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Abbreviations
Δψ  Mitochondrial membrane potential
4-HDDE  4-Hydroxydodecadienal
12-HPETE  12-Hydroperoxyeicosatetraenoic acid
ASK1  Apoptosis signal-regulating kinase 1
AMPK  AMP-activated protein kinase
ANT  Adenine nucleotide translocator
ATM  Ataxia telangiectasia mutated
CI  Complex I or NADH: ubiquinone 

 oxidoreductase
CII  Complex II or succinate:ubiquinone 

 oxidoreductase
CIII  Complex III or ubiquinol:cytochrome-c 

 oxidoreductase
CIV  Complex IV or cytochrome-c oxidase
Cu/ZnSOD  Copper/zinc-dependent superoxide  

dismutase or SOD1
CV  Complex V or F1Fo-ATP synthase
chREBP  Carbohydrate response element-binding 

 protein
CypD  Cyclophilin D
ETC  Electron transport chain
DHA  Dehydroascorbic acid
DHOH  Dihydroorotate dehydrogenase
FADH2  Reduced flavin adenine dinucleotide
FMN  Flavin mononucleotide
G6PDH  Glucose-6-phosphate-dehydrogenase
GAPDH  Glyceraldehyde-3-phosphate dehydrogenase
GIPC1  Gα-interacting protein-interacting protein, 

C-terminus
Glc/GO  Glucose/glucose oxidase
GLUT  Glucose transporter

Abstract Mitochondrial reactive oxygen species (ROS) 
production and detoxification are tightly balanced. Shift-
ing this balance enables ROS to activate intracellular signal-
ing and/or induce cellular damage and cell death. Increased 
mitochondrial ROS production is observed in a number 
of pathological conditions characterized by mitochondrial 
dysfunction. One important hallmark of these diseases is 
enhanced glycolytic activity and low or impaired oxidative 
phosphorylation. This suggests that ROS is involved in gly-
colysis (dys)regulation and vice versa. Here we focus on the 
bidirectional link between ROS and the regulation of glucose 
metabolism. To this end, we provide a basic introduction into 
mitochondrial energy metabolism, ROS generation and redox 
homeostasis. Next, we discuss the interactions between cel-
lular glucose metabolism and ROS. ROS-stimulated cellular 
glucose uptake can stimulate both ROS production and scav-
enging. When glucose-stimulated ROS production, leading to 
further glucose uptake, is not adequately counterbalanced by 
(glucose-stimulated) ROS scavenging systems, a toxic cycle 
is triggered, ultimately leading to cell death. Here we invento-
ried the various cellular regulatory mechanisms and negative 
feedback loops that prevent this cycle from occurring. It is 
concluded that more insight in these processes is required to 
understand why they are (un)able to prevent excessive ROS 
production during various pathological conditions in humans.
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Gpx  Glutathione peroxidase
Grx2  Glutaredoxin
GSH  Glutathione
GSSG  Oxidized glutathione
HIF-1  Hypoxia-inducible factor-1
HK  Hexokinase
LDH  Lactate dehydrogenase
MAOs  Monoamine oxidases
MAPK p38  p38 mitogen-activated protein kinase
MEFs  Mouse embryonic fibroblasts
mGPDH  Sn-glycerol-3-phosphate dehydrogenase
MIM  Mitochondrial inner membrane
MnSOD  Manganese-dependent superoxide dismutase 

or SOD2
MOM  Mitochondrial outer membrane
PiC  Inorganic phosphate carrier
PTP  Permeability transition pore
NADH  Reduced nicotinamide adenine dinucleotide
NNT  Nicotinamide nucleotide transhydrogenase
Nox  NAD(P)H oxidase
ODDs  Oxygen-dependent degradation domains
Odh  2-Oxoglutarate dehydrogenase
OXPHOS  Oxidative phosphorylation
PARP  Poly(ADP-ribose) polymerase
PDH  Pyruvate dehydrogenase
PHDs  Prolyl-4-hydroxylases
Pi  Inorganic phosphate
PI3K  Phosphoinositide 3-kinase
PIKK  Phosphatidylinositol-3-kinase-related protein 

