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Interactions between directly- and parametrically-driven vibration modes in a
micromechanical resonator
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The interactions between parametrically- and directly-driven vibration modes of a clamped-clamped beam
resonator are studied. An integrated piezoelectric transducer is used for direct and parametric excitation. First,
the parametric amplification and oscillation of a single mode are analyzed by the power and phase dependence
below and above the threshold for parametric oscillation. Then, the motion of a parametrically-driven mode is
detected by the induced change in resonance frequency in another mode of the same resonator. The resonance
frequency shift is the result of the nonlinear coupling between the modes by the displacement-induced tension in
the beam. These nonlinear modal interactions result in the quadratic relation between the resonance frequency
of one mode and the amplitude of another mode. The amplitude of a parametrically-oscillating mode depends
on the square root of the pump frequency. Combining these dependencies yields a linear relation between the
resonance frequency of the directly-driven mode and the frequency of the parametrically-oscillating mode.
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I. INTRODUCTION

Parametric amplification and oscillations occur when in a
resonant system, one of the system parameters (e.g. spring
constant, effective mass) is modulated. The principle is used
in low-noise electronic amplifiers1,2 and to increase the
broadband gain in fiber optics.3–5 In mechanical resonators,
parametric oscillations are typically obtained by modulation of
the spring constant.6–9 Applications of parametric resonances
in nano- and micro-electromechanics10 (NEMS and MEMS)
include quality(Q)-factor enhancement,11,12 bit storage, and
bit flips using the bistable phase in a parametric oscillator.13,14

Parametric amplification can also be used for noise squeezing
in a coupled qubit-resonator system15 and was recently
observed in carbon nanotube resonators.16

Another interesting phenomenon in NEMS is the inter-
action between different vibration modes. Motivated by the
trend toward large scale integration of resonators, researchers
study the interactions between several resonators.17 Recently,
nonlinear modal interactions between the flexural modes in a
clamped-clamped beam resonator18–20 and a cantilever21 have
been reported: it has been shown that the resonance frequency
of one mode depends quadratically on the amplitude of another
mode.

Here, we explore the modal interactions between a directly-
and a parametrically-driven mode, yielding a linear de-
pendence of the resonance frequency of the directly-driven
mode on the pump frequency of the parametrically-driven
mode. In Sec. II, the experimental conditions are provided.
The following section reports on a detailed analysis of the
piezoelectrical parametric amplification of a single mode.
Section IV discusses the modal interactions between a directly-
driven and a parametrically-pumped mode, and this is the
central result of this work.

II. DEVICE DETAILS

The resonators are clamped-clamped beams fabricated from
500 nm thick low-stress silicon nitride (SiN). A stack of
platinum, aluminum nitride (AlN), and Pt (100-400-100 nm

thick) is sputtered on top to form an integrated piezoelectric
transducer (piezo). Figure 1(a) shows a scanning electron
micrograph of the device; the white arrow indicates the
transducer. The resonators are freely suspended by a through-
the-wafer etch. Two lengths are used: L = 500 and 750 μm.
The width of both resonators is 45 μm. Details of the
fabrication procedure are described in Ref. 22. An ac voltage
on the piezo produces a force on the resonator and at
the same time modulates its spring constant. Both the force
and the spring constant depend linearly on the voltage. The
voltage on the piezo, Vout, is composed of two frequencies, one
to directly excite the resonator and one to parametrically pump
it, i.e., Vout = Vdirect cos(�t) + Vpump cos(2�t + φ), where �

is the drive frequency and φ the phase difference between the
two voltages.

The motion of the resonator is measured using an optical
deflection setup, as depicted in Fig. 1(b). Frequency spectrum
and network analyzer measurements are implemented in a
digital signal processor. Measurements are conducted in the
vacuum at a pressure of 10−4 mbar and at atmospheric
pressure. For direct driving, the frequency responses at the
first and second modes in the vacuum are shown in Figs. 1(c)
and 1(d), with Q1 = 6500 and Q2 = 19 600.23

III. PARAMETRIC AMPLIFICATION OF A SINGLE MODE

The time-dependent part of the equation of motion of the
piezoelectric resonator including parametric modulation of the
spring constant is described by

mü + mωR

Q
u̇ + [

mω2
R + kp sin(2�t + φ)

]
u + αu3

= F cos(�t). (1)

