolation. If the potential combined effects of these processes are greater 60 

than those estimated individually, then current estimates of habitat loss and fragmentation 61 

effects may be misleading (de Chazal & Rounsevell 2009). Nevertheless, substantial changes 62 

in terrestrial species’ populations and distributions have already been detected world-wide in 63 

response to both of these impacts. For landscapes undergoing habitat loss and fragmentation, 64 

the effect of losing habitat is obvious: when habitat is lost, dependent species are also likely 65 

to be lost and, populations decline (e.g. Andrén 1994; Fahrig 1997, 2001; Bender et al. 1998). 66 

Habitat fragmentation creates small populations with increased spatial isolation, which also 67 

increases the risk of extinction (Opdam 1991; Ellstrand & Elam 1993; Young et al. 1996). On 68 

the other hand, the presence of scattered vegetation in a landscape may facilitate migration 69 

and gene flow among tree populations in response to climate change by providing 70 

connectivity across the landscape (Breed et al. 2011).  71 
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For landscapes undergoing climate change, the effects are less clear. In terms of potential 72 

risks to biodiversity, species responses to climate change vary considerably, depending on 73 

which species are studied, whether there are any interactions between drivers, whether there 74 

are any species interactions, and the spatial and temporal scale considered (de Chazal & 75 

Rounsevell 2009). On a global scale, many species have been or are expected to shift their 76 

ranges to higher latitudes: from the tropics to the poles (Hickling et al. 2005, 2006; Wilson et 77 

al. 2005). Others will retract and potentially face extinction (Pounds et al. 2006; Thomas et 78 

al. 2006; Sekercioglu et al. 2008). The evidence for these changes, however, comes mostly 79 

from the documented shifts in the distributions of a few well-studied taxonomic groups (e.g. 80 

birds, butterflies and vascular plants) (e.g. Hickling et al. 2005, 2006; Sekercioglu et al. 81 

2008).  82 

In the few cases where studies examine both the importance of climate change and 83 

habitat loss, it is difficult to determine which stressor is the more important driver of long-84 

term trends (e.g. Travis 2003; Opdam & Wascher 2004; Pimm 2008). In general, most studies 85 

indicate that, at present, habitat loss and fragmentation outweigh the responses of climate 86 

warming on species and ecosystems (Sala et al. 2000; Warren et al. 2001; Franco et al. 2006; 87 

Jetz et al. 2007), but the impact of climate change is predicted to increase over time and 88 

eventually overtake land-use modification in determining population trends (Lemoine et al. 89 

2007).  90 

 There is growing evidence to suggest that climate change will negatively interact with 91 

habitat loss and habitat fragmentation and synergistically contribute to the degradation of 92 

biological diversity at the species, genetic and/or habitat level (Schindler 2001; McLaughlin 93 

et al. 2002; Opdam & Wascher 2004; Pyke 2004; Brook et al. 2008). Populations in 94 

fragmented landscapes are more vulnerable to environmental drivers such as climate change 95 

than those in continuous landscapes (Travis 2003; Opdam & Wascher 2004). For example, 96 
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forest clearance and fragmentation can cause localised drying and regional rainfall shifts, 97 

enhancing fire risk and restraining the capacity of species to move in response to shifting 98 

bioclimatic conditions (Brook et al. 2008). A rapid population decline of the green 99 

salamander (Aneides aeneus) within a highly fragmented habitat in the southern 100 

Appalachians, U.S.A. has also been linked with an increase in temperatures since the early 101 

1960s (Corser 2001). Similar findings have also been reported for butterflies in the U.S.A 102 

(McLaughlin et al. 2002) and in the Mediterranean (Stefanescu et al. 2004). Habitat 103 

fragmentation and overharvesting, combined with environmental warming in rotifer 104 

zooplankton resulted in populations declining up to 50 times faster when all three threats 105 

acted together (Mora et al. 2007). Jetz et al. (2007) showed similar findings for land bird 106 

species; 950–1,800 of the world’s 8,750 species of land birds could be imperilled by climate 107 

change and land conversion by the year 2100. Furthermore, Carroll (2007) modelled the 108 

potential impacts of climate change and logging on mammals in south-eastern Canada and 109 

the north-eastern United States; interactions between the two stressors increased overall 110 

vulnerability of both marten (Martes americana) and lynx (Lynx canadensis) populations. In 111 

contrast, there are very few studies that suggest climate change will positively interact with 112 

other impacts such as habitat loss and fragmentation on species. Those reported suggest 113 

increasing periods of thermal stress and drought may cause species to rapidly adapt, and these 114 

changes, in turn, can potentially help species counter other stressful conditions such as habitat 115 

destruction, or realize ecological opportunities arising from climate change (Cormont et al. 116 