kinase
PMF  Proton motive force
PPARδ  Peroxisome proliferator-activated receptor δ
PPP  Pentose phosphate pathway
Prx  Peroxiredoxins
RISP  Rieske iron–sulfur protein
ROS  Reactive oxygen species
SOD1  Copper/zinc-dependent superoxide dis-

mutase or CuZnSOD
SOD2  Manganese-dependent superoxide dismutase 

or MnSOD
Sp1  Specificity protein
TCA  Tricarboxylic acid
Trx  Thioredoxin
TXNIP  Thioredoxin-interacting protein
UCP  Uncoupling protein
Xan/XO  Xanthine/xanthine oxidase

Introduction

Mitochondria are among the prime ATP-generating orga-
nelles, which are necessary for cellular functioning (Koop-
man et al. 2012, 2013). To this end, glucose is oxidized to 

pyruvate in the cytosol by the glycolysis pathway. Next, 
pyruvate enters the mitochondria where it is converted into 
acetyl-coenzyme-A that is further oxidized within the tri-
carboxylic acid (TCA) cycle. Alternatively, acetyl-coen-
zyme-A can be generated by fatty acid breakdown during 
β-oxidation. Conversion of acetyl-coenzyme-A by the TCA 
cycle yields reduced nicotinamide adenine dinucleotide 
(NADH) and reduced flavin adenine dinucleotide (FADH2). 
These two molecules serve as electron donors for mitochon-
drial complex I (CI or NADH:ubiquinone oxidoreductase) 
and complex II (CII or succinate:ubiquinone oxidoreduc-
tase) of the electron transport chain (ETC). The electrons 
are subsequently transported by ubiquinone to complex III 
(CIII or ubiquinol:cytochrome-c oxidoreductase) and by 
cytochrome-c to complex IV (CIV or cytochrome-c oxi-
dase) where they react with oxygen to form water. At CI, 
CIII and CIV protons are expelled from the mitochondrial 
matrix across the mitochondrial inner membrane (MIM). 
This results in establishment of an inward-directed proton 
motive force (PMF) that consists of a chemical (ΔpH) and 
electrical (Δψ) component (Mitchell 1961). Via complex 
V (CV or F1Fo-ATP synthase), protons are allowed to flow 
back into the matrix to fuel generation of ATP from ADP 
and inorganic phosphate (Pi). Together with the ETC, CV 
constitutes the mitochondrial oxidative phosphorylation 
(OXPHOS) system.

Mitochondrial ROS generation

Both as a consequence of normal electron transport and 
during mitochondrial dysfunction, electrons can escape 
from the ETC to induce formation of superoxide anions by 
one-electron reduction of oxygen. This means that, under 
certain conditions, mitochondria can substantially contrib-
ute to the generation of cellular reactive oxygen species 
(ROS; Adam-Vizi and Chinopoulos 2006; Murphy 2009). 
Interestingly, several proteins involved in glycolysis, mito-
chondrial electron transport, β-oxidation and the TCA 
cycle are also able to generate superoxide, hydrogen per-
oxide and/or other ROS. These include CI (Grivennikova 
and Vinogradov 2013; Murphy 2009; Treberg et al. 2011), 
CII (Quinlan et al. 2012a; Siebels and Drose 2013), CIII 
(Muller et al. 2004; Murphy 2009), dihydroorotate dehy-
drogenase (DHOH; Forman and Kennedy 1975; Orr et al. 
2012), pyruvate dehydrogenase (PDH; Fisher-Wellman 
et al. 2013; Starkov et al. 2004), aconitase (Gardner 2002; 
Vasquez-Vivar et al. 2000), 2-oxoglutarate dehydrogenase 
(Odh, or α-ketoglutarate dehydrogenase; Bunik and Sievers 
2002; Quinlan et al. 2014; Starkov et al. 2004; Tretter and 
Adam-Vizi 2004) and Sn-glycerol-3-phosphate dehydroge-
nase (mGPDH; Orr et al. 2012). In addition, various other 
mitochondrial proteins like monoamine oxidases (MAOs) 
and p66shc/cytochrome-c (Di Lisa et al. 2009; Giorgio et al. 
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2005; Hauptmann et al. 1996) are capable of ROS produc-
tion. Regarding the ETC, CI and CIII are the most well 
characterized (Murphy 2009). In case of CI, superoxide 
production can occur at two sites: the flavin mononucleotide 
(FMN) site and the iron–sulfur cluster (Genova et al. 2001; 
Herrero and Barja 2000; Johnson et al. 2003; Kussmaul and 
Hirst 2006; Lambert and Brand 2004; Treberg et al. 2011). 
Alternatively, hydrogen peroxide might be directly formed 
at the FMN site (Grivennikova and Vinogradov 2013). In 
CIII, evidence was provided that superoxide is produced 
only at the quinol-oxidizing (QO) site (Kramer et al. 2004; 
Muller et al. 2003; Murphy 2009). Inhibitor studies sug-
gested that superoxide and/or hydrogen peroxide can also 
be produced at the flavin site of CII (Quinlan et al. 2012a).