Here, u(t) is the amplitude of the mode, m is the effective
mass, F is the direct drive force, and ωR is the resonance
frequency. The dots denote taking the derivative to time. The
spring constant is modulated at twice the drive frequency �

with modulation strength kp. The α accounts for the Duffing
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FIG. 1. (Color online) Measurement setup. (a) False-colored
scanning electron micrograph of a SiN beam with the piezo actuator
(white arrow) on top (scale bar is 20 μm). (b) Optical deflection
setup is used to detect motion in air and the vacuum. The piezoactive
AlN layer is depicted in red. The piezo actuator and photodiode are
connected to a digital signal processor. (c), (d) Typical frequency
responses of the first and second modes (amplitude A), respectively,
in the vacuum. The inset in (c) shows the frequency response in air,
of the resonator with length 750 μm, with a resonance frequency
of 98 kHz. The response of a damped-driven harmonic oscillator
is fitted through the responses to obtain Q factors and resonance
frequencies.

nonlinearity with α > 0 for clamped-clamped beams.24 The
parametric gain G is defined by the ratio between the amplitude
of the motion with and without parametric drive, and can be
calculated from Eq. (1):25,26

G(φ) =
√

cos2(φ/2)

(1 + kp/kt )2
+ sin2(φ/2)

(1 − kp/kt )2
. (2)

This equation holds for small amplitude vibrations, where the
nonlinearity can be neglected. Depending on φ, the motion is
amplified (G > 1) or attenuated (G < 1). Above the threshold
parametric pump, kp > kt with kt = 2mω2

R/Q, the resonator
is parametrically oscillating.

Parametric behavior is demonstrated for a resonator with
length 750 μm vibrating in air, with fR,1 = 98 kHz and
Q1 = 58 [frequency response in the inset of Fig. 1(c)]. To
amplify the motion, the resonator is driven parametrically at
2fR,1 with φ = −0.75π . Figure 2(a) shows the Q factor of
the resonator as a function of the parametric pump voltage.
The Q factor increases by a factor of 1.7 when the parametric
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FIG. 2. (Color online) Characterization of the parametric am-
plification in air. (a) Q-factor enhancement is proportional to the
parametric pump voltage. (b) Measured gain vs phase relation; the
solid blue line represents Eq. (2), with fit parameter kp/kt = 0.26.

pump is 10 V. Furthermore, the phase dependence of the gain
at 10 V parametric pump is plotted in Fig. 2(b). The gain
varies periodically with the phase difference with a period
of 2π . The minimum gain is smaller than one, indicating
destructive interference by an out-of-phase parametric signal.
Equation (2) fits the measured data well with kp = 0.26 kt .
In these experiments the parametric driving is below the
parametric threshold kt . A further increase of the pump
voltage is not possible as this would damage the piezostack.
To study parametric oscillation, further experiments are
conducted in the vacuum. Here the Q factor improves by
two orders of magnitude [Fig. 1(c)], enabling post-threshold
driving.

Figure 3 summarizes the measurements of the parametric
oscillations performed in the vacuum. A 500 μm long res-
onator is used, for which the frequency response is plotted in
Fig. 1(c). Frequency spectra are measured for three parametric
pump voltages in Fig. 3(a). At 80 mV no sign of oscillation is
observed (lower panel), and the onset of parametric oscillation
is found around 85 mV as shown in the middle panel. A
further increase of the pump voltage (upper panel) results
in a larger oscillation amplitude. Here, the nonlinear term in
Eq. (1) results in an amplitude-dependent resonance frequency.
Figure 3(b) shows network analyzer measurements of the
resonator amplitude (color scale) as a function of the pump
voltage. The resonator is driven directly and parametrically
with φ = −0.65π . A direct drive signal, weak enough to
operate the resonator in the linear regime when Vpump = 0,
is applied to initiate the motion. The motion of the weakly
driven resonator is coherently amplified by the parametric
excitation, and the amplitude increases with Vpump. The
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FIG. 3. (Color online) Parametric oscillations of the first flexural
mode in the vacuum. (a) Frequency spectra at three pump voltages;
the parametric oscillation becomes visible when Vpump > 85 mV.
(b) Parametric tongue, showing frequency responses when the
resonator is driven directly (Vdirect = 5 mV) and parametrically past
the instability threshold. Color indicates the amplitude of oscillation.
(c) Hysteresis between the forward (red) and reverse sweep (green)
when driving parametrically (Vpump = 95 mV). The blue dashed line
shows the square root dependence of the amplitude A on the frequency
f . (d) Phase dependence of the parametric oscillations at Vpump =
95 mV. The color indicates the amplitude of oscillation.

observed frequency stiffening is expected for a cubic spring
constant α > 0. The oscillation sustains over a few kHz
when the frequency is swept forward. The amplitude shows
a hysteretic response when the frequency is swept back [see
Fig. 3(c)]. The amplitude of the oscillation depends on the
square root of the frequency (dashed blue line).25 To study
the relation between the parametric oscillation amplitude and
the phase φ, the resonator is parametrically excited above the
threshold. Figure 3(d) shows the amplitude of the oscillation
when the direct drive frequency is swept while varying
the phase difference. Depending on the phase between the
direct drive and the parametric excitation, constructive or
destructive interference occurs which results in amplification
or attenuation of the motion induced by the weak signal that
initiates the motion. The maximum parametric amplification
is found at a phase difference of −π and π . The exper-
iments described above clearly demonstrate the parametric
behavior.