2011; Hoffmann & Sgrò 2011). 117 

 Clearly, the consequences of interactions between landscape change and climate change 118 

for biodiversity have the potential to be quite significant. Most climate change impact studies 119 

on species have been based on data collected in the temperate zone, where climate change is 120 

predicted to be most pronounced, and to date, there have been no global analyses of the 121 
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synergistic effects of climate change and habitat loss on biological populations. We address 122 

this important issue using a global systematic review and meta-analytic techniques to 123 

estimate how current climatic conditions, climate change and habitat loss interact and 124 

synergistically impact on terrestrial biological systems. In doing so, we test hypotheses about 125 

the generality of interactions between habitat loss, climate change and current climate on 126 

biodiversity. More specifically, three hypotheses are tested:  127 

1. The effect of habitat loss on biological populations depends on current climatic 128 

conditions and historical rates of climate change. 129 

2. The interaction between habitat loss and climate varies with the type of habitat (i.e. 130 

vegetation type) in which a species occurs. 131 

3. The interaction between habitat loss and climate varies with taxonomic group. 132 

Meta-analysis is a quantitative method for synthesizing existing data from multiple studies to 133 

test specific hypotheses (Schulze 2004). By systematically combining studies, one attempts to 134 

overcome limits of size or scope in individual studies to obtain more reliable and general 135 

information about treatment effects (Berman & Parker 2002). There has been some 136 

controversy about its validity (LeLorier et al. 1997; Garg et al. 2008; Stewart 2010), but even 137 

knowing its limitations, meta-analysis is considered an ideal framework within which to 138 

assess the accumulation of scientific evidence (Berman & Parker 2002; Garg et al. 2008) in 139 

ecology (Gurevitch et al. 2001; Leimu & Koricheva 2004; Luiselli 2008) and in conservation 140 

biology (Ojeda-Martinez et al. 2007; Aronson et al. 2010; Marczak et al. 2010). Given the 141 

high volume of studies and lines of evidence concerning climate change and habitat loss to 142 

date, we believe undertaking a meta-analysis is warranted and timely, and is the best way to 143 

test for the generality of such interactions at a global scale.  144 

 145 
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Materials and methods 146 

To test for interactions between climate change, current climate and habitat loss, we created a 147 

database of existing data on habitat loss effects using a systematic review of the literature and 148 

then identified relationships between the patterns of habitat loss effects and climate data 149 

using mixed-effects logistic regression models. 150 

  151 

Criteria for publication selection and data extraction 152 

The first goal of the study was to quantitatively review the results of published studies that 153 

statistically analysed the effects of habitat loss (i.e. loss of native habitat) on population 154 

density and diversity. Figure 1 shows the process of study identification, study selection and 155 

data extraction. A list of research articles published between 1989 and 2009 were generated 156 

using the key-words “(habitat loss OR habitat fragmentation) AND (species abundance OR 157 

species distribution) AND (impact)” under TOPIC in the database of ISI Web of Science, 158 

revealing 1,098 studies. The use of these key-words allowed for the identification of a broad 159 

inclusive set of studies on the effects of habitat loss and associated habitat fragmentation on 160 

biological populations.  161 

From the list of 1,098 articles, we examined each title and abstract to determine whether 162 

they met the criteria for inclusion in the meta-analysis. Inclusion criteria comprised impacts 163 

on species abundances, density, diversity and/or richness due to habitat loss. The impact of 164 

habitat loss caused by anthropogenic pressures was the only effect measure considered. 165 

However, it was not always clear whether a study looked at the impact of habitat loss, habitat 166 

fragmentation, patch size effect, isolation or a combination of these, since they are almost 167 

always correlated (Fahrig 2003). Thus, if a study measured habitat fragmentation and/or 168 
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habitat loss it was included in our analysis. Because our focus was on empirical evidence, 169 

theoretical studies and review papers were excluded during this first filter. However, the 170 

reference lists in these papers were scrutinized for further studies. Additional studies 171 

identified in the course of reading were also included. At each stage of the review the 172 

numbers and identities of articles retrieved, accepted, and rejected were recorded (Fig. 1). 173 

Remaining articles were then reviewed in full to determine whether they contained relevant 174 

and usable data (second filter). The estimated habitat loss effects on species (positive, 175 

negative or null relationships) were extracted from the final set of studies (see Appendix 1). If 176 

a study reported individual species effects, the effect on each species was recorded. If a study 177 

reported only an overall effect for a group of species, a single effect on that group of species 178 

was recorded. If the results were not statistically tested then the study was excluded or only 179 

those results that were statistically tested were included in the database. The total size of the 180 

study area for each study and the proportion of the landscape area covered by suitable habitat 181 

were also recorded. For any studies that did not measure the proportion of area covered by 182 

suitable habitat, it was sometimes possible to calculate or access the data by other means (see 183 

Appendix 1). For 31 studies, this was calculated from the text, tables or graphs, or estimated 184 

from their study map. In 27 cases, the primary authors were contacted for unpublished data 185 

and in 3 cases we were able to obtain the missing information from another paper that studied 186 

the same study region. The study location, study coordinates (if not reported in the paper, 187 

Google Earth was used to identify the coordinates), year that the study was completed (if no 188 

study year was reported, the year that the paper was published was recorded), response 189 

variable measured (density, richness, diversity or probability of occurrence), type of 190 

habitat/vegetation type (forest, rainforest, woodland, wetland, savanna/grassland, 191 

shrubland/heathland or other) and land-use (agriculture, grazing, urban, natural fragmentation 192 

or other) were also tabulated. Finally, each species was classified into one of six taxonomic 193 
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groups: birds, plants, arthropods, mammals, amphibians or reptiles. After the second filter we 194 

went back and performed another search using the same key-words and time span as above, 195 

but substituted the word “impact” for 30 individual countries or regions (Russia, Siberia, 196 