However, in these studies, the exact sites and magnitude 
of ROS production depend on the used OXPHOS substrates 
and inhibitors, respectively. In the absence of inhibitors, 
(native) ROS production appears to be much lower (Quin-
lan et al. 2012b, 2013). Since these studies use isolated 
mitochondria, the situation might also be different in intact 
cells and tissues.

Maintaining redox homeostasis

To prevent unintentional generation of redox signals and 
induction of oxidative stress, mitochondria possess power-
ful antioxidant systems. One of these consists of manganese-
dependent superoxide dismutase (MnSOD or SOD2), an 
enzyme that is localized in the mitochondrial matrix and rap-
idly converts superoxide to hydrogen peroxide. This conver-
sion is also catalyzed by the copper/zinc-dependent superox-
ide dismutase (Cu/ZnSOD or SOD1), which is localized in 
the cytosol, nucleus and mitochondrial intermembrane space 
(Murphy 2009; Tyler 1975; Weisiger and Fridovich 1973). In 
turn, hydrogen peroxide can be converted into water by the 
action of catalases that are mainly located in the peroxisomes 
and also in mitochondria (Salvi et al. 2007). However, within 
mitochondria, hydrogen peroxide is mainly removed by the 
action of glutathione peroxidase-1 (Gpx1; Cox et al. 2010; 
Esposito et al. 2000; Esworthy et al. 1997), peroxiredoxins 
3 and 5 (Prx3 and Prx5) and the thioredoxin-2 (Trx2) sys-
tem (Chae et al. 1999; Chang et al. 2004; Cox et al. 2010), 
which require glutathione (GSH). Oxidized GSH (GSSG) 
is recycled to GSH by the action of glutathione reductase. 
Similarly, oxidized Trx2 is recycled by Trx reductase. Both 
of these systems require NADPH (Arner 2009; Carlberg and 
Mannervik 1985), which is regenerated in the cytosol by 
glucose-6-phosphate-dehydrogenase (G6PDH) via the pen-
tose phosphate pathway (PPP; Le Goffe et al. 2002). Alter-
natively, NADPH can be regenerated in the mitochondrial 
matrix by nicotinamide nucleotide transhydrogenase (NNT), 
which uses NADH and the PMF (Hatefi and Yamaguchi 
1996; Rydstrom 2006; Yin et al. 2012).