IV. COUPLING BETWEEN PARAMETRIC AND DIRECT
DRIVEN MODES

We now investigate the interactions between the different
vibrational modes of the same mechanical resonator, when
one of the modes is parametrically oscillating. This requires
us to monitor the response of one mode while another
mode is parametrically excited. In particular, the interactions
between the first and second modes are considered. First,
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FIG. 4. (Color online) Interactions between a directly- and
parametrically-driven mode. (a) Frequency responses of the second
mode while varying pump frequency of the first mode. Color scale
indicates the amplitude of the second mode. The linear dependence
of fR,1 on fpump,2 is observed as explained in the text. (b) Reversed
experiment: frequency responses of the first mode for varying the
pump frequency of the second mode.

we study the effect of the parametric oscillations of the
first mode, characterized in the previous section, on the
resonance frequency of the second mode. Figure 4(a) shows
frequency responses of the second mode, when the first mode
is parametrically pumped around its resonance frequency.
The first mode is only parametrically excited and no direct
drive at the resonance frequency is applied. Below the reso-
nance frequency of the first mode, no change in the resonance
frequency of the second mode is observed. Pumping at
twice the resonance frequency, the first mode starts to oscillate
parametrically. This oscillation induces a significant shift in the
resonance frequency of the second mode. By parametrically
exciting the first mode, the resonance frequency of the second
mode is tuned over more than 200 times the resonator
linewidth. There is a linear relation of fR,2 on fpump,1 with
sensitivity fR,2/fpump,1 = 1.4 Hz/Hz.

The change in the resonance frequency is explained as
follows: the oscillation of the first mode increases the tension
in the beam. This tension tunes the resonance frequency of the
second mode to a higher value. A linear dependence between
the two frequencies is expected, as in clamped-clamped
beams the resonance frequency of one mode depends quadrat-
ically on the amplitude of the other mode,18 i.e., fR,i ∼ |Aj |2
for modes i and j . The amplitude of the parametric oscillation
depends on the square root of the pump frequency |Aj | ∼
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√
fpump,j,25 as experimentally verified in Fig. 3(c). Combining

these two dependencies, one expects fR,i ∼ fpump,j . This
linear dependence is clearly observed in the measurements
[see Fig. 4(a)].

We have also studied the influence of the parametrically-
excited second mode on the resonance frequency of the first
mode, i.e., the first mode is now probing the second mode,
which is parametrically oscillating. Again, a linear dependence
of the resonance frequency on the parametric pump frequency
is found, as is shown in Fig. 4(b). In this case, the sensitivity
fR,1/fpump,2 = 79 mHz/Hz. As the pump frequency fpump,2

is increased above 1.165 MHz the parametric oscillation
disappears, and the resonance frequency of the first mode
jumps back to its original value. At this point, the nonlinearity
causes the oscillation of the second mode to jump to the low
amplitude state, which is reflected by the sharp transition of the
resonance frequency of the first mode. The large difference in
sensitivity with the reversed experiment in Fig. 4(a) indicates
that parametric pumping of the second mode is less effective
to change the resonance frequency of the first mode than
vice versa. This can be understood since the first mode has
the largest oscillation amplitude and can provide the largest
tension in the beam.

V. CONCLUSION

The interactions between a directly- and a parametrically-
oscillating mode of the same mechanical resonator are studied.
The parametric amplification and oscillations of a clamped-
clamped resonator with an integrated piezoelectric transducer
are investigated in detail. The dependence of the oscillation
amplitude on pump frequency and phase difference are in
agreement with theory. In this work, we demonstrate that
the parametric oscillation of one mode induces a change in
the resonance frequency of the other vibrational modes. This
frequency change is proportional to the pump frequency, as is
shown for the first and second modes. The sensitivity of the
resonance shift of the second mode on the pump frequency of
the first mode is found to be 1.4 Hz/Hz. When the experiment
is reversed, i.e., the oscillating second mode is detected by a
shift in resonance frequency of the first mode, the sensitivity
is 79 mHz/Hz.
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