China, Turkey, Kazakhstan, Mongolia, Iran, Saudi Arabia, Korea, Egypt, Libya, Pakistan, 197 

Algeria, North Africa, Ethiopia, Somalia, Chad, Niger, Mali, Nigeria, Ghana, Guinea, 198 

Angola, Congo, Madagascar, Greenland, Denmark, Venezuela, Peru and Alaska) to target 199 

geographical areas that were not well represented (n = 221). Of these 221 papers, 23 were 200 

identified suitable for the meta-analysis using the same criteria as previously.  201 

 202 

Climate data 203 

To test for the interaction effect between habitat loss, climate change and current climate we 204 

spatially mapped the location of each study site and overlayed the locations on high-205 

resolution global climate data (Fig. 2). For current climatic conditions, we used four 206 

bioclimatic variables (1 km2 resolution grid) from the WorldClim database (1950-2000 207 

averaged values) (Hijmans et al. 2005) without modifications: maximum temperature of 208 

warmest month, precipitation of driest month, temperature seasonality and precipitation 209 

seasonality.  For climatic change, we used two variables: monthly average daily maximum 210 

temperature and average monthly precipitation (0.5 km2 resolution grid), from the Climatic 211 

Research Unit (CRU) at the University of East Anglia (1901-2006) (Mitchell & Jones 2005). 212 

From the original CRU climate data variables we calculated the change in temperature and 213 

precipitation over time as the difference in mean values between the periods 1977-2006 and 214 

1901-1930 (1977-2006 minus 1901-1930). The two time periods were chosen based on 215 

availability of data: using the latest and earliest available years from the CRU data at the time 216 
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of analysis (2010). Thirty year time periods were also chosen as a period long enough to 217 

eliminate year-to-year variations.  218 

 219 

Logistic Regression Models 220 

Mixed-effects logistic regression models were used to model the relationship between the 221 

habitat loss effects and the climatic variables, while accounting for variation among studies, 222 

taxonomic groups, habitats and land-uses. Mixed-effect models are preferable in ecological 223 

data synthesis because their assumption of variance heterogeneity is more likely to be 224 

satisfied (Gurevitch et al. 2001). In this case, the climatic variables and habitat amount were 225 

used as the explanatory variables and a binomial habitat loss effect (negative vs non-226 

negative) was used as the dependent variable. Prior to analysis, correlations among variables 227 

were calculated using Pearson’s correlation coefficient to test for collinearity among the 228 

climatic variables and habitat amount. Habitat amount was not significantly correlated with 229 

any of the climatic variables (r < 0.5, p > 0.05). However, temperature seasonality and 230 

precipitation seasonality were identified as being correlated (r > 0.5, p < 0.05) with 231 

maximum temperature of warmest month or precipitation of driest month. Temperature 232 

seasonality and precipitation seasonality were therefore removed from the models to reduce 233 

the effect of collinearity (Graham 2003). The remaining bioclimatic variables (maximum 234 

temperature of warmest month, precipitation of driest month, annual temperature difference 235 

and annual precipitation difference) and habitat amount were standardized to have a mean of 236 

zero and standard deviation of one prior to running the meta-analysis. 237 

We used a step-wise forward selection analysis to test the significance of random-effects 238 

before including them in the logistic regression analyses (Beale et al. 1967). Initially all 239 

climatic predictors and habitat amount were incorporated as fixed effects and study response 240 
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type (i.e. response variable measured in each study: density, richness, diversity, probability of 241 

occurrence) was incorporated as a random intercept effect. Random-effects were then 242 

sequentially added and tested for statistical significance with likelihood ratio tests using the 243 

lme4 package in R 2.11.1 (Team 2010).  244 

Once the significant random effects had been identified, an information theoretic 245 

approach using Akaike’s Information Criteria (AIC) (Burnham & Anderson 2002) was then 246 

used to rank competing models with all combinations of predictors. Model-averaged logistic 247 

regression coefficients were then calculated with unconditional standard errors to identify the 248 

magnitude of important relationships (Burnham & Anderson 2002). Finally, for each 249 

variable, its relative importance was quantified through an index constructed by summing the 250 

Akaike weights for all models containing the variable (Burnham & Anderson 2002). To 251 

assess the fit of the most parsimonious model, we visually inspected a goodness-of-fit 252 

quantile-quantile (Q-Q) plot developed by Landwehr et al. (1984) with simulations replicated 253 

1,000 times. Logistic regression Q-Q plots are useful for assessing whether the error 254 

distribution of the data is modelled correctly and to detect more general departures from 255 

model assumptions (Landwehr et al. 1984; Rhodes et al. 2009). 256 

 257 

Results 258 

Summary of the effects of habitat loss on biodiversity  259 

Out of the 1,319 papers that we reviewed, a total of 168 studies were identified as suitable for 260 

our meta-analysis. Many studies, however, reported habitat loss or fragmentation effects on 261 

multiple species and/or on several taxa, and so from the 168 studies we had 1,779 data points 262 

for our analyses (Appendix 1). The number of publications that cited significantly positive or 263 
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no habitat loss/fragmentation effects on single species or a group of species (n = 1132; 312 264 

positive & 820 null) exceeded the number that reported significantly negative effects (n = 265 

647). Although the number of negatives (n = 647) exceeded the number of positives (n = 266 

312), their combined total (n = 959), opposed to the number of no effects (n = 820) was not 267 

driven by a sample size effect (logistic regression, χ2 = 406.51, df = 1, p = 0.434). Out of the 268 

1,779 effect sizes included, 1,017 (57%) referred to birds, 389 (22%) arthropods, 166 (9%) 269 

mammals, 126 (7%) plants, 52 (3%) reptiles, and 29 (2%) amphibians (Appendix 1). 270 

Approximately 59% (n = 1,057) referred to forest habitats, 12% (n = 207) woodland, 10% (n 271 

= 183) shrubland or heathland, 8% (n = 140) rainforest, 5% (n = 93) savanna or grassland, 272 

2% (n = 27) wetlands, and 4% (n = 72) described other various habitats such as farmland, 273 

pasture, salt marsh, meadows, coastal sage scrub and coastal dunes (Appendix 1). Papers 274 

primarily examined changes in species density (83%, n = 266) or species richness (11%, n = 275 

36), with only 6% reporting changes in the probability of occurrence (n = 13) or species 276 

diversity (n = 6) (Appendix 1). Figure 2 shows an overview of the geographical spread of 277 

studies included in our analyses. It can be seen that most studies were conducted in North 278 

America and in Europe; however areas throughout South America, Africa, Asia and Australia 279 

are also represented.  280 

The studies we reviewed reported habitat cover (proportion of the area covered by 281 

suitable habitat) (Appendix 1) at various spatial scales. Of the 168 studies included, 83 282 

reported habitat cover at the landscape scale, 39 reported habitat cover at the site or treatment 283 

scale, and 26 reported treatment effects, but we were only able to obtain habitat cover data at 284 

the landscape scale. For 20 of the 168 studies (11.9%) we were unable to obtain the 285 

proportion of suitable habitat remaining for either the study landscape or study sites.  286 

 287 
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The influence of climatic factors on habitat loss and fragmentation effects 288 

The climate data used in the models varied substantially across the study areas. Maximum 289 

temperature of warmest month ranged from -1.7 to 41.9 oC, minimum precipitation of driest 290 

month from 0 to 202 mm, mean precipitation change from -311.1 to 247.38 mm and mean 291 

temperature change from -1.14 to 1.8 oC. Tests of significance indicated that random slopes 292 

for study response type and land-use, and random intercepts for taxonomic group, habitat 293 

type, and land-use were not significant (p > 0.05), and therefore were excluded from the 294 

logistic-regression models. Random slopes for taxonomic group and habitat type and a 295 

random intercept for study response type were significant (p < 0.05) and therefore were 296 

included (Table 1). 297 

The most parsimonious model according to AIC was a model containing maximum 298 

temperature, mean precipitation change and mean temperature change (AIC = 629.2; Table 299 

2). This model had a comparably high Akaike weight (Wi = 0.68) indicating that the 300 

combined effects of these three climate variables have good support from the data relative to 301 

other models. A model containing maximum temperature and mean precipitation change was 302 

the second best model (AIC = 632.1, ΔAIC = 2.9, Wi = 0.16), but according to Burnham and 303 

Anderson (2002) only models with AIC differences between 0 and 2 have substantial support. 304 

The goodness-of-fit Q-Q plot for the best model showed a slight lack of fit at the lower and 305 

upper quantiles (Appendix 2). This appears to be due to an inability of the model to account 306 

for some of the variation in the tails of distribution of the residuals, rather than a miss-307 

specified functional form for the model. Overall, the most important variable was maximum 308 

temperature (wi = 0.999), followed by precipitation change (wi = 0.857), and temperature 309 

change (wi = 0.825). We found little evidence for the importance of minimum precipitation 310 

(wi = 0.147) and habitat amount (wi = 0.011; Table 2). 311 
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The model-averaged coefficients revealed that maximum temperature was positively 312 

related to habitat loss/fragmentation impacts and had the strongest effect compared to the 313 

other climatic factors (Fig. 3). The positive relationship indicates that, as maximum 314 

temperature increases, the probability of negative habitat loss/fragmentation impacts also 315 

increases. On the other hand, effect sizes for minimum precipitation and precipitation change 316 

were negative. The negative relationships indicate that as minimum precipitation increases, 317 

the probability of negative habitat loss/fragmentation impact declines. Similarly, the 318 

probability of a negative habitat loss/fragmentation effect is lowest where rainfall has 319 

increased most over time. Coefficients for temperature change and habitat amount were small 320 

in magnitude.  321 

 322 

Taxonomic group and habitat type variation 323 

There were very few differences in the habitat loss/fragmentation effect sizes among taxa 324 

(Fig. 4). Apart from arthropods, habitat loss/fragmentation effects on species were large and 325 

positive for maximum temperature (Fig. 4a). This indicates that, in general, as temperature 326 

increases, the chance of a species being negatively affected by habitat loss/fragmentation also 327 

increases, especially for reptiles, which had the largest coefficient of 23.026. For arthropods, 328 

the effect size was still relatively large but, as temperature increases, the chance of a species 329 

being negatively affected by habitat loss/fragmentation declines. On average, all taxonomic 330 

groups (excluding plants) had relatively large negative coefficients for precipitation change; 331 

in general, habitat loss/fragmentation effects declined in areas where rainfall has increased 332 

most over time (Fig. 4c). Plants, on the other hand, displayed no response to precipitation 333 

change. For minimum precipitation, negative coefficients were observed for all taxa except 334 

birds, which showed no response (Fig. 4b), indicating that as current precipitation increases, 335 
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habitat loss/fragmentation effects decline. Effect sizes varied considerably for habitat amount 336 

(Fig. 4e). Amphibians and mammals displayed larger positive coefficients, whereas plants 337 

and reptiles displayed smaller negative coefficients. This indicates that, as habitat amount 338 

increases, the chance of a plant or reptile species being negatively affected by habitat 339 

loss/fragmentation declines. In contrast, as habitat amount increases, the chance of an 340 

amphibian or mammal species being negatively affected by habitat loss/fragmentation 341 

increases. The coefficients for birds and arthropods in relation to habitat amount, and all taxa 342 

in relation to temperature change were small (Fig. 4d, e). 343 

Effect sizes for different habitat types showed several distinct differences (Fig. 5). First, 344 

the coefficients were more variable than for taxonomic groups, indicating that habitat type 345 

probably drives most of the variation in the dataset. Coefficients for forest, 346 

savanna/grassland, rainforest and wetland habitats were large and positive for maximum 347 

temperature, indicating that as current temperature increases the chance of a species being 348 

negatively affected by habitat loss/fragmentation in these habitats also increases (Fig. 5a). 349 

Coefficients for woodland, shrubland/heathland and other habitats were negative, but smaller 350 

in magnitude, suggesting that the effects of temperature on habitat loss/fragmentation effects 351 

in these habitats were relatively minor. For precipitation change, the majority of coefficients 352 

(excluding wetlands and other habitats) were negative; habitat loss/fragmentation effects in 353 

these habitats were lowest in areas where rainfall has increased most over time (Fig. 5c). The 354 

wetland coefficient was small, but for other habitats positive, indicating that habitat 355 

loss/fragmentation effects in other habitats were highest in areas where rainfall has increased 356 

most over time. Apart from shrubland/heathland, the coefficients for minimum precipitation 357 

were relatively small (Fig. 5b). For shrubland/heathland, the chance of a species being 358 

negatively affected by habitat loss/fragmentation declines as precipitation increases. Effect 359 

sizes varied considerably for temperature change (Fig. 5d). Woodland, shrubland/heathland 360 
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and rainforest displayed negative coefficients; habitat loss/fragmentation effects were lowest 361 

in areas where temperature has increased most over time. In contrast, habitat 362 

loss/fragmentation effects on species in wetlands and other habitats were highest in areas 363 

where temperature has increased most. Forest and shrubland/heathland coefficients were 364 

small. For habitat amount, the shrubland/heathland, savanna/grassland and wetland 365 

coefficients were positive, indicating that as habitat amount increases, the chance of a species 366 

in these habitats being negatively affected by habitat loss/fragmentation also increases. All 367 

other coefficients were small, except for rainforest; suggesting that the chance of a rainforest 368 

species being negatively affected by habitat loss/fragmentation declines as habitat amount 369 

increases.   370 

 371 

Discussion 372 

We have presented here the first empirical synthesis to quantify and test for interacting 373 

effects among current climate, climatic change and habitat loss on terrestrial biological 374 

populations at a global scale. Our empirical approach demonstrates that habitat loss and 375 

fragmentation effects were greatest where maximum temperature of warmest month was 376 

highest (i.e. effects were greatest in areas with high temperatures). Conversely, habitat loss 377 

and fragmentation effects were lowest in areas where precipitation has increased most (i.e. 378 

smaller effects occurred in areas where average rainfall has increased over time than in areas 379 

where rainfall has decreased). These were the two most important variables, with mean 380 

temperature change as the third. Therefore both current climate (i.e. maximum temperature) 381 

and climate change (i.e. precipitation change) appear to be key determinants of habitat loss 382 

and fragmentation effects on terrestrial biodiversity. 383 

 384 
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Model interpretation 385 

Our results suggest that areas with high current temperatures and where average rainfall has 386 

decreased over time exacerbate the negative effects of habitat loss and fragmentation on 387 

species density and/or diversity. Over the last 10-15 years, key findings on the ecological 388 

effects of high temperatures and extended droughts in terrestrial ecosystems have 389 

accumulated (e.g. Davis & Shaw 2001; Walther et al. 2002; Parmesan & Yohe 2003; Root et 390 

al. 2003; Thomas et al. 2004; Bates et al. 2005; Parmesan 2006; Allen et al. 2010). Evidence 391 

suggests that stressful conditions appear to drive local population dynamics; however, the 392 

responses of both flora and fauna to drought, heat and rain, can vary (Parmesan 2006; 393 

Pearson 2006). Species react differently to climate change depending on their life-history 394 

characteristics, individual thresholds and many environmental factors (Walther et al. 2002). It 395 

is also important to recognize that the threshold of climate change below which species 396 

extinction occurs or populations severely decline is likely to be determined by the pattern of 397 

habitat loss (Opdam & Wascher 2004; Keith et al. 2008). For instance, Travis (2003) used a 398 

lattice model to investigate the combined impacts of climate change and habitat loss on a 399 

hypothetical species and showed that during climatic change, the habitat loss threshold occurs 400 

sooner. Habitat loss and fragmentation may increase species susceptibility to climate change 401 

by limiting their ability to track climate variations across space (Thomas et al. 2004). In 402 

contrast, species within high temperature and lower precipitation regions may be more 403 

susceptible to fragmentation and habitat destruction because they are unable to adapt rapidly 404 

enough to their environmental conditions. 405 

We hypothesized that different taxonomic groups might show different interactions 406 

between habitat loss and climate change depending on their functional niche and habitat 407 

requirements. In spite of the diverse number of taxonomic groups and species included in the 408 

meta-analysis, arthropods were the only group to show little interaction between current 409 
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temperature and habitat loss effects compared with other taxa. Studies of this taxa do not 410 

appear to be outliers, but rather indicate that differences among taxa may reflect the choice of 411 

species sampled. For example, previous studies of insects have reported that single drought 412 

years and manipulated water availability cause drastic crashes in some species while leading 413 

to population booms in others (Mattson & Haack 1987; Schowalter et al. 1999). The 414 

arthropods included in our meta-analysis varied greatly from ants, termites, dung beetles, 415 

moths, flies, bees, scorpions, amphipods, spiders, cockroaches to butterflies, and included a 416 

wide range of specialists, generalists, opportunists, and even hot climate specialists. The 417 

range of plants, mammals, reptiles and amphibians, on the other hand, were much more 418 

limited. Thus, it is possible that diverse animal groups are more resistant or resilient on 419 

average because they are more likely to include various heat-tolerant and drought-resistant 420 

species. Specialist species are more prone to extinction during climate change because they 421 

tend to have low colonization ability and limited dispersal, whereas generalist species with 422 

relatively wider ranges tend to be more resilient (Travis 2003; Thomas et al. 2004). 423 

Consequently, in order to thoroughly understand how the combined effects of current climate, 424 

climate change and habitat loss vary between animal groups, further investigations into 425 

specific taxa, functional groups and ecological traits are required. It seems clear, however, at 426 

least at the broad taxonomic level that higher order species on average are being more 427 

adversely affected by habitat loss and climate interactions.  428 

The variation in effects among habitats were far more complex than among taxonomic 429 

groups. Species of the same taxa are often similar in both morphology and ecology, yet they 430 

can respond differently in different habitats or distributions depending on the local conditions 431 

(Schlichting 1986). For example, it has been well documented that species can change 432 

physiologically and morphologically to adapt to their environment (e.g. Davis & Shaw 2001; 433 

Losos & Ricklefs 2009; Berg et al. 2010; Hofmann & Todgham 2010; Hill et al. 2011). This 434 
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ability is particularly important in plants, whose sessile life-history requires them to deal with 435 

ambient conditions (Wilson et al. 1980; Dudley 1996; Aiba et al. 2004; Puijalon et al. 2005). 436 

Other species have adapted to unpredictable habitat availability in space and time by 437 

developing high mobility, and consequently are less susceptible to human-induced 438 

fragmentation, for example, species from coastal habitats and early succession stages of 439 

ecosystems (Opdam & Wascher 2004). In contrast, species in systems with less natural 440 

variability, like forests, heathlands and wetlands, have evolved under fairly predictable 441 

conditions. Species in those habitats that were found not to be negatively impacted by habitat 442 

loss and climate interactions, may therefore be caused by the adaptability or phenotypic 443 

plasticity of the species in each habitat, the natural variability of the ecosystem, or both, 444 

rather than the type of habitat alone.  445 

Another theory for species not being negatively impacted by habitat loss and climate 446 

interactions, within specific habitats, is the notion that the amount of habitat in the landscape 447 

and the spatial distribution of remaining habitat may influence the degree to which climate 448 

interacts with habitat loss (Opdam & Wascher 2004; Pyke 2004). It has been hypothesized 449 

that fragmentation effects should be most pronounced at low levels of habitat cover (Andrén 450 

1994; Bascompte & Solé 1996; Fahrig 1997; Swift & Hannon 2010). Forests, grasslands and 451 

wetlands often become highly fragmented with habitat loss, while shrublands, heathlands and 452 

other ecosystems such as farmland and pastures are regarded as less vulnerable. Species in 453 

highly fragmented ecosystems, when responding to climate change, may therefore be limited 454 

by the amount and spatial configuration of habitat (Opdam & Wascher 2004; Pyke 2004). 455 

This concept may help to explain some of the variation found among the habitat types in this 456 

study, especially in relation to maximum temperature effects. Differences in how authors 457 

classify habitats across the globe, and the relatively small number of wetland (n = 27) and 458 
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savanna or grassland (n = 93) samples included in our meta-analysis may also explain some 459 

of the variation. 460 

 461 

Model limitations 462 

An assumption of meta-analyses is that the studies examined have collected data in a 463 

sufficiently similar manner that they can be pooled to identify meaningful patterns. Although 464 

habitat cover (proportion of the area covered by suitable habitat) was shown to have little 465 

importance in explaining habitat loss/fragmentation effects in our model, the resolution of the 466 

habitat amount data was variable and could not be improved, because of inconsistencies in 467 

the spatial scales reported among studies and missing data (Appendix 1). Therefore, it’s 468 

possible that the logistic regression models may have underestimated the impact of habitat 469 

cover as a predictor. Despite this limitation, we believe that our results are valid and the lack 470 

of a habitat amount effect does not affect our conclusions about the climate effects, which is 471 

the main focus of the study. Furthermore, there is a slight lack of fit at the lower and upper 472 

quantiles of our model (Appendix 2). This is primarily due to the model failing to capture all 473 

of the variation among studies and not a result of a miss-specified functional form. However, 474 

because the main aim of the model was to understand how the effects of current climate, 475 

climate change and habitat loss interact and synergistically impact on biological systems 476 

rather than as a general predictive model we do not believe this affects our overall 477 

conclusions. As discussed earlier, the relationships among habitats that may explain the 478 

unexplained variation are complex and should be explored in more detail in future work.   479 

 480 

Implications for conservation  481 
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The results of this study have important implications for conservation of biodiversity under 482 

climate change. A plethora of modelling studies have already shown the potential impacts of 483 

climate change on the distributions and abundances of species (e.g. Easterling et al. 2000; 484 

Berry et al. 2002; Midgley et al. 2003; Thomas et al. 2004; Thuiller 2004; Harrison et al. 485 

2006; Márquez et al. 2010). While many studies have postulated about the potential for 486 

synergetic effects between climate change and other stressors (e.g. Harvell et al. 2002; Pyke 487 

2004, 2005; Christensen et al. 2006; Brook et al. 2008) few studies have examined these 488 

interactions explicitly. The analysis conducted in this study provides an empirical test using 489 

direct examples to inform conservation biologists of what responses we can expect to see 490 

more of in the coming decades.  491 

Integrated assessments, such as this one, on how species and ecosystems respond to 492 

climate and habitat loss can help to identify appropriate actions for biodiversity conservation 493 

and assist in preparing for future conservation challenges. The overall breakthrough that 494 

emerges from this paper is the discovery that areas with high temperatures where average 495 

rainfall has decreased over time augment the negative effects of habitat loss on species 496 

density and/or diversity. The question now is whether existing management strategies for 497 

conserving biodiversity are still appropriate under predicted climatic conditions? 498 

Management strategies should focus towards areas with warmer climates, especially those 499 

that are more susceptible to precipitation change. In the case where biodiversity is threatened 500 

by interactions among climate change and other stressors, there are essentially two main 501 

approaches to minimising loss. Where climate change interactions are expected to be 502 

relatively small and knowledge and capacity high, the best feasible option might be to 503 

continue what we are already doing. That is, building resilience in a system to climate 504 

change, for example, through habitat restoration, and continued management of other 505 

stressors such as pest management, and fire and grazing management. Existing measures 506 
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against drought such as protecting and creating migration corridors (Anderson & Jenkins 507 

2006) should also be intensified, to reduce the negative interaction between habitat loss and 508 

climate change, especially in fragmented landscapes. However, in areas where the effects of 509 

climate change and interactions are expected to be severe, our current suite of management 510 

actions may be ineffective. It may be appropriate in these cases to use a mixture of more 511 

proactive management strategies instead; such as species translocation (McDonald-Madden 512 

et al. 2011), engineering habitat to reduce impact of interactions (Brook et al. 2008), and 513 

even abandoning effort on saving species in one area in favour of other areas (Botrill et al. 514 

2008). Monitoring that informs management is thus essential here to pre-emptively identify 515 

populations that may suffer decline, and to assess cost-effective and feasible management 516 

actions (Field et al. 2004; Carwardine et al. 2011).  517 
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Tables 

Table 1   List of parameters included in the logistic-regression analyses to test whether study habitat loss/fragmentation effect sizes are related to 

current climate and/or climatic change 

Parameter   Description         Type of variance/effect 

Taxa    taxonomic group               random slope effect          

Habitat    type of habitat                random slope effect 

Study response   response variable measured              random intercept effect 

Habitat amount  proportion of the area covered by suitable habitat    fixed effect 

Max temperature  maximum temperature of warmest month (1950-2000)           fixed effect 

Min precipitation   precipitation of driest month (1950-2000)            fixed effect 

Mean precipitation change  annual average precipitation difference ((1977-2006) - (1901-1930))  fixed effect 

Mean temperature change annual average temperature difference ((1977-2006) - (1901-1930))   fixed effect 
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Table 2   Logistic-regression models with habitat loss/fragmentation effects as the dependent 

variable and climatic parameters and habitat amount as independent variables. Random-effect 

variables coding for study (intercept), taxonomic group (slope) and habitat type (slope) were 

included in all models. The table indicates the fixed-effect variables included in each model, 

the Akaike’s information criterion scores (AIC), the difference between the AIC for a given 

model and the best fitting model (ΔAIC), AIC weights (Wi) and the individual variable 

weights (wi)                                    

Model         Variables       AIC           ΔAIC       Model weights  
                    (Wi)          

XIX        mtwm + precdiff + tmxdiff    629.2        0.0        0.68 

VII        mtwm + precdiff         632.1        2.9     0.16 

XVII        mtwm + podm + tmxdiff    632.4        3.2     0.14 

XX        mtwm + precdiff + habper    637.7        8.5     0.01 

VI        mtwm + podm     639.4        10.2    0.00 

XXVI        mtwm + podm + precdiff + tmxdiff   639.4        10.2    0.00 

VIII        mtwm + tmxdiff     641.7        12.5    0.00 

XVI        mtwm + podm + precdiff    642.4        13.2    0.00 

XXIX        mtwm + precdiff + tmxdiff + habper  643.7        14.5    0.00 

IX        mtwm + habper     645.7        16.5    0.00 

XXVIII        mtwm + podm + tmxdiff + habper   646.5        17.3    0.00 

I        mtwm      648.8        19.6    0.00 

XVIII        mtwm + podm + habper    649.9        20.7    0.00 

XXI        mtwm + tmxdiff + habper    650.0        20.8    0.00 

XXV           precdiff + tmxdiff + habper    652.8        23.6    0.00 

XXVII        mtwm + podm + precdiff + habper   654.9        25.7    0.00 

XXXI         mtwm + podm + precdiff + tmxdiff + habper  659.3        30.1    0.00 

XXII           podm + precdiff + tmxdiff    660.6        31.4    0.00 

XXIV         podm + tmxdiff + habper    665.6        36.4    0.00 

XXX          podm + precdiff + tmxdiff + habper   665.7        36.5    0.00 
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XIV           precdiff + habper     669.1        39.9        0.00 

XI      podm + tmxdiff     669.3        40.1    0.00 

XIII      precdiff + tmxdiff     670.0        40.8    0.00 

XXIII        podm + precdiff + habper    678.6        49.4    0.00 

XV      tmxdiff + habper     680.8        51.6    0.00 

V      habper      693.0        63.8    0.00 

III      precdiff      695.1        65.9    0.00 

XII      podm + habper     695.3        66.1    0.00 

X      podm + precdiff     695.5        66.3    0.00 

IV      tmxdiff      698.2        69.0    0.00 

II      podm      703.9        74.7    0.00 

N      Null       716.8        87.6    0.00 

Individual variable weights (wi)   mtwm         precdiff         tmxdiff         podm         habper 

      0.999         0.857    0.825           0.147         0.011 

Models are ranked by ΔAIC values; bold indicates lowest AIC value in model set. 

mtwm = maximum temperature of warmest month; podm = precipitation of driest month; precdiff = 

annual average precipitation difference; tmxdiff = annual average temperature difference; habper = 

proportion of the area covered by suitable habitat. 
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Figure legends 

Fig. 1. Flow chart detailing the process of study identification, selection and data extraction 

for studies included in the meta-analysis. 

Fig. 2. Location of studies and maximum temperature of warmest month, WorldClim 1950-

2000 (Hijmans et al. 2005) (n = 168). 

Fig. 3. Coefficient averages from the logistic regression models in Table 2 explaining the 

variation in habitat loss and fragmentation effects on biological populations as influenced by 

current climate, climatic change and amount of habitat. max temperature = maximum 

temperature of warmest month; min precipitation = precipitation of driest month; mean 

precipitation change = annual average precipitation difference; mean temperature change = 

annual average temperature difference; habitat amount = proportion of the area covered by 

suitable habitat. 

Fig. 4. Logistic regression coefficients for each taxonomic group averaged across all models 

and combined with the fixed-effect model-averaged coefficients. Positive associations exist 

between habitat loss/fragmentation effects and (a) maximum temperature of warmest month, 

(b) minimum precipitation of driest month, (c) mean annual precipitation difference, (d) mean 

annual temperature difference, or (e) habitat amount for taxonomic groups with coefficients 

greater than zero. Negative associations exist for those taxonomic groups with coefficients 

less than zero. 

Fig. 5. Logistic regression coefficients for each habitat type averaged across all models and 

combined with the fixed-effect model-averaged coefficients. Positive associations exist 

between habitat loss/fragmentation effects and (a) maximum temperature of warmest month, 

(b) minimum precipitation of driest month, (c) mean annual precipitation difference, (d) mean 
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annual temperature difference, or (e) habitat amount for habitats with coefficients greater 

than zero. Negative associations exist for those habitats with coefficients less than zero. 