ROS signaling

ROS have the ability to modulate the transcription and 
activity of enzymes, receptors and transporter (Mailloux 
et al. 2014; Martinez-Reyes and Cuezva 2014; Sena and 
Chandel 2012), for instance during adaptation to exercise 
(Gomez-Cabrera et al. 2005; Silveira et al. 2006). To fulfill 
a signaling function, ROS should be able to induce reversi-
ble protein modifications, thereby affecting its activity and/
or function. Hydrogen peroxide is believed to be a main 
player in ROS signaling due to its physicochemical prop-
erties, which include a relatively low reactivity, long half-
life and the ability to diffuse through membranes (Forman 
et al. 2010; Winterbourn and Hampton 2008). Mechanisti-
cally, hydrogen peroxide can oxidize thiol groups (–SH) 
on exposed cysteine residues in proteins, resulting in the 
formation of sulfenic acid (–SO−, known as S-oxidation 
or sulfenylation) (Carballal et al. 2003; Charles et al. 2007; 
Seres et al. 1996). Subsequently, the sulfenic acid group 
can: (1) form inter- and intramolecular disulfide bonds with 
other thiol groups leading to altered protein structure or the 
formation of homo- and/or heterodimers (Brennan et al. 
2004; Delaunay et al. 2002; Rehder and Borges 2010; Yang 
et al. 2007), (2) react with GSH (–SSG; thereby inducing 
S-glutathionylation of the protein; (Chen et al. 2007b; Hurd 
et al. 2008; McLain et al. 2013), or (3) react with amides 
to form a sulfenyl amide (Salmeen et al. 2003; Sivara-
makrishnan et al. 2010). Although not discussed in this 
review, mitochondria are also exposed to various reactive 
nitrogen species (RNS), which can induce oxidative pro-
tein modifications (Beltran et al. 2000; Boveris et al. 2006; 
Hogg 2002; Rossig et al. 1999; Zaobornyj and Ghafou-
rifar 2012). Interestingly, most of the above modifications 
are reversible (reviewed in detail elsewhere: Forman et al. 
2010; Handy and Loscalzo 2012; Mailloux et al. 2014), 
i.e., disulfide bonds between thiol groups can be reduced 
by the Trx reductase system, while glutathionylated thiol 
groups can be reduced by glutaredoxin (Grx2) utilizing the 
GSH pool (Beer et al. 2004; Handy and Loscalzo 2012; 
Mailloux et al. 2014). Regarding ROS regulation of protein 
activity, several phosphatases contain thiol groups in their 
active site, which upon oxidation lead to a loss of dephos-
phorylation activity (Rhee et al. 2000; Tonks 2005). Also, 
proteins of the TCA cycle and OXPHOS are regulated by 
ROS (Mailloux et al. 2014). For example, S-glutathionyla-
tion has been shown to reduce the activity of CI (Hurd et al. 
2008) and Odh (McLain et al. 2013).

Oxidative stress induction

When mitochondrial ROS production exceeds the capac-
ity of the cell’s antioxidant systems or when the latter sys-
tems are less active, increased ROS levels can induce cell 
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damage (oxidative stress). In principle, superoxide can react 
with protein iron–sulfur (Fe–S) clusters (Liochev and Fri-
dovich 1994), which, in the presence of hydrogen peroxide, 
induce generation of hydroxyl radicals (Fenton reaction). 
The latter are highly reactive and can damage lipids, pro-
teins and DNA (Martinez-Reyes and Cuezva 2014; Valko 
et al. 2006). Given the fact that iron is effectively seques-
tered (Kakhlon and Cabantchik 2002), the relevance of the 
Fenton reaction is not fully established in vivo. Superoxide 
can react with NO to form peroxynitrite (ONOO−; Pacher 
et al. 2005). When rising too high, hydrogen peroxide can 
induce over-oxidization of cysteine residues from sulfenic 
acid (–SO−) to sulfinic acid (–SO2H) and sulfonic acid  
(–SO3H). In case of CI, such over-oxidation is associated 
with irreversible deactivation of CI (Hurd et al. 2008; Mail-
loux et al. 2014). In general, if ROS levels exceed a certain 
threshold, they will impair OXPHOS complexes and fur-
ther stimulate ROS production (Galloway and Yoon 2012). 
In the light of the above, it is not surprising that increased 
ROS levels, although not always oxidative stress, are 
observed during various pathological conditions. For exam-
ple, primary fibroblasts derived either from CI deficient 
mice or patients show increased ROS levels, but no obvious 
signs of oxidative stress (Koopman et al. 2007; Valsecchi 
et al. 2013; Verkaart et al. 2007a, b). Increased ROS levels 
also have been observed in multiple types of cancer (e.g., 
prostate, colorectal, ovarian, pancreatic, breast, liver, blad-
der, melanoma, glioma), neurogenerative diseases (e.g., 
Alzheimer’s disease and Parkinson’s disease) and during 
insulin-resistance and diabetes (Afanas’ev 2011; Freeman 
et al. 2006; Kumar et al. 2008; Pi and Collins 2010; Sabens 
Liedhegner et al. 2012; Sanchez-Gomez et al. 2013). Below 
we will discuss the interplay between ROS levels, glucose 
uptake and metabolism in detail.

Regulation of glucose uptake by reactive oxygen 
species

Stimulation of cellular glucose uptake is frequently observed 
during conditions of oxidative stress. Exogenous addition 
of hydrogen peroxide stimulates glucose uptake in skel-
etal muscle (Higaki et al. 2008; Jensen et al. 2008; Kim 
et al. 2006), C2C12 myoblasts, clone 9 liver cells and 3T3 
fibroblasts (Prasad and Ismail-Beigi 1999). Upon electri-
cal stimulation, endogenous ROS also induced an increase 
in glucose uptake in muscle cells (Merry et al. 2010; Pin-
heiro et al. 2010). Interestingly, in L6 myoblasts, inhibition 
of cellular glucose uptake was associated with increased 
ROS levels (Andrisse et al. 2014), perhaps suggesting a role 
for glucose in ROS scavenging. Cellular glucose uptake is 
mediated by glucose transporters (GLUTs), of which four-
teen isoforms have been described with different kinetic 

properties and modes of regulation (Carruthers et al. 2009; 
Joost and Thorens 2001). Here we will primarily focus on 
GLUT1 and GLUT4, which are abundantly expressed in 
muscle cells and well studied. GLUT1 is expressed during 
all stages of embryonic development (Hogan et al. 1991). 
After birth, GLUT1 expression decreases, but most cell 
types still express low levels of GLUT1 to mediate basal glu-
cose uptake. However, GLUT1 expression remains high in 
cells that primarily depend on glycolysis for ATP generation 
such as erythrocytes and tumor cells. In the latter, GLUT1 is 
frequently up-regulated (Baer et al. 1997; Brown and Wahl 
1993; Nishioka et al. 1992), which is associated with poor 
survival in various malignant tumors (Szablewski 2013). 
GLUTs are expressed in a highly tissue-specific manner 
(Bell et al. 1990; Gould and Holman 1993). This, in com-
bination with the fact that the different GLUTs display dif-
ferent functional characteristics, allows for a tissue-specific 
regulation of glucose uptake (Gould and Holman 1993). For 
example, GLUT4 expression is up-regulated in differentiat-
ing muscle cells (Mitsumoto and Klip 1992), which show 
increased levels of OXPHOS complexes and higher respira-
tion rates (Mitsumoto and Klip 1992; Remels et al. 2010). 
This suggests that under certain conditions (i.e., differentia-
tion), cells (co)express both GLUT1 and other GLUTs to 
facilitate increased glucose uptake to support increased cel-
lular respiration. In fact, under basal conditions, the majority 
of GLUT4 in muscle cells is retained in intracellular vesicles 
that are derived from the trans-Golgi network. Retention of 
these vesicles requires the activity of the Rab GTPase acti-
vating proteins TBC1D1 and TBC1D4 (Eguez et al. 2005; 
Larance et al. 2005; Sano et al. 2003). Stimulation by insu-
lin or exercise induces translocation of these vesicles to the 
plasma membrane. Although the full signaling cascade regu-
lating vesicle translocation is still incompletely understood, 
Akt-mediated inhibition of TBC1D1/TBC1D4 plays an 
essential role (Eguez et al. 2005; Funaki et al. 2004; Kohn 
et al. 1998; Larance et al. 2005; Ng et al. 2008; Sano et al. 
2003). It appears that following translocation to the plasma 
membrane, an additional activation step is required for stim-
ulation of glucose uptake (Funaki et al. 2004; Somwar et al. 
2002; Sweeney et al. 1999).

Transcriptional regulation of GLUT expression by ROS

Protein expression levels of human GLUT1 are controlled 
by a promoter region and several putative enhancer regions 
that contain binding sites for various transcription factors 
including specificity proteins (Sp1; Vinals et al. 1997) and 
hypoxia-inducible factor-1 (HIF-1; Ebert et al. 1995). Mild 
oxidative stress induced by either glucose/glucose oxidase 
(Glc/GO) or xanthine/xanthine oxidase (Xan/XO) has been 
shown to up-regulate GLUT1 expression by increasing the 
transcription rate and mRNA stability leading to increased 



1213Arch Toxicol (2015) 89:1209–1226 

1 3

GLUT1 protein and glucose transport activity (Kozlovsky 
et al. 1997). As far as we know, there is no experimental 
evidence demonstrating the involvement of Sp1 in ROS-
induced stimulation of GLUT1 expression, and therefore, 
we here focus on the role of HIF-1.

HIF-1 consists of two subunits, HIF-1α and HIF-1β. 
Under normoxic conditions, prolines within the oxygen-
dependent degradation domains (ODDs) of HIF-1α are 
hydroxylated by prolyl-4-hydroxylases (PHDs; Ivan et al. 
2001). This hydroxylation acts as an ubiquitination sig-
nal leading to proteasomal degradation of HIF-1α. In the 
absence of oxygen, HIF-1α ubiquitinylation is inhibited 
allowing its interaction with HIF-1β to drive transcription 
of various target genes, including GLUT1 (Hayashi et al. 
2004; Iyer et al. 1998; Ouiddir et al. 1999; Wood et al. 
1998). During hypoxia, ROS levels increase and play an 
important role in HIF-1α stabilization (Brunelle et al. 
2005; Chandel et al. 2000; Guzy et al. 2005; Mansfield 
et al. 2005; Sanjuan-Pla et al. 2005; Schroedl et al. 2002). 
Preventing ROS-mediated HIF-1α stabilization represses 
GLUT1 expression and glucose uptake in Lewis lung car-
cinoma, HT-29 colon, and T47D breast cancer cells (Jung 
et al. 2013). Upon mitochondrial DNA depletion (Chandel 
et al. 2000; Mansfield et al. 2005) and in mouse embry-
onic fibroblasts (MEFs) lacking cytochrome-c (Mans-
field et al. 2005), hypoxia-induced HIF-1α stabilization is 
abrogated. This suggests that hypoxia-induced ROS are of 
mitochondrial origin. Knockout of the Rieske iron–sulfur 
protein (RISP) in mitochondrial CIII decreases ROS pro-
duction during hypoxia and attenuates hypoxic stabiliza-
tion of HIF-1α (Guzy et al. 2005). Therefore, RISP-medi-
ated mitochondrial ROS production appears to be involved 
in HIF-1α stabilization during hypoxia. At the RISP site, 
electrons are transferred one-by-one from ubiquinol to 
cytochrome-c1. This one-electron donation generates a 
highly reactive ubisemiquinone, which can act as a source 
for superoxide generation. Over-expression of catalase 
(Chandel et al. 2000; Guzy et al. 2005) or GPx1 (Brunelle 
et al. 2005; Emerling et al. 2005) abolishes HIF-1α stabili-
zation during hypoxia, whereas over-expression of SOD1 
or SOD2 does not (Brunelle et al. 2005; Guzy et al. 2005). 
In addition, exogenous hydrogen peroxide is sufficient to 
stabilize HIF-1α under normoxic conditions (Chandel et al. 
2000; Jung et al. 2008; Mansfield et al. 2005). This sug-
gests that the stabilization of HIF-1α primarily involves 
hydrogen peroxide via inactivation of PHDs (Fig. 1a) and 
subsequent reduction of HIF-1α ubiquitinylation (Chandel 
et al. 1998; Guzy and Schumacker 2006). However, HIF-1α 
ubiquitinylation is incompletely blocked by exogenous or 
hypoxia-derived hydrogen peroxide (Guzy et al. 2005), 
suggesting the involvement of additional mechanisms.

Alternatively, ROS-induced HIF-1α stabilization was 
proposed to be mediated by specific signaling routes. 

Phosphoinositide 3-kinase (PI3K) appears to be involved in 
HIF-1α stabilization by mitochondrial ROS in Hep3B cells 
(Fig. 1a; arrow 1) (Chandel et al. 2000). Compatible with 
this mechanisms, PI3K inhibition lowered GLUT1 tran-
scription under hypoxic and normoxic conditions (Chen 
et al. 2001). In addition, both p38 mitogen-activated pro-
tein kinase (MAPK p38) and its upstream kinases MKK3/6 
are activated by hypoxia-derived ROS and are essential in 
HIF-1α stabilization and the ensuing increase in GLUT1 
mRNA levels (Emerling et al. 2005). Activation of MAPK 
p38 by ROS is mediated by apoptosis signal-regulating 
kinase 1 (ASK1), which is normally bound to Trx. Oxi-
dation of Trx releases ASK1 leading to activation of its 
downstream targets MKK3, MKK4, MKK6 and MMK7 
and subsequently JNK and MAPK p38 (Nagai et al. 2007). 
Also, AMP-activated protein kinase (AMPK) can be acti-
vated by ROS during hypoxia (Emerling et al. 2009). This 
protein plays a key role in energy metabolism and cellu-
lar adaptation to ROS (Wu et al. 2014). Various metabolic 
stress conditions can activate AMPK through phosphoryla-
tion of Thr172 by upstream kinases such as LKB1 (Har-
die 2011). In addition, AMP-interaction stimulates AMPK 
activation by promoting AMPK phosphorylation, prevent-
ing AMPK dephosphorylation and inducing allosteric acti-
vation of AMPK (Davies et al. 1995; Hardie and Ashford 
2014). Oxidative stress can inhibit the ETC, potentially 
leading to an increased AMP:ATP ratio (Hawley et al. 
2010). However, under hypoxic conditions, AMPK is also 
activated by mitochondrial ROS in an LKB1-dependent 
and AMP:ATP-independent manner (Emerling et al. 2009; 
Mungai et al. 2011). In muscle cells, AMPK activation 
stimulated GLUT1 expression and twofold increased cel-
lular glucose uptake (Fryer et al. 2002). Besides activation 
of HIF-1α, AMPK can up-regulate GLUT1 via degrada-
tion of thioredoxin-interacting protein (TXNIP) (Fig. 1a; 
arrow 1). TXNIP reduces the level of GLUT1 mRNA in the 
nucleus. TXNIP is degraded upon Ser308 phosphorylation 
by AMPK, leading to increased GLUT1 mRNA and protein 
levels (Wu et al. 2013).

Regulation of GLUT‑vesicle translocation to the plasma 
membrane by ROS

The cellular capacity for glucose uptake is co-determined 
by the abundance of functional GLUTs at the plasma mem-
brane. This means that glucose uptake can be regulated 
by GLUT trafficking between the cytosol and the plasma 
membrane. During exercise, muscle contraction is asso-
ciated with increased ROS levels, believed to represent 
a fast adaptive response to an increase in energy demand 
(Chambers et al. 2009; Murrant et al. 1999; Wretman 
et al. 2001). In these cells, endogenous (i.e., those induced 
by contraction) and exogenous ROS stimulate glucose 
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uptake via a mechanism involving activation of Akt and/or 
AMPK (Higaki et al. 2008; Sandstrom et al. 2006; Toyoda 
et al. 2004). ROS can activate Akt (Fernandes et al. 2011; 
Niwa et al. 2003), which probably involves inactivation 
of cysteine-based phosphatases (Okoh et al. 2011). ROS 
can activate AMPK by modification of cysteine residues 
on its α-catalytical subunit (Zmijewski et al. 2010). Once 
activated, Akt and AMPK phosphorylate TBC1D4 and 
TBC1D1, leading to GLUT4 translocation (Geraghty et al. 
2007; Kramer et al. 2006; Taylor et al. 2008; Thong et al. 
2007).

Translocation of GLUT1 to the plasma membrane 
(Fig. 1a; arrow 2) is regulated by Ataxia telangiectasia 
mutated (ATM; Andrisse et al. 2013). This protein is a 
member of the family of phosphatidylinositol-3-kinase-
related protein kinases (PIKKs) and plays an impor-
tant role in the response to DNA damage after which it 
becomes phosphorylated. However, ATM can also localize 
to the cytosol where it is activated by ROS and involved 

in cytosolic signaling (Alexander and Walker 2010). ATM 
is thiol-oxidized by ROS to form an active dimer of two 
covalently linked monomers (Guo et al. 2010). Activated 
ATM localizes near mitochondria and mitochondria are 
necessary for ROS-induced ATM activation (Morita et al. 
2014). This suggests that ATM dimerization and activa-
tion are stimulated by mitochondrial ROS. Evidence was 
provided that ATM is activated by ROS during treatment 
with the chemotherapeutic agent doxorubicin (Kurz et al. 
2004). In muscle, ATM activation by doxorubicin medi-
ates targeting of GLUT1 to the cell surface by phospho-
rylation of GLUT1 at S490. This serine residue is part 
of a C-terminal PDZ motif, and phosphorylation of this 
residue induces interaction of GLUT1 with the PDZ-
interacting protein, Gα-interacting protein and C-terminus 
(GIPC1) (Andrisse et al. 2013). GIPC1 interaction pro-
motes GLUT1 trafficking to the cell surface and stimu-
lates glucose uptake (Fig. 1a; arrow 2) (Wieman et al. 
2009).
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Fig. 1  Interplay between ROS and glucose. a Glucose uptake can be 
regulated by: (1) altering the expression level of glucose transporters 
(GLUTs; blue), (2) stimulating translocation of GLUTs from internal 
vesicles to the plasma membrane and (3) changing the intrinsic activ-
ity of GLUTs at the plasma membrane. b Glycolytic conversion of 
glucose into pyruvate and subsequent pyruvate entry into the mito-
chondria (1) stimulates ROS production by hyperpolarizing the mito-
chondrial membrane potential (Δψ↑). Subsequently, ROS stimulate 
glucose uptake (see a), thereby triggering additional ROS produc-
tion. Glucose flux through the pentose phosphate pathway (stimulated 
by AMPK and ATM) generates NADPH (2), which is an important 
cofactor in ROS scavenging. c Hyperpolarization of the mitochon-
drial membrane potential (Δψ↑) is prevented by: (1) GLUT1 inter-
nalization, (2) GLUT1 mRNA degradation, (3) reduction of pyru-
vate to lactate and subsequent secretion of lactate. A hyperpolarized 
mitochondrial membrane potential is diminished by: (4) transient 

uncoupling of the mitochondrial membrane potential (PTP, UCP) or 
enhancing oxidative phosphorylation efficiency by HK–CV interac-
tion. Proteins that are activated by ROS are depicted in yellow (for 
details, see main text). 4-HDDE 4-hydroxydodecadienal, 12-HPETE 
12-hydroperoxyeicosatetraenoic acid, Δψ mitochondrial membrane 
potential, ATM ataxia telangiectasia mutated, CV complex V, GIPC 
Gα-interacting protein-interacting protein, C-terminus, GLC glucose, 
Glut1 glucose transporter 1, HIF-1 hypoxia-inducible factor 1, HK 
hexokinase, LAC lactate, LDH lactate dehydrogenase, MCT monocar-
boxylate transporter, P-AMPK phosphorylated (activated) AMP-acti-
vated protein kinase, PHD prolyl hydroxylase domain, P-p38, phos-
phorylated (activated) p38 mitogen-activated protein kinase, PI3K 
phosphoinositide 3-kinase, PTP permeability transition pore, PYR 
pyruvate, ROS reactive oxygen species, TXNIP thioredoxin-interact-
ing protein, UCP uncoupling protein (color figure online)
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Regulation of GLUT1 activity at the plasma membrane 
by ROS

Regulation of glucose uptake can also occur directly at 
the plasma membrane. This type of regulation occurs on 
a relatively short-term time scale (i.e., within 1 h) and 
represents a relatively fast mechanism that allows the 
cells to cope with metabolic stress (Fig. 1a; arrow 3). 
The intrinsic activity of GLUTