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Interactions between gut microbiota, host
genetics and diet relevant to development
of metabolic syndromes in mice
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Both genetic variations and diet-disrupted gut microbiota can predispose animals to metabolic
syndromes (MS). This study assessed the relative contributions of host genetics and diet in shaping
the gut microbiota and modulating MS-relevant phenotypes in mice. Together with its wild-type (Wt)
counterpart, the Apoa-I knockout mouse, which has impaired glucose tolerance (IGT) and increased
body fat, was fed a high-fat diet (HFD) or normal chow (NC) diet for 25 weeks. DNA fingerprinting and
bar-coded pyrosequencing of 16S rRNA genes were used to profile gut microbiota structures and to
identify the key population changes relevant to MS development by Partial Least Square
Discriminate Analysis. Diet changes explained 57% of the total structural variation in gut microbiota,
whereas genetic mutation accounted for no more than 12%. All three groups with IGT had
significantly different gut microbiota relative to healthy Wt/NC-fed animals. In all, 65 species-level
phylotypes were identified as key members with differential responses to changes in diet, genotype
and MS phenotype. Most notably, gut barrier-protecting Bifidobacterium spp. were nearly absent in
all animals on HFD, regardless of genotype. Sulphate-reducing, endotoxin-producing bacteria of the
family, Desulfovibrionaceae, were enhanced in all animals with IGT, most significantly in the Wt/HFD
group, which had the highest calorie intake and the most serious MS phenotypes. Thus, diet has a
dominating role in shaping gut microbiota and changes of some key populations may transform the
gut microbiota of Wt animals into a pathogen-like entity relevant to development of MS, despite
a complete host genome.
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Introduction

Metabolic syndrome (MS) is a combination of
medical disorders, including obesity and insulin
resistance that increase the risk of developing
diabetes and cardiovascular diseases, which have

become a devastating epidemic worldwide. Many
large-scale epidemiological studies have indicated
that the change from a plant-based diet to the one
that is animal-based may be the most important
factor associated with the rapid increase in the
prevalence of MS (Campbell and Campbell, 2005).
Altered gut microbiota has recently been suggested
to be critical in the development of obesity, diabetes
and hypertension (Turnbaugh et al., 2006; Cani
et al., 2007b; Holmes et al., 2008; Wen et al., 2008).
Gut microbiota, which are closely associated with
host nutrition, metabolism and immunity, acts as a
‘second genome’ for modulating the health pheno-
type of the superorganism host (Jia et al., 2008).
Gut microbiota are likely indispensable for obesity
development, as germ-free animals are resistant to
high-fat diet (HFD)-induced obesity, indicating that
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high-calorie food alone is not sufficient to induce
obesity and insulin resistance (Backhed et al., 2007).
Low-grade, systemic and chronic inflammation
has been identified as one primary pathological
condition underlying the development of MS (Well-
en and Hotamisligil, 2005). Recently, endotoxins
produced by opportunistic pathogenic members of
the gut microbiota have been identified as the pri-
mary mediator for triggering the low-grade inflam-
mation responsible for MS development (Cani et al.,
2007b). It has been shown that HFDs disrupt gut
microbiota in two ways, diminishing levels of gut
barrier-protecting bifidobacteria and promoting the
growth of endotoxin producers (Cani et al., 2007a).
These changes eventually result in higher levels of
lipopolysaccharide (LPS) in the host blood, causing
inflammation, and consequently, obesity and insu-
lin resistance (Cani et al., 2007a, 2007b). Although
specific endotoxin producers remain to be identi-
fied, these observations highlight the important
mediating role of gut microbiota in diet-induced MS.

For many years, scientists have focused on finding
some common variants in human genes that may
lead to MS. For example, the variant in the fat mass
and obesity-associated gene (FTO) is associated
with body mass index in populations of European
origin (Frayling et al., 2007), but not in the Chinese
populations (Li et al., 2008a). In humans, one of the
hallmarks of MS is a decreased plasma concentra-
tion of high-density lipoprotein (HDL) and its major
component, apolipoprotein a-I (Apoa-I). It has long
been postulated that Apoa-I and HDL levels are
inversely associated with the incidence of MS,
which are associated with an increased risk of type
II diabetes and cardiovascular diseases (Dandona
et al., 2005; Eckel et al., 2005). Recently, Han et al.
(Han et al., 2007) showed that Apoa-I�/� mice have
impaired glucose tolerance (IGT) and increased
body fat because of the fact that Apoa-I activates
AMP-activated protein kinase (AMPK) and thus
affects the energy and glucose metabolism of the
cell. Given the fact that variations in both host
genetics and gut microbiota predispose animals to
MS, it is compelling to investigate the relative
contributions of diet-disrupted gut microbiota and
host gene mutations to MS development.

In this study, Apoa-I�/� mice and their wild-type
(Wt) counterparts were maintained on either a
normal chow (NC) diet or HFD for a long period of
time to reflect the chronic nature of MS develop-
ment in humans. Faecal samples were collected
from each of the animals at the end of the trial and
subjected to multivariate statistical analysis of gut
microbiota using two 16S rRNA gene fingerprinting
methods (denaturing gradient gel electrophoresis
(DGGE), and terminal restriction fragment length
polymorphism (T-RFLP)), followed by bar-coded
pyrosequencing. Our results indicate that diet-
induced changes of gut microbiota relevant to MS
phenotype development override host gene muta-
tions in the mouse lines studied. This finding calls

for further studies to assess the relative contri-
butions of diet-disrupted gut microbiota and host
gene mutations relevant to development of MS.

Materials and methods

Animal treatment
Apoa-I�/� and Wt C57BL/6J mice (male, at age 10–12
weeks) were purchased from the Jackson Laboratory
(Bar Harbor, ME, USA) and raised in the same room
with a regular 12-h dark/light cycle. After acclima-
tization, the Apoa-I�/� and the Wt animals were
fed with both NC diet (containing 5.2% fat, 3.2–
3.4 kcal g�1, from SLAC Inc., Shanghai, China)
and HFD (containing 34.9% fat, 5.21 kcal g�1, from
Research Diets, Inc., New Brunswick, NJ, USA);
each group contained five animals. Each group had
the first two animals placed in one cage and the
other three in another, whereas all were reared in the
same room with uniform conditions carefully main-
tained among treatments. The food intake and body
weight of each animal was measured every 2 weeks.
For the glucose tolerance test, mice at 25 weeks
were fasted for 3 h, then injected intraperitoneally
with glucose (2 g per kg body weight), and blood
glucose levels were monitored before and at 30, 60
and 120min after injection using a glucometer
(FreeStyle; TheraSense, Alameda, CA, USA). The
day before blood glucose testing, fresh faecal matter
was collected from each of the mice and immedi-
ately stored at �20 1C for subsequent analysis.
The protocol for animal use was approved by the
Experimental Animal Committee of the Institute
for Nutritional Sciences, Shanghai Institutes for
Biological Sciences, Chinese Academy of Sciences.

16S rRNA gene-based analysis
Faecal DNA was extracted using the bead-beating
method, as previously described (Zoetendal et al.,
2002). Isolated faecal DNA was then used as a
template for the amplification of the V3 regions
of the 16S rRNA gene using the universal primers P3
(50-CGCCCGCCGCGCGCGGCGGGCGGGGCGGGGGC
ACGGGGGGCCTACGGGAGGCAGCAG-30) and P2
(50-ATTACCGCGGCTGCTGG-30) and the hot-start
touchdown protocol described by Muyzer et al.
(Muyzer et al., 1993). DGGE was carried out with a
Dcode System apparatus (Bio-Rad, Herts, UK) and a
gradient from 27–52%. Phylogenetic identification
of important bands was conducted, as described
(Muyzer et al., 1993) (Supplementary Table 2).

The PCR products from the amplification of the
16S rRNA gene with primers 8F (50-GAGAGTTT-
GATCCTGGCTCAG-30), the 50 end labelled D4 and
1492R (50-GGC/TTACCTTGTTACGACTT-50) (Haya-
shi et al., 2002) were used for T-RFLP analysis. Five
restriction endonucleases, AluI, HaeIII, HhaI, MspI
or Csp6I, were used for T-RFLP analysis with a CEQ
8000 genetic analysis system (Liu et al., 1997).

For bar-coded pyrosequencing, the primers P1
(50-NNNNNNNNCCTACGGGAGGCAGCAG-30) and P2
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(50-NNNNNNNNATTACCGCGGCTGCT-30), marked at
the 50 end with a sample unique DNA bar code of
eight nucleotide sequences, were used to amplify
the V3 regions from each faecal sample. The products
from different samples were mixed in equal ratios
for pyrosequencing with the GS FLX platform
(McKenna et al., 2008).

Statistical and bioinformatics analysis
Terminal restriction fragment length polymorphism
fingerprints were digitalized with software from the
CEQ 8000 system (Beckman Coulter, Fullerton, CA,
USA), then analysed with the principal components
analysis and multivariate analysis of variance
(MANOVA) in a Matlab (ver. 7.1, The MathWorks,
Inc., Natick, MA, USA) environment.

On the basis of several previous reports describing
sources of errors in 454 sequencing runs (Margulies
et al., 2005; Sogin et al., 2006; McKenna et al., 2008),
the standards used for quality control are described
in the Supplementary Information. The usable V3
unique sequences were aligned using NAST (DeSantis
et al., 2006), and then imported into the ARB (Ludwig
et al., 2004) to construct a neighbour-joining tree for
online UniFrac analysis (Lozupone et al., 2006).
Operational taxonomic unit (OTU) was classified with
Distance-Based OTU and Richness (DOTUR) (Schloss
and Handelsman, 2005). One sequence randomly
selected from each OTU was BLAST searched against
the Ribosomal Database Project (RDP, version 9.33) to
identify the taxonomic group, and then inserted into
pre-established phylogenetic trees of full-length 16S
rRNA gene sequences in ARB. PLS-DA (Perez-Enciso
and Tenenhaus, 2003) was used to discriminate groups
by diets, host genotypes or healthy phenotypes.
Martens’ uncertainty test (Westad and Martens, 2000)
and one-way ANOVA (Po0.05) were used to select key
OTUs contributing to the classification. The PLS-DA
models were tested with leave-one-out cross-validation
(Osten, 1988).

Quantitative real-time PCR of Bifidobacterium spp.
Real-time PCR amplification and detection were per-
formed with the DNA Engine Opticon 2 system (MJ
Research, Waltham, MA, USA). The primers were the
Bifidobacterium-specific primers, Bif164-f and Bif662-r
(Satokari et al., 2001). The details of the PCR program
and analysis are in the Supplementary Information.

Results

Long-term effects of HFD intake and host gene
mutation on health phenotypes
Apoa-I�/� mice and their Wt counterparts were fed on
either NC or HFD (n¼ 5 for each group) for 25 weeks.
Phenotyping data indicate that the Wt/NC animals
were the healthiest, with normal weight and glucose
tolerance, whereas the Apoa-I�/�/NC animals had IGT,
and the two genotypes on HFD showed both IGT and
obesity (Figure 1). Intriguingly, Wt/HFD animals were

the most obese with the highest insulin resistance.
The much less severe MS phenotype of Apoa-I�/�/
HFD animals showed reduced food intakes.

