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Interactions between large molecules pose a puzzle
for reference quantum mechanical methods
Yasmine S. Al-Hamdani1,2,9, Péter R. Nagy 3,9, Andrea Zen 4,5,6,7, Dennis Barton2, Mihály Kállay3,

Jan Gerit Brandenburg 8,10✉ & Alexandre Tkatchenko 2,10✉

Quantum-mechanical methods are used for understanding molecular interactions throughout

the natural sciences. Quantum diffusion Monte Carlo (DMC) and coupled cluster with single,

double, and perturbative triple excitations [CCSD(T)] are state-of-the-art trusted wave-

function methods that have been shown to yield accurate interaction energies for small

organic molecules. These methods provide valuable reference information for widely-used

semi-empirical and machine learning potentials, especially where experimental information is

scarce. However, agreement for systems beyond small molecules is a crucial remaining

milestone for cementing the benchmark accuracy of these methods. We show that CCSD(T)

and DMC interaction energies are not consistent for a set of polarizable supramolecules.

Whilst there is agreement for some of the complexes, in a few key systems disagreements of

up to 8 kcal mol−1 remain. These findings thus indicate that more caution is required when

aiming at reproducible non-covalent interactions between extended molecules.
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T
he most accurate methods for studying matter at the
atomic scale are wavefunction-based approaches, which
explicitly account for many-electron interactions. Given

only the positions and nuclear charges of atoms, we can now
predict, among basically every observable property, the binding
strength of relatively small molecular systems (i.e., <50 atoms) to
within a few tenths of a kcal mol−1 using many-body solutions to
the Schrödinger equation1–3. This value is better than the so-
called “chemical accuracyˮ of 1 kcal mol−1 required for reliable
predictions of thermodynamic properties. Indeed, the relative
stabilities of many non-covalently bound materials such as 2D
layered materials, pharmaceutical drugs, and different poly-
morphs of ice, are underpinned by small energy differences on
the order of tenths of a kcal mol−14. However, experimentally
determining binding affinities under well-defined, pristine con-
ditions is notoriously challenging5. In addition, thousands of
computational works describe physical interactions in materials,
which are not well understood at the experimental level, for
instance, as part of rational design initiatives in novel materials
including soft colloidal matter, nanostructures, metal organic, and
covalent organic frameworks6–8. The present shortage of bench-
mark information is a major setback for forming reliable pre-
dictions across the natural sciences and is frequently addressed
through demanding, but increasingly feasible, wavefunction-
based methods. However, extending the use of highly-accurate
methods to a regime of larger molecules is hindered by theoretical
and technical challenges due to the steep increase in computa-
tional cost required for an accurate description of many-electron
interactions9,10.

Here we use two widely trusted wavefunction methods that can
provide sub-chemically accurate solutions to the electronic
Schrödinger equation for non-covalent interactions. First, we
utilize coupled-cluster (CC) theory with single, double, and per-
turbative triple excitations [CCSD(T)]11—approximated via the
local natural orbital (LNO) scheme to be practicable [LNO-CCSD
(T)]12,13. Coupled cluster theory has gained great prominence in
the last 30 years and the label of ‘gold-standard’ for remarkable
accuracy on virtually all systems in its domain of applicability14.
Second, a stochastic quantum method that computes the energy
for the many-electron wavefunction directly is known as fixed-
node diffusion Monte Carlo (FN-DMC)15. This method has seen
a surge of use in recent years, particularly for predicting large
molecules and periodic systems with non-covalent
interactions10,16,17, such as molecular crystals18,19 and adsorp-
tion on 2D materials16,20–22. The accuracy and suitability of FN-
DMC in complex non-covalently bound extended materials has
been established through excellent agreement with a wealth of
different experiments. For example FN-DMC has accurately
predicted the binding energy of bilayer graphene17 and the
cohesive energies of water ice polymorphs18, as well as of carbon
dioxide, ammonia, benzene, naphthalene, and anthracene
crystals19. These constitute highly-polarizable materials with
significant long-range van der Waals interactions.

As we demonstrate in Fig. 1 and Table 1, CCSD(T) and FN-
DMC interaction energies are in sub-chemical agreement in small
systems such as the benzene-water dimer21 and the dimers of
benzene, pyridine, and uracil. Nonetheless, FN-DMC and CCSD(T)
are still prohibitively expensive for most applications in biology and
chemistry, and as result, very little is known about how predictive
these theoretical methods are in the regime of medium-to-large
polarizable molecules.

Straightforward extrapolations of interactions from small mole-
cules to large complexes are difficult to make due to the interplay
and accumulation of interactions that are non-additive, anisotropic,
or have many-body character21,23–26. As such, a deeper under-
standing of non-covalent interactions can be gained by directly

applying state-of-the-art methods in larger molecular complexes.
Here, we use frequently studied molecular data sets: a subset of the
S66 by Řezáč et al.27 and the full L7 molecular data set from Sedlak
et al.28 to ascertain the predictive power of FN-DMC and CCSD(T)
for medium to relatively large complexes involving intricate π− π

stacking, electrostatic interactions, and hydrogen-bonding (see
Fig. 2). In addition, we consider a larger system of a C60 buckyball
inside a [6]-cycloparaphenyleneacetylene ring (which we label as
C60@[6]CPPA), consisting of 132 atoms. This structure has a
number of interesting features: (i) an open-framework that can be
found in covalent organic frameworks and carbon nanotubes, (ii)
the buckyball has a large polarizability (76 ± 8Å3)29 which gives rise
to considerable dispersion interactions, and (iii) confinement
between the ring and the buckyball that may cause non-trivial long-
range repulsive interactions30,31.

Following recent algorithmic advances for more efficient CCSD(T)
and FN-DMC, we predict interaction energies for a set of medium-
sized polarizable organic dimers and supramolecular complexes, and
converge numerical thresholds to the best of our joint knowledge and
expertize. Hereafter, we refer to CCSD(T) and FN-DMC interaction
energies but note that a number of approximations are used in both
methods. More specifically, the CCSD(T) interaction energies we
report come from systematically converging LNO-CCSD(T) toward
canonical CCSD(T) and accompanied with corresponding uncer-
tainty estimates. Meanwhile, the significance of approximations in
FN-DMC interaction energies are assessed using statistical measures
where error bars indicate 95% confidence intervals. Furthermore, to
define agreement between CCSD(T) and FN-DMC energies, we take
into account the uncertainty estimates and a physically relevant
energy window that is room temperature kbT or 0.6 kcal mol−1. First,
interaction energies that differ by less than the combined error
estimates from CCSD(T) and FN-DMC are statistically indis-
tinguishable. Second, interaction energies which are different by <0.6
kcal mol−1 outside of the combined error estimates are thermo-
dynamically consistent. Above a difference of 0.6 kcalmol−1 outside
of error bars the interaction energies are inconsistent, indicating
disagreement between the methods.

In seven out of nine medium-sized highly-polarizable organic
molecules computed here, CCSD(T) and FN-DMC interaction

Fig. 1 CCSD(T) and FN-DMC interaction energies for a medium and a

large dimer. It can be seen that the interaction energy increases by a factor

~10, near-linearly with the size of the system, whereas the corresponding

disagreement between CCSD(T) and FN-DMC increases by a factor of ~76.
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energies are indistinguishable and thermodynamically consistent
in the remaining two. Similarly, CCSD(T) and FN-DMC inter-
action energies are either indistinguishable or thermodynamically
consistent for five of the eight supramolecular complexes we
consider, covering a range of interactions including hydrogen-
bonding and π− π stacking. However, we find that three key
complexes reveal several kcal mol−1 differences between best
estimated CCSD(T) and FN-DMC calculations. Most notably, a
substantial disagreement of 7.6 kcal mol−1 (or 20%) is found in
the interaction energy (Eint as defined in Methods) of the
buckyball-ring system. This 7.6 kcal mol−1 inconsistency remains
on top of the uncertainty estimates incorporating all controllable
sources of errors. We also gauge the impact of approximations
intrinsic to each method, not covered in the numerical uncer-
tainty estimates, and find that 7.6 kcal mol−1 is an order of
magnitude beyond these. It is thus yet unclear whether this dis-
crepancy would also be present between the approximation-free
CCSD(T) and DMC results or it is a result of an unexplored
source of error. As shown in Fig. 1 and in Table 1 below, such a
sizable deviation cannot be explained solely by the size-extensive
growth of the difference between CCSD(T) and FN-DMC. Con-
sequently, the interaction energies of three of the supramolecular
complexes considered here are still unsettled.

We applied two different, widely-used and well-performing
DFT approaches developed for capturing long-range dispersion
interactions: DFT+D432 and DFT+MBD33. Both methods
model London dispersion based on a coarse-grained description
and account for all orders of many-body dispersion in different
manner. See refs. 34,35 for an overview of various ways to capture
dispersion in the DFT framework. We find that DFT+MBD
closely matches FN-DMC, while the recent DFT+D4 method
agrees well with CCSD(T), irrespective of the level of disagree-
ment between CCSD(T) and FN-DMC. Therefore, the absence of
either CCSD(T) or FN-DMC references could incorrectly suggest
that one of the DFT methods performs better than the other. This
illustrates that the unprecedented level of disagreement amongst
state-of-the-art methods in large organic molecules has con-
sequences well outside the developer communities.

CCSD(T) and FN-DMC methods account for dynamic electron
correlation through an expansion in electron configurations in the
former and through the projection to the ground state wave function
in the latter. These two equally viable formulations can be illustrated
by the corresponding expressions of Ψ(R), the exact wavefunction:

1. DMC: A propagation according to the imaginary time
Schrödinger equation is performed to project out the ‘exact’
electronic ground state from a trial function ΨT(R):

ΨðRÞ
�

�
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2. CC: Expansion of excited determinants generated via the
operator T̂n from a reference wavefunction:
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The crucial challenge lies in extensively accounting for relatively
small fluctuations in the electron charge densities. To this end,
DMC is a stochastic approach, where the wavefunction is
described through a set of configurations, otherwise referred to
as walkers. Walkers evolve in imaginary time through discrete
steps of size Δτ. The stochastic uncertainty associated with any
DMC evaluation is inversely proportional to the square root of
the sampling. In order to make this propagation efficient for an
electronic wavefunction a few approximations are typically
employed: the fixed node (FN) constraint15, the use of
pseudopotentials36–39, and solutions enhancing the stability of
walker populations40,41. In non-covalent interactions, the chal-
lenge for FN-DMC is to provide precise and accurate evaluations
of the interaction energy Eint, despite Eint being a tiny fraction of
the total energy, e.g., it is circa 1/104 of the total energy in the
C60@[6]CPPA complex. Precision is achieved by exploiting the
almost perfect scaling of DMC on modern supercomputer
facilities42–44 and thanks to recent algorithmic improvements
which reduced the time-step bias and made DMC up to 100 times
more efficient40. The FN-DMC setup here employed has been
used and validated against experiments and CCSD(T) a number
of times, for instance in refs. 18,19,21,45.

Table 1 Interaction energies in kcal mol−1 for best estimated CCSD(T) and FN-DMC, as well as their minimum differences (Δmin)

for dimers taken form the S66 compilaton, for the L7 supramolecular data set and the buckyball-ring complex (C60@[6]CPPA).

The indicated errors for CCSD(T) are extrapolated from the convergence of basis sets and local approximations in LNO-CCSD

(T). The errors indicated in FN-DMC interaction energies account for the stochastic uncertainty of the estimation, and identifies

a 95% confidence interval (i.e., ± 2σ).

Complex No. of atoms CCSD(T) FN-DMC Δmin
a

pyridine-pyridine PD 22 −3.70 ± 0.08 −3.51 ± 0.20 0.0

pyridine-pyridine TS 22 −3.48 ± 0.06 −3.44 ± 0.20 0.0

benzene-pyridine PD 23 −3.28 ± 0.07 −3.03 ± 0.16 0.0

benzene-pyridine TS 23 −3.24 ± 0.05 −3.08 ± 0.16 0.0

pyridine-uracil PD 23 −6.61 ± 0.09 −6.38 ± 0.18 0.0

benzene-benzene PD 24 −2.67 ± 0.07 −2.38 ± 0.12 0.1

benzene-benzene TS 24 −2.81 ± 0.06 −2.71 ± 0.12 0.0

uracil-uracil PD 24 −9.61 ± 0.10 −9.40 ± 0.16 0.0

benzene-uracil PD 24 −5.48 ± 0.11 −5.11 ± 0.18 0.1

GGG 48 −2.1 ± 0.2 −1.5 ± 0.6 0.0

CBH 112 −11.0 ± 0.2 −11.4 ± 0.8 0.0

GCGC 58 −13.6 ± 0.4 −12.4 ± 0.8 0.1

C3A 87 −16.5 ± 0.8 −15.0 ± 1.0 0.0

C2C2PD 72 −20.6 ± 0.6 −18.1 ± 0.8 1.1

PHE 87 −25.4 ± 0.2 −26.5 ± 1.3 0.0

C3GC 101 −28.7 ± 1.0 −24.2 ± 1.3 2.2

C60@[6]CPPA 132 −41.7 ± 1.7 −31.1 ± 1.4 7.6

a Δmin is 0.0 for statistically indistinguishable results. Thermodynamically consistent Δmin is highlighted in italics and inconsistent Δmin is highlighted in bold.
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In coupled cluster theory, non-covalent interactions require a
high-order treatment of many-electron processes, as is included in
CCSD(T), and a sufficiently large single-particle basis set. Reaching
basis set saturation and well-controlled local approximations con-
currently for the studied systems required previously unfeasible
computational efforts as shown by the several kcal mol−1 scatter of
interaction energy predictions reported for the L7 set (see Fig. 3).
Our recent efforts enabled the following: (i) a systematically con-
verging series of local CCSD(T) results is presented for highly-
complicated complexes, (ii) both the local and the basis set
incompleteness (BSI) errors are closely monitored using compre-
hensive uncertainty measures13, (iii) convergence up to chemical
accuracy is reached for the complete L7 set concurrently in the local
approximations as well as in the basis set saturation.

The benefit of such demanding FN-DMC and CCSD(T) con-
vergence studies is that the resulting interaction energies, up to the
respective error bars, can be considered independent of the corre-
sponding approximations. Consequently, we expect that the CBS
limit of the exact CCSD(T) results could, in principle, be approached
similarly using alternative basis sets10,46,47 or local correlation
methods48–51. For instance, using different basis set corrections and
local approximations for CCSD(T), but an error estimate reminis-
cent of our approach presented here, the most recent L7 interaction
energies of ref. 52 are identical to ours within the corresponding error
estimates. In addition, FN-DMC interaction energies for the L7
complexes have been reported very recently that are in close
agreement with our results, even though a different algorithm and
implementation has been employed53.

Fig. 2 Molecular complexes computed in this work. a Parallel displaced (PD) dimers of benzene, pyridine, and uracil molecules from the S66 data set27. b

T-shape (TS) dimers of pyridine and benzene from S66. c The supramolecular complexes from L7 data set28 and (d) a buckyball-ring supramolecular

complex consisting of 132 atoms.
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We use highly-optimized algorithms both for FN-DMC and
CCSD(T) as outlined in Methods, and push them beyond the
typically applied limits. We used circa 0.7 and 1 million CPU core
hours for FN-DMC and CCSD(T), respectively. This is equivalent
to running a modern 28 core machine constantly for ~7 years.

Results
Consensus in medium-sized highly-polarizable organic mole-
cules. Demonstrating agreement between fundamentally different
electronic structure methods for solving the Schrödinger equation
provides a proof-of-principle for the accuracy of the methods
beyond technical challenges. To date, disagreements beyond 1
kcal mol−1 on molecular systems between CCSD(T) and FN-
DMC have been reported for systems where key approximations,
e.g., single-reference wavefunction, accurate node-structure, and
basis set completeness, were not completely fulfilled54–56. Pre-
viously however, CCSD(T) and FN-DMC were found in agree-
ment within the error bars, for the interaction energies of small
organic molecules with pure dynamic correlation9,16,57 as well as
some extended systems19,21,58.

Here we extend the list of systems with consistent CCSD(T) and
FN-DMC interaction energies with nine medium-sized dimers of
22–24 atoms taken from the S66 compilation27. Interaction
energies and corresponding errors estimates are collected in
Table 1 for the parallel displaced (PD) and T-shaped (TS) dimers
of benzene, pyridine, and uracil (see Fig. 2). The level of
uncertainty in our results throughout this paper is indicated by
the sum of local and BSI error estimates for CCSD(T). In FN-
DMC the main source of uncertainty is the stochastic nature of
the approach, which is here accounted for by reporting a
confidence interval of 95% (i.e., ± two standard deviations). To
err on the side of finding agreement, we define Δmin as the
absolute minimum difference between best converged CCSD(T)
and FN-DMC for the closest limits of the corresponding error

bars, i.e., the smallest deviation between the methods according to
the uncertainty estimates.

For the majority of medium-sized complexes in Table 1 FN-
DMC and CCSD(T) interaction energies are statistically indis-
tinguishable as Δmin ¼ 0 kcal mol−1, with the exception of the
benzene-uracil and the benzene PD dimers.

The benzene PD dimer has garnered much interest as a
prototypical example of π− π stacking interaction. Previous
predictions of the interaction energy from CCSD(T) are −2.69
kcal mol−159 in excellent agreement with our LNO-CCSD(T) result
of −2.67 ± 0.07 kcal mol−1 (see Table 1). However, previous FN-
DMC predictions of the benzene PD dimer use marginally different
structures and algorithms, resulting in a wide range of predicted
interaction energies60–62. Here, using the latest DMC algorithms
and well-converged stochastic error bars we predict −2.38 ± 0.12
kcal mol−1 to be interaction energy of the PD benzene dimer
(S66 structure) from FN-DMC. This result is robust with respect to
different nodal structures (as can be seen in Supplementary Note 2
B) and is therefore unlikely to be affected by the fixed-node
approximation. This leaves a −0.29 ± 0.19 kcal mol−1 discrepancy,
or Δmin ¼ 0:1 kcal mol−1 between FN-DMC and CCSD(T), which
is 11 ± 7% of the interaction energy. While the relative discrepancy
can be considered non-negligible, evidently the absolute energy
difference is well within thermodynamic consistency. Therefore,
even with well-defined error bars, CCSD(T) and FN-DMC
interaction energies are thermodynamically consistent for weakly
interacting medium-sized dimers.

Losing consensus on supramolecular interactions. Establishing
agreement for systems at the 100 atom range has been hindered by
the sizable or unavailable error estimates for finite systems9. For
example, binding energies of large host-guest complexes derived
from experimental association free energies63,64 motivated pre-
vious FN-DMC65 as well as local CCSD(T)66 computations. While
the average discrepancy of these FN-DMC and local CCSD(T)
binding energies was found to be about 2.4 kcal mol−1, it is not
possible to make conclusive remarks on the consistency of these
results. Uncertainty estimates are unavailable for local CCSD(T),
but could be comparable to the average discrepancy, while the
error estimates reported for both experimental and FN-DMC
energies reach up to a few kcal mol−1.

Here, we consider similar but somewhat smaller supramolecular
complexes (Fig. 2) and obtain tightly converged local CCSD(T)
and FN-DMC results sufficient for rigorous comparisons (see
Fig. 3 and Table 1). The complexes are arranged in Fig. 3
according to increasing interaction strength, which roughly scales
with the size of the interacting surface. CCSD(T) and FN-DMC
agree on the interaction energy to within 0.1 kcal mol−1, taking
error bars into account, for a subset of the complexes we consider:
GGG, CBH, GCGC, C3A, and PHE. These complexes are between
48 and 112 atoms in size and exhibit π− π stacking, hydrogen-
bonding, and dispersion interactions. Therefore, the agreement for
these five complexes indicates their absolute interaction energies
are established references and can be used to benchmark other
methods for large molecules. Here, relative differences of very
small interaction energies have to be interpreted carefully as they
are sensitive to the uncertainty estimates. In GGG for example, the
results are statistically indistinguishable whilst the relative
disagreement is up to 65%. In contrast, the relative disagreement
between FN-DMC and CCSD(T) is better resolved in the more
strongly interacting C60@[6]CPPA complex, at 18–33%.

A salient and surprising finding is the disagreement between state-
of-the-art methods on the interaction energy of three non-trivial
complexes: coronene dimer (C2C2PD), circumcoronene-GC base
pair (C3GC), and buckyball-ring (C60@[6]CPPA). The minimum

Fig. 3 CCSD(T) and FN-DMC interaction energies for supramolecular

complexes. The L7 data set28 and the C60@[6]CPPA buckyball-ring

complex are arranged in terms of increasing interaction strength. Gray bars

mark the range of interaction energies reported in the literature using

alternative wavefunction-based methods (e.g., QCISD(T)28, and various

local CCSD(T) approaches49,51,52,67–70). The yellow bars indicate the delta

value (Δmin) which is the minimum difference between best converged

CCSD(T) and FN-DMC, given by the estimated and stochastic error bars

(with 95% confidence interval), respectively.
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differences (Δmin), as indicated in Table 1 and Fig. 3 are 1.1, 2.2,
and 7.6 kcalmol−1 for C2C2PD, C3GC, and C60@[6]CPPA,
respectively, but the disagreements could be as high as 3.9, 6.9, and
13.7 kcal mol−1, respectively. Considering the comparable size of
C3A, PHE, and CBH to C2C2PD, C3GC, and C60@[6]CPPA, the
Δmin values of the latter three complexes are not explained simply by
the large size or the large area of the interacting surface. CCSD(T)
predicts consistently stronger interaction in these complexes than
FN-DMC, but at this point it is unclear what the exact interaction
energies are.

C2C2PD has attracted the most attention to date in the CCSD(T)
context as it represents a stepping stone between two widely studied
systems: benzene dimer and graphene bilayer9. Already C2C2PD has
posed a significant challenge to various local CCSD(T) methods due
to its slowly-decaying long-range interactions13,49,51,52,67–70. Con-
siderable efforts have been devoted recently13,49,51 to narrow down
the local CCSD(T) interaction energy of C2C2PD to the range of
about −19 to −21 kcalmol−1. Thus the presently reported −20.6 ±
0.6 kcal mol−1 interaction energy and previous local CCSD(T)
results, containing analogous local approximations, consistently
indicate stronger interaction than FN-DMC for C2C2PD. This
trend, to a smaller extent, is also seen in the PD benzene complex
and size-extensive error propagation might be expected, but it is
clearly insufficient to explain 18–31% relative disagreement found in
C60@[6]CPPA for example.

Distinct errors using DNA base molecules on circumcoronene.
The C3GC and C3A complexes are ideal for assessing the con-
vergence of CCSD(T) and FN-DMC, due to their chemical
similarity and importance of π− π stacking interactions, i.e.,
nucleobases stacked on circumcoronene. CCSD(T) and FN-DMC
agree within 1 kcal mol−1 for the interaction energy of C3A,
whereas there is a notable disagreement of at least 2.2 kcal mol−1

in the interaction energy of C3GC. Interestingly, both systems
involve similar interaction mechanisms, with C3GC exhibiting
both stacking and hydrogen-bonding interactions.

CCSD(T) and FN-DMC interaction energies involve multiple
approximations. In Fig. 4 we analyze the most critical
approximations for each method on the example of the C3A
and C3GC complexes, and we also consider the other remaining
known sources of error in Methods.

In obtaining CCSD(T) interaction energies, the sources of error
are:

● Single-particle basis representation of the CCSD(T)
wavefunction.

● Local approximations of long-range electron correlation
according to the LNO scheme.

● Neglected core electron correlation.
● Missing high-order many-electron contributions beyond

CCSD(T).

For the single-particle basis representation in CCSD(T) we
employed conventional correlation-consistent basis sets augmen-
ted with diffuse functions71, aug-cc-pVXZ (X= T, Q, and 5) as
shown in panel a) of Fig. 4. The remaining BSI is alleviated using
extrapolation72 toward the complete basis set (CBS) limit [CBS(X,
X+ 1), X= T, Q], and counterpoise (CP) corrections73. The local
errors decrease systematically as the LNO threshold sets are
tightened (Normal, Tight, very Tight) enabling extrapolations,
e.g., Normal–Tight (N–T), to estimate the canonical CCSD(T)
interaction energy13 (see panel b) of Fig. 4). Exploiting the
systematic convergence properties, an upper bound for both the
local and the BSI errors can be given without relying on their
potential cancellation of errors (see Methods).

Benchmarks presented previously for energy differences of a
broad variety of systems showed excellent overall accuracy at the
Normal–Tight extrapolated LNO-CCSD(T)/CBS(T,Q) level
(M1)13. However, the BSI error bar of 1.0 kcal mol−1 and the
local error bar of 2.2 kcal mol−1 obtained for C3GC at this M1
level are impractical for a definitive comparison with FN-DMC.
The next steps along both series of approximations toward
chemical accuracy, i.e., the use of very Tight LNO thresholds and
the aug-cc-pV5Z basis set (M2), have been enabled by our recent
method development efforts12,13,74. With these better converged
interaction energies, the M2 level uncertainty estimates are up
to a factor of three smaller than at the M1 level. Explicitly,
0.7 (0.4) kcal mol−1 local (BSI) error estimate is obtained for
C3GC. The same measures are the largest for C60@[6]CPPA at
the M2 level being 1.1 and 0.6 kcal mol−1, respectively. Moreover,
for the remaining L7 complexes, the local (BSI) uncertainty
estimates indicate even better convergence of 0.1–0.4 (0.1–0.3)
kcal mol−1. Additional details are provided in Methods and in
Supplementary Note 1 of the Supplementary Material (SM).

Known sources of error to consider in our FN-DMC
calculations are:

● The fixed-node approximation which restricts the nodal-
structure to that of the input guiding wavefunction.

● Time-step bias from the discretization of imaginary time
for propagating the wavefunction.

● Pseudopotentials to approximate core electrons for
each atom.

First, we analyze the most pertinent source of error in FN-
DMC which is the fixed-node approximation. The different nodal
surfaces from DFT methods serve to indicate the dependence of
the FN-DMC interaction energy on the nodal structure. Indeed,
from Fig. 4, we find no indication that the FN-DMC interaction
energies of C3GC is affected by the nodal structure with the
results being statistically indistinguishable. This shows that DMC
estimations are robust for different ways to initialize the orbitals
in a Slater-Jastrow ansatz. However, we cannot conclude that the
FN bias is negligible, as it is possible that a more involved
multireference ansatz yields different results. Unfortunately, a
multireference ansatz implies a much larger computational effort,
which is not yet possible on the large systems discussed here.
Second, FN-DMC energies are sensitive to the time-step and we
rely on recent improvements in FN-DMC algorithms36,40, that
enable convergence of time-steps as large as 0.05 a.u. We used
0.03 a.u. and 0.01 a.u. time-steps to compute the interaction
energies of C3A and C3GC. Figure 4 indicates that the interaction
energy is statistically indistinguishable for the different time-steps
considered here for both C3A and C3GC. The time-step and
fixed-node approximations perform similarly well for the
coronene dimer and the buckyball-ring complex (see Supple-
mentary Note 2 C and D of the SM). Third, recently reported all-
electron FN-DMC interaction energies for the L7 complexes53 are
in agreement with our pseudopotential-based FN-DMC results.
Therefore, our FN-DMC interaction energies are also robust with
respect to the use of pseudopotentials.

Open challenges for next generation of many-body methods.
CCSD(T) and FN-DMC have been shown to agree with sub-
chemical accuracy for small organic dimers9,16,57, molecular
crystals18,19, and small physisorbed molecules on surfaces21,58.
Indeed, we also find good agreement in the absolute interaction
energies for five of the eight complexes considered here. However, we
find that the disagreement by several kcal mol−1 in C60@[6]CPPA
particularly, cannot be explained by the controllable sources of
error. While both methods are highly sophisticated, they are still
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approximations to the exact solution of the many-electron Schrö-
dinger equation. Moreover, there can be non-trivial coupling between
approximations within each method, which remain poorly under-
stood for complex many-electron wavefunctions.

Are we there yet with FN-DMC? The reported interaction energies
of C2C2PD, C3GC, and C60@[6]CPPA indicate that FN-DMC
stabilizes the interacting complexes more weakly than estimated
CCSD(T). Therefore, one possibility for the discrepancy between
the methods is that FN-DMC (as applied here) does not capture
the correlation energy in the bound complexes sufficiently. Rea-
sons for this can include the fixed-node approximation and more
generally, insufficient flexibility in the wavefunction ansatz.

The Slater-Jastrow ansatz was applied here using a single
determinant combined with a Jastrow factor containing explicit
parameterizable functions to describe electron-electron, electron-
nucleus, and electron-electron-nucleus interactions. We have
evaluated FN-DMC interaction energies for different nodal
structures for C3GC, C2C2PD, C60@[6]CPPA and in all cases
the FN-DMC interaction energies are in 1-σ agreement (see
Supplementary Note 2) with stochastic errors that are mostly
under 1 kcal mol−1. Among these systems, the largest potential
deviation (Δmax) due to the fixed-node error is estimated to be ~
3.7 kcal mol−1 in C60@[6]CPPA. Although this potentially large
source of error is not enough to explain the 7.6 kcal mol−1Δmin
disagreement with CCSD(T), it remains a pertinent issue for
establishing chemical accuracy. Reducing the fixed-node error, for
example by using more than one Slater determinant to system-
atically improve the nodal structure, in such large molecules
remains challenging75,76. Promising alternatives include the
Jastrow antisymmetrized geminal power approach which has
recently been shown to recover near-exact results for a small,
strongly correlated cluster of hydrogen atoms77.

The Jastrow factor is a convenient approach to increase the
efficiency of FN-DMC since in the zero time-step limit and with
sufficient sampling, the FN-DMC energy is independent of this

term. However, the quality of the Jastrow factor can be non-
uniform for the bound complex and the noninteracting
fragments, which can introduce a bias at larger time-steps. The
recent DLA method in FN-DMC reduces this effect36 and was
applied to the C60@[6]CPPA complex reported in Table 1 and
also tested for GGG, C3A, and C2C2PD complexes (see Methods
for further details). In all cases, FN-DMC with DLA is in
agreement (95% confidence interval) with non-DLA FN-DMC
interaction energies. For example, the C2C2PD FN-DMC
interaction energy with DLA is− 17.4 ± 1.0 kcal mol−1 whilst
with standard LA, it is− 18.1 ± 0.8 kcal mol−1. Moreover, the
interaction strengths tend toward being weaker with DLA in
the systems we consider, i.e., further from the CCSD(T)
interaction energies. As such, the discrepancy between FN-
DMC and CCSD(T) remains regardless of any potential error
from the Jastrow factor in our findings.

We estimate the error from the use of Trail and Needs
pseudopotentials78,79 in FN-DMC at the Hartree-Fock (HF) level
using interaction energy of C2C2PD. We find 0.1 kcal mol−1

difference in the HF interaction energy with the employed
pseudopotentials and without (i.e., all-electron) which is well
within the acceptable uncertainty for our findings. In addition,
recently computed all-electron FN-DMC interaction energies of
the L7 data set are in agreement with our predictions53.

In principle, a more flexible wavefunction ansatz allows a more
accurate many-body wavefunction to be reached in DMC, thus
recovering electron correlation more effectively. To this end,
recently introduced machine learning approaches80,81 are pro-
mising but more expensive due to the considerable increase in
parameters. However, once feasible, a systematic assessment of
the amount of electron correlation recovered by these different
ansatze in non-covalently bound systems will bring valuable
insight to the current puzzle.

Potential avenues for improvement upon CCSD(T). Considering
the complexes exhibiting significant π-π interactions, CCSD(T) is

Fig. 4 The interaction energy of the C3A and C3GC complexes using different settings. LNO-CCSD(T) shown in (a and b), and FN-DMC in (c). The

orange and green dashed horizontal lines, for C3A and C3GC, respectively, enclose the best estimated CCSD(T) (a and b) and the final FN-DMC (c)

interaction energies using the corresponding uncertainty estimates and stochastic error bars. The FN-DMC error bars indicate 95% confidence intervals.

The yellow bar denotes the minimum difference between CCSD(T) and FN-DMC (Δmin). a CP-corrected and uncorrected LNO-CCSD(T) interaction

energies using the aug-cc-pVXZ basis sets, as well as CBS(X,X+ 1) extrapolation. b Convergence of half CP-corrected LNO-CCSD(T)/CBS(Q,5)

interaction energies using a series of LNO thresholds as well as Normal--Tight (N–T) and Tight--very Tight (T-vT) extrapolations. c FN-DMC interaction

energies with two nodal surfaces or C3GC from DFT (PBE0 and LDA) and different time-steps (given in a.u.) for C3A and C3GC. d C3A complex. e C3GC

complex.
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found to predict stronger interaction than FN-DMC. Approx-
imations used for some of the small, long-range energy con-
tributions in local CC methods49,82 could potentially lead to
overestimated interactions. In the case of the LNO scheme, the
majority of the local approximations have marginal effect on
the interaction energies when very Tight settings are employed13.
For the most complicated case of C60@[6]CPPA, only 7%
(−2.9 kcal mol−1) of its interaction energy results from long-
range contributions approximated at the second-order, the full
many-body treatment up to CCSD(T) level is utilized for the
remaining 93% (see Eq. 1 of the SM). While the corresponding
1.1 kcal mol−1 error bar appears to estimate the local approx-
imations well (see Supplementary Note 1 B), remaining uncer-
tainties outside of the presented error bars cannot be ruled out.

The employed single-particle basis sets perform exceptionally
well for CCSD(T) computations of small molecules71,72, but
approaching the CBS limit of CCSD(T) for large systems is
mostly an uncharted territory in the literature13,49. The agree-
ment of CP corrected CBS(T,Q), CBS(Q,5), and uncorrected CBS
(Q,5) within 0.06–0.36 kcal mol−1 is highly satisfactory (see
Supplementary Note 1 A). Currently, Gassian functions based
implementations appear to approach the CBS limit of CCSD(T)
for extended systems. However, alternative CC methods utilizing
plane-wave or real-space representations10,46,47 as well as
explicitly correlated wavefunction forms49,51 could offer advan-
tages to overcome the basis set superposition error and relatively
slow convergence associated with Gaussian basis sets for
delocalized systems.

The higher-order contribution of three-, four-, etc. electron
processes on top of CCSD(T)83,84 are usually found to be
negligible for weakly-correlated molecules57. However, the
available numerical experience is limited to complexes below
about a dozen atoms, and for some highly-polarizable systems the
beyond CCSD(T) treatment of three-electron processes has been
shown to contribute significantly to three-body dispersion85. The
weakly-correlated nature of all complexes is indicated by the
perturbative (T) contribution to the total correlation energy
component of the CCSD(T) interaction energy being consistently
18–20%. In addition, the CC amplitude based measures all point
to pure dynamic correlation (see Supplementary Note 1 B). Due
to the extreme computational cost of such higher-order CC
computations, it remains an open and considerable challenge to
establish whether the contribution of higher-order processes is
within sub-chemical accuracy for larger and more complex
molecules.

Insights from experiments and comparison with density-functional
approximations. Experimental binding energies or association
constants of supramolecular complexes are particularly valuable,
when available, but also have their limitations as back-corrections
are needed to separate the effects of thermal fluctuations and
solvent effects for example86. In the case of C60@[6]CPPA for
example, the association constant is measured in a benzene
solution and indicates a stable encapsulated complex, but one
which could not be well-characterized by X-ray crystallography;
purportedly due to the rapid rotation of the buckyball guest87.
Instead, a non-fully encapsulated structure was successfully
characterized using toluene anchors on the buckyball. This
demonstrates a number of physical leaps that exist between what
can be measured and what can be accurately computed.

Other high-level methods, such as the full configuration
interaction quantum Monte-Carlo (FCI-QMC) method10,46, can
be key to assessing the shortcomings from major approximations
such as the FN approximation and static correlation. Once the
severe scaling with system size associated with FCI-QMC and
similar methods is addressed, larger molecules will become

feasible. However, in the present time the lack of references in
large systems remains a salient problem.

The scarcity of reference information has an impact on all
other modelling methods, including density-functional approx-
imations (DFAs), semi-empirical, force field or machine learning
based models, etc. which are validated or parameterized based on
higher-level benchmarks. In particular, there is a race to simulate
larger, more anisotropic, and complex materials, accompanied by
a difficulty of choice for modelling methods. To demonstrate the
consequences of inconsistent references, Fig. 5 shows interaction
energy discrepancies obtained with DFAs, PBE0+D432 and PBE0
+MBD33, that are both designed to capture all orders of many-
body dispersion interactions in different manner. Intriguingly, the
PBE0+D4 method is in close agreement with CCSD(T) (mean
absolute deviation, MAD= 1.1 kcal mol−1), whereas PBE0
+MBD is closer to FN-DMC (MAD= 1.5 kcal mol−1), but their
performance is hard to characterize when CCSD(T) and FN-
DMC disagree. Moreover, we decomposed the interaction
energies from the DFAs into dispersion components and find
that, for C60@[6]CPPA the main difference between PBE0+MBD
and PBE0+D4 is 6.5 kcal mol−1 in the two-body dispersion
contribution. Differences in beyond two-body dispersion inter-
actions are smaller and at most 1.6 kcal mol−1 in C60@[6]CPPA.

Discussion
Until now, disagreements between reference interaction energies of
extended organic complexes have typically been ascribed to
unconverged results due to practical bottlenecks. Here, we report
highly-converged results at the frontier of wavefunction-based
methods; uncovering a disconcerting level of disagreement in the
interaction energy for three supramolecular complexes. We have
computed interaction energies from CCSD(T) and FN-DMC for a
set of supramolecular complexes of up to 132 atoms exhibiting
challenging intermolecular interactions. The accuracy of these
methods have been repeatedly corroborated in the domain of
dozen-atom systems with single-reference character and here we
find CCSD(T) and FN-DMC are in excellent agreement for five of
the supramolecular complexes suggesting that these methods are
able to maintain remarkable accuracy in some larger molecules.
However, FN-DMC and CCSD(T) interaction energies disagree by
1.1 kcal mol−1 in the coronene dimer (C2C2PD), 2.2 kcal mol−1 in

Fig. 5 Δmin is shown between pairs of methods. Δmin takes into account the

error estimates for CCSD(T) and FN-DMC to show smallest differences

with respect to these reference methods. The DFT methods have no

quantified uncertainty estimates associated with them. The compared

methods are: CCSD(T), FN-DMC, PBE0+MBD and PBE0+D4. The

supramolecular complexes are those in the L7 data set and the C60@[6]

CPPA buckyball-ring complex.
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GC base pair on circumcoronene (C3GC) and 7.6 kcal mol−1 in a
buckyball-ring complex (C60@[6]CPPA). These disagreements are
cemented by reporting sub-kcal mol−1 standard deviations in FN-
DMC and a systematically converging series of local CCSD(T)
interaction energies accompanied by uncertainty estimates
approaching chemical accuracy. Therefore, despite our best efforts
to suppress all controllable sources of error, the marked disagree-
ment of FN-DMC and CCSD(T) prevents us from providing
conclusive reference interaction energies for these three complexes.
Such large differences in interaction energies surpass the widely-
sought 1 kcal mol−1 chemical accuracy and indicate that the highest
level of caution is required even for our most advanced tools when
employed at the hundred-atom scale.

The supramolecular complexes we report feature π− π stack-
ing, hydrogen-bonding, and intermolecular confinement, that are
ubiquitous across natural and synthetic materials. Thus our
immediate goals are to elucidate the sources of the underlying
discrepancies and to explore the scope of systems where such
deviations between reference wavefunction methods occur. Well-
defined reference interaction energies and the better character-
ization of their predictive power have growing importance as they
are frequently applied in chemistry, material, and biosciences.
Our findings should motivate cooperative efforts between experts
of computational and experimental methods in obtaining well-
defined interaction energies and thereby extending the predictive
power of first principles approaches across the board.

Methods
The L7 structures have been defined by Sedlak et al.28 and structures can be found
on the begdb database88. Note that the interaction energy, Eint, is defined with
respect to two fragments even where the complex consists of more than two
molecules (as in GGG, GCGC, PHE, and C3GC):

Eint ¼ Ecom � E1
frag � E2

frag ð3Þ

where Ecom is the total energy of the full complex, and E1
frag and E2

frag are the total
energies of isolated fragments 1 and 2, respectively. The fragment molecules have
the same geometry as in the full complex, i.e., not relaxed. Further details on the
configurations can be found in the SM and in ref. 28.

The C60@[6]CPPA complex is based on similar complexes in previous theore-
tical and experimental works65,89,90 and has been chosen to represent confined
π-π interaction that are numerically still tractable by our methodologies. Its
geometry has been symmetrized to D3d point group, the individual fragments of
C60 and [6]CPPA are kept frozen (Ih and D6h, respectively). The structure is
provided in the SM.

The local natural orbital CCSD(T) method. In order to reduce the N7-scaling of
canonical CCSD(T) with respect to the system size (N), the inverse sixth power
decay of pairwise interactions can be exploited (local approximations) and the
wavefunction can be compressed further via natural orbital (NO) techniques.82

Building on such cost-reduction techniques a number of highly-efficient local
CCSD(T) methods emerged in the past decade12,13,48–51,82,91,92. As the local
approximation-free CCSD(T) energy can be approached by the simultaneous
improvement of all local truncations in most of these techniques, in principle, all
local CCSD(T) methods are expected to converge to the same interaction energy.
Here we employ the local natural orbital CCSD(T) [LNO-CCSD(T)] scheme12,93,
which, for the studied systems, brings the feasibility of exceedingly well-converged
CCSD(T) calculations in-line with FN-DMC. The approximations of the LNO
scheme automatically adapt to the complexity of the underlying wavefunction and
enable systematic convergence toward the exact CCSD(T) correlation energy, with
up to 99.99% accuracy using sufficiently tight settings13.

The price of improvable accuracy is that the computational requirements can
drastically increase depending on the nature of the wavefunction: while LNO-
CCSD(T) has been successfully employed for macromolecules, such as small
proteins at the 1000 atom range12,13, sizable long-range interactions appearing in
the here studied complexes pose a challenge for any local CCSD(T)
method13,48,49,51. This motivated the implementation of several recent
developments in our algorithm and computer code over the lifetime of this project,
which cumulatively resulted in about 2–3 orders of magnitude decrease in the time-
to-solution and data storage requirement of LNO-CCSD(T)12,13,93, and made well-
converged computations feasible for all complexes. For instance, we have designed
a massively parallel conventional CCSD(T) code specifically for applications within
the LNO scheme94 and integrated it with our highly optimized LNO-CCSD(T)
algorithms12,13,93. Here, we report the first large-scale LNO-CCSD(T) applications

which exploit the resulted high performance capabilities using the most recent
implementation of the MRCC package74 (release date February 22, 2020).

Computational details for CCSD(T). The LNO-CCSD(T)-based CCSD(T)/CBS
estimates were obtained as the average of CP-corrected and uncorrected (“half
CP”)73, Tight–very Tight extrapolated LNO-CCSD(T)/CBS(Q,5) interaction
energies13. Except for C3A, C3GC, and C60@[6]CPPA, the CBS(Q,5) notation
refers to CBS extrapolation72 using aug-cc-pVXZ basis sets71 with X=Q and 5.
For C3A, C3GC, and C60@[6]CPPA, a Normal LNO-CCSD(T)/CBS(Q,5)-based
BSI correction (ΔBSI) was added to the Tight–very Tight extrapolated LNO-CCSD
(T)/aug-cc-pVTZ interaction energies, exploiting the parallel convergence of the
LNO-CCSD(T) energies for these basis sets13. Error bars accompanying the LNO-
CCSD(T) interaction energies of Fig. 3 and Table 1, and determining the interval
enclosed by the dashed lines on panels (a) and (b) of Fig. 4 are the sums of the BSI
and local error estimates. The BSI error measure is the maximum of two separate
error estimates: the difference between CP-corrected and uncorrected CBS(Q,5)
energies, and the difference between CP-CBS(T,Q) and CP-CBS(Q,5) results. This
BSI error bar is increased with an additional term if ΔBSI is employed according to
Supplementary Note 1 A. Local error bars shown, e.g., on panel (b) of Fig. 4 are
obtained via the extrapolation scheme of ref. 13. Explicitly, the local error bar of the
best estimated CCSD(T) results (see Table S I) is calculated from the difference of
the Tight and very Tight LNO-CCSD(T) results evaluated with the largest possible
basis sets13.

Computational details for FN-DMC. Our FN-DMC calculations use the Slater-
Jastrow ansatz with the single Slater determinants obtained from DFT. The Jastrow
factor for each system contains explicit electron-electron, electron-nucleus, and
three-body electron-electron-nucleus terms. The parameters of the Jastrow factor
were optimized for each complex using the variational Monte Carlo (VMC)
method and the varmin algorithm which allows for systematic improvement of the
trial wavefunction, as implemented in CASINO v2.13.61095. Note that bound
complexes were used in the VMC optimizations and the resulting Jastrow factor
was used to compute the corresponding fragments. All systems were treated in real-
space as non-periodic open systems in VMC and FN-DMC.

We performed FN-DMC simulations using the size-consistent ZSGMA
algorithm40. Trail and Needs pseudopotentials78,79 were used for all elements with
the locality approximation (LA) for the non-local pseudopotentials39 and 0.03 a.u.
time-step for all L7 complexes. Smaller time-steps of 0.003 and 0.01 a.u. were also
used to compute the interaction energy of the C2C2PD complex and the
interaction energy was found to be in agreement within the stochastic error bars
with all three time-steps.

The C60@[6]CPPA complex exhibited numerical instability using the standard
LA. This prevented sufficient statistical sampling and therefore we computed this
complex with two alternative and more numerically stable approaches. First, the
energy reported in Fig. 3 and Table 1 is using the recently developed determinant
localization approximation (DLA)36 implementation CASINO v2.13.80995. The
DLA gives: (i) better numerical stability than the LA algorithm allowing for more
statistics to be accumulated, (ii) smaller dependence on the Jastrow factor, and (iii)
addresses an indirect issue related to the use of non-local pseudopotentials. Second,
the T-move approximation38 (without DLA) was was also applied to C60@[6]CPPA
for comparison. The T-move scheme is more numerically stable than the standard
LA algorithm but is also more time-step dependent and therefore we used results
from 0.01 and 0.02 a.u. time-steps to extrapolate the interaction energy to the zero
time-step limit, as reported in SM. The extrapolated interaction energy with the T-
move scheme is− 31.14 ± 2.57 kcal mol−1 using LDA nodal structure and− 29.16
± 2.33 kcal mol−1 using PBE0 nodal structure. Due to the large stochastic error on
these results, we report the better converged DLA-based interaction energy (with
PBE0 nodal structure) in the main results, but we note that all three predictions
from FN-DMC agree within the statistical error bars. Furthermore, as the DLA is
less sensitive to the Jastrow factor at finite time-steps, we have also tested the
interaction energies of GGG, C3A, and C2C2PD complexes, finding agreement
with the LA-based FN-DMC results within one standard deviation. Further details
can be found in the SM.

The initial DFT orbitals (which define the nodal structure in FN-DMC) were
prepared using PWSCF in Quantum Espresso v.6.196 with a plane-wave energy
cut-off of 500 Ry. The plane-wave representation of the molecular orbitals from
PWSCF were expanded in terms of B-splines. Since PWSCF uses periodic
boundary conditions, all complexes were centered in an orthorhombic unit cell
with a vacuum spacing of ~ 8 Å in each Cartesian direction to ensure that the
single-particle orbitals are fully enclosed. LDA orbitals were used for L7 complexes
and in addition, PBE0 orbitals were also considered for C2C2PD, C3GC, and C60@
[6]CPPA. In all cases, the final FN-DMC interaction energy from LDA and PBE0
nodal structures are in agreement within the stochastic errors.

FN-DMC evaluations of the interaction energy in nine complexes in the S66 set,
entries from 24 to 29 and from 47 to 49, were performed with a similar setup. We
used the latest version of the Trail and Needs pseudopotentials97, and we employed
the DLA approximation. LDA orbitals were used for the wave function ansatz, but
PBE and PBE0 orbitals were also tested on the benzene dimer (see SM).
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Data availability
The data supporting the findings of this study are available within the paper and its
supplementary material. Primary numerical data, e.g., CCSD(T) or FN-DMC energies of
molecules are available from PRN and YSA upon reasonable request.
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