Overall structural responses of gut microbiota to
long-term intake of HFD and a host gene mutation
Two DNA fingerprinting methods show that the
most significant differences in the composition of
gut microbiota were between groups of animals on
different diets. Animals on an NC diet had drama-
tically different predominant DGGE bands (for
example, b6 in Figure 2a) from those fed on an
HFD (for example, b4). The principal components

Figure 1 Phenotypes of mouse groups, with different genotypes
fed on different diets. (a) Average food intake per day of the four
groups of mice. (b) Growth curve established using average body
weight of four groups every 2 weeks. (c) Glucose tolerance test
(n¼5 in each group). Mean values±s.d. are shown. Colour code
for each treatment group in the figures: green, wild type (Wt)/
normal chow (NC); black, Wt/high-fat diet (HFD); blue, Apoa-I�/�/
NC; red, Apoa-I�/�/HFD. Student t-test was used to compare the
groups with the same diet (*Po0.05 and **Po0.01). Please note
that part of the data from the groups of mice fed with NC has been
previously reported (Han et al., 2007). However, these data are
included here for better comparison with the mice fed with HFD.
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analysis scores plot based on the T-RFLP data shows
that diet-related differences were mainly observed
along PC1, which accounts for 57% of the total
variations, whereas the two genotypes on an NC diet
had much smaller differences along PC3 (12% of
total variations) (Figure 2b). Interestingly, the gut
microbiota differences between genotypes were
significantly reduced on HFD, indicating that
abnormal diet may diminish the differences in gut
microbiota structures imposed by differing host
genotypes. A multivariate analysis of variance
(MANOVA) test also indicated that the four groups
were first separated as two clades based on diet
differences, with a much smaller within-the-clade
distance between genotypes on an HFD compared

with those on an NC diet (Figure 2c). The Wt/NC
animals clustered in a different space from the other
three groups with IGT, suggesting that the difference
in gut microbiota structure might be commensurate
with the host health phenotypes (Figure 2b). An-
other interesting phenomenon is that all the animals
with IGT/obesity had much wider interindividual
variations than the healthy Wt/NC animals, particu-
larly between animals in different cages (Figures 2a
and b).

To confirm the findings from these DNA finger-
printing methods, a bar-coded pyrosequencing of
the 16S rRNA gene V3 region was used for a deep
molecular inventory of the gut microbiota samples.
A total of 29 314 useable reads were obtained

Figure 2 Comparison of gut microbiota composition between the mouse groups with different genotypes on different diets.
(a) Denaturing gradient gel electrophoresis (DGGE) fingerprinting of V3 region of 16S rRNA genes from faecal bacterial communities. M:
DGGE marker. (b) The principal components analysis (PCA) scores plot of the terminal terminal restriction fragment length
polymorphism (T-RFLP) data from faecal bacterial communities. Near full-length 16S rRNA genes were digested with five restriction
enzymes to generate polymorphism patterns. Each sample had three replicates. (c) Clustering of gut microbiota based on distances
between different groups calculated with multivariate analysis of variance test of the first nine PCs of T-RFLP data. The Mahalanobis
distances between group means are shown. **Po0.01. Animal groups are colour coded as in Figure 1.
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with 4156 unique sequences, of which, 3145 were
detected only once in all the samples; a substantial
‘rare biosphere’. In all, 516 OTUs were delineated at
a 97% homology cutoff (Supplementary Figure 1).
Both the principal coordinate analysis scores
plot and hierarchical clustering analysis with
UniFrac metrics (Lozupone et al., 2006) show that
the differences between the HFD and NC groups
were more significant than those between the
two genotypes on the same diet, confirming the
above results (Supplementary Figure 2). All repli-
cate samples from the same animal clustered
together, showing satisfactory reproducibility of this
bar-coded pyrosequencing method.

Identification of the key phylotypes responsible
for differentiation between different groups
The combination of pyrosequencing with a multi-
variate statistical method, Partial Least Square
Discriminate Analysis (PLS-DA) was used to reveal
detailed structural changes in the gut microbiota in
response to variations in host genetics, diet and
health phenotypes. Scores plots based on the first
two components show that groups with different
genotypes, diets or IGT/obesity phenotypes can be
well separated (Supplementary Figure 3). Leave-
one-out cross-validation yielded high prediction
rates for all the classification models (Osten 1988).
The Martens’ uncertainty test (Westad and Martens,
2000) and a one-way ANOVA test then selected a
total of 65 phylotypes as key variables for separating
gut microbiota under different genotypes, diets or
IGT/obesity phenotypes (Figure 3, Supplementary
Figure 4 and Supplementary Table 1). The results
showed that 48 out of the 65 phylotypes responded
mainly to diet, supporting the DNA fingerprinting
results.

We found that four different lineages (M1–M4)
within the Erysipelotrichaceae family responded
differentially to diet or host health phenotypes
(Figure 4a). In most animals, Erysipelotrichaceae
is the most predominant clade (Supplementary
Figure 5). Total phylotypes in M1 were abundant
(about 20% of total microbiota populations) in
healthy Wt/NC animals, but significantly reduced
(o2% of total populations) in the other three groups
with IGT. Groups M2–M4 responded only to diet
changes. M2 and M4 were predominant in HFD
groups, whereas M3 was more prevalent in NC
animals (Figure 4b).

Four members in the family Bifidobacteriaceae
were present in most animals on an NC diet, but
completely disappeared in those on an HFD, regard-
less of genotype, as confirmed by bifidobacteria-
specific real-time PCR (Supplementary Figure 7).
Furthermore, we found that one phylotype in the
family Desulfovibrionaceae was more prevalent in
each of the IGT/obese groups, most notably in the
Wt/HFD group, which had the most serious obesity
and IGT phenotypes (Figures 1 and 3). Specifically,

there was a nearly sevenfold increase of this
phylotype in Wt/HFD relative to that observed in
the Wt/NC group (4.67 vs 0.7%, one-way ANOVA
test, P¼ 0.0075, Supplementary Table 1).

Discussion

Animals can be regarded as walking bioreactors,
maintaining a highly diverse mixed chemostat
culture that utilizes their diet as a continuous
feeding medium (Sonnenburg et al., 2004). It is not
surprising that significant and long-term changes in
diet composition will lead to profound alterations
in gut microbiota structure (Finegold et al., 1974;
Tajima et al., 2001). Significant differences in the
relative abundance of Firmicutes and Bacteroidetes
in gut microbiota have been observed between
host groups with obesity and lean phenotypes
(Turnbaugh et al., 2006, 2008). Phylum-wide
changes in gut microbiota composition were not
observed in our diet-induced obese animals, regard-
less of genotypes. However, we revealed the changes
at much smaller phylogenetic lineages than phyla.
Blooming of Mollicutes (equivalent to the class
Erysipelotrichi in this study) was previously ob-
served in diet-induced obese animals (Turnbaugh
et al., 2008), and we found that four different
lineages (M1–M4) within the family Erysipelotricha-
ceae of this class responded differentially to diet
or host health phenotypes. The differential or
even contrasting behaviours of lineages within the
same family emphasizes the importance of phylo-
type-specific analysis for understanding the role of
gut microbiota composition in determining host
health or disease development. The lineages (M1–
M4) identified here are major discrete phylogenetic
clusters with a ‘fan-like’ structure in the phylo-
genetic tree (Acinas et al., 2004). This suggests that
each lineage consists of closely related phylotypes
with no competitive pressure to purge its diversity
from within, although different lineages may com-
pete with each other under selective pressures
imposed by changing diet, host genotype or health
phenotype. Furthermore, most rare phylotypes
in these lineages showed behaviour similar to
the identified predominant ones (Supplementary
Figure 6). This suggests that phylotypes in the same
phylogenetic cluster may share similar functions
relevant to host phenotypes, and that the ‘rare
biosphere’ is not negligible (Sogin et al., 2006).

Endotoxins produced by the HFD-altered gut
microbiota have been identified as important medi-
ators in triggering inflammation, a key under-
lying pathological condition in MS development
(Cani et al., 2007b). Cani et al. showed that
continuous subcutaneous infusion of purified LPS
induces inflammation and then obesity and insulin
resistance in mice fed on NC diet. Knockout of CD14
abolishes these triggering effects of LPS. Inclusion
of oligofructose in the HFD maintains the integrity
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of the bifidobacteria population and the normal
gut barrier, helping the animals ward off LPS from
gut microbiota and maintain normal weight despite
a high-calorie diet. All of this evidence supports
a key mediating role of LPS in diet-induced MS
by way of triggering inflammation. Our study is in
agreement with their report on the association
between reduced population levels of bifidobacteria
in the gut and increased inflammation of the host,
potentially due to the increased gut barrier perme-
ability to endotoxins from loss of these gut barrier-
protecting bacteria (Cani et al., 2007b). In our study,
this group of bacteria was actually ‘eliminated’ from
guts fed with HFD, regardless of genotype differ-
ences, possibly due to the much longer feeding time.
Cani et al. did not identify specific endotoxin
producers with the fluorescent in situ hybridization
(FISH) technology they used. This may be due to the
lack of appropriate probes in their experiment, as
FISH can only detect what has already been
characterized. Here, through the use of a combina-
tion of bar-coded pyrosequencing and multivariate
statistics, we were able to identify sulphate-
reducing bacteria in family Desulfovibrionaceae as
the potentially important endotoxin producers whose
abundance changes were associated with the devel-
opment of MS in our animal models. Members of this
family are Gram-negative, opportunistic pathogen,

endotoxins producers (Loubinoux et al., 2000; We-
glarz et al., 2003) and are also capable of reducing
sulphate to H2S, damaging the gut barrier (Beerens
and Romond, 1977). These findings are in agreement
with the metabolic endotoxemia hypothesis on MS
onset and development.

We were able to identify specific phylotypes
whose population changes were more relevant to
MS development through the utilization of the
Apoa-I�/� mouse model because of the careful
manipulation of rearing conditions to minimize
stochastic interindividual variations of gut micro-
biota. In addition, our use of long-term feeding
experiments with different diets ensured stabiliza-
tion of physiological integration between gut micro-
biota and hosts, to reflect the chronic nature of MS
in humans (Zoetendal et al., 1998; Wei et al., 2004).

The utilization of a combination of DNA pyrose-
quencing with appropriate multivariate statistics
facilitated the pattern discovery process. Although
standard statistical methodologies do not work well
when the number of samples are much less than that
of the variables (thousands of OTUs as variables
from dozens of samples) and the abundance dis-
tributions of variables are extremely uneven, PLS-
DA is a useful multivariate analysis tool to deal with
this type of data (Nguyen and Rocke, 2002; Perez-
Enciso and Tenenhaus, 2003; Wang et al., 2004;

Figure 3 Abundance distribution of the 65 phylotypes identified as key variables for discrimination among the groups of treated
mice. These operational taxonomic units (OTUs) from pyrosequencing (97% identify threshold), selected using Partial Least
Square Discriminate Analysis (PLS-DA) and Martens’ uncertainty test, include variables with significant differences between the
mice given different diets, having different genotypes, or in different health states. To show the distribution of the OTUs with
lower abundance, the coloured squares of each column have been scaled to indicate the relative ratios of the OTU among 20 mice.
These identified phylotypes are distributed across all the major phyla: 47 in Firmicutes, 11 in Bacteroidetes, 1 in Proteobacteria and 6 in
Actinobacteria.
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Figure 4 Phylogeny and differential abundance and distribution of phylotypes in the family Erysipelotrichaceae among treatment
groups. (a) Phylogeny of phylotypes in the family Erysipelotrichaceae. One sequence was randomly selected from each operational
taxonomic unit (OTU) (97% identify threshold) and was inserted into pre-established phylogenetic trees of full-length 16S rRNA gene
sequences in ARB. The tree shown here only includes some reference species of Firmicutes and the sequences from this study in the
family Erysipelotrichaceae. These phylotypes fall into four lineages, M1–M4. The DGGE bands in M1–M4 are also shown. (b) Abundance
distribution of M1, M2, M3 and M4 in the four groups of animals.
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Zhang et al., 2009). The application of PLS-DA to
bar-coded pyrosequencing data was robust and also
sensitive enough to identify specific members of
gut microbiota with health-relevant responses to
diet, genotype or health phenotypes, including both
minor species (at 1–5%) and major species (410%
of total gut populations). This new methodology
also confirms and expands results from the two
classical DNA fingerprinting methods, PCR–DGGE
and T-RFLP. Therefore, this strategy has provided
both a new methodology and helpful insights for
metagenomic studies on the overwhelmingly com-
plex microbiota for understanding MS development
in humans. As the key phylotypes to MS develop-
ment are intermingled with those that behave
stochastically, the current metagenomic strategy
with a one time point ‘snap-shot’ and low-coverage
sequencing of total community DNAs can be
problematic, as the genes in key functional members
can be significantly ‘diluted’ by genes from irrele-
vant species, making functional attribution difficult
or perhaps misleading. This is especially true
if the functionally important members, such as
Bifidobacteriaceae or Desulfovibrionaceae, are rela-
tively minor within the community compared
with those that respond mainly to diet. Therefore,
new strategies will need to be developed for
assigning sequencing reads to their corresponding
phylogenetic bins with relevance to host health
phenotypes. Covariation analysis, such as that used
in finding associations between specific phylo-
types and host metabotypes through dynamic
monitoring of a cohort, may help identify linkages
between 16S rRNA gene markers and related
functional genes from metagenomic data (Li et al.,
2008b).

Most intriguingly, in this study, the Wt/HFD
animal group developed the worst MS phenotype
and contained the highest increase of sulphate-
reducing bacteria. Apoa-I�/� mice on an HFD
showed less severe MS phenotypes than did Wt/
HFD mice, possibly due to significantly lower food
intake and much smaller alterations in gut micro-
biota, particularly a much lower population level
of the sulphate-reducing bacteria. Taken together,
these results indicate a possibly dominating role
of gut microbiota disrupted by long-term, unlimited
feeding of HFD in MS development over variations
of host genetic predisposition to the disease. This
is supported by the large amount of epidemiological
data that diet changes are the most important
contributors for the increasing epidemic of meta-
bolic diseases among human populations and the
fact that the incidence of metabolic diseases has
increased dramatically in a relatively short period
of time during which human genetic diversity
hardly changed. However, this conclusion still
only holds true for the particular gene mutation
we used in our study. With similar strategies
used in this study, more genetic mutations should
be tested for assessing the relative contributions of

genotypes and gut microbiota for predisposing hosts
to MS development. To further establish whether
there is a causal link between specific changes of
gut microbiota and MS development, the animals
should be sampled more frequently in future
studies.

The results of this study indicate that the
composition of gut microbiota is tightly interwoven
with long-term diet patterns and health phenotypes
of the host, with changes of some specific phylo-
types most relevant to MS development. With diets
having a possibly dominating role in transforming
gut microbiota into a ‘pathogen-like entity’ for
metabolic diseases, it implies a vast possibility of
combating these diseases by modulating gut micro-
biota with designed diet interventions, targeting the
promotion of gut barrier protectors and the suppres-
sion of endotoxin producers.

Accession numbers
The unique sequences obtained from pyrosequen-
cing are available in the GenBank database under
accession numbers FJ032696–FJ036849. The se-
quences from key DGGE bands obtained in this
study are available in the GenBank database under
accession numbers EU584214–EU584231.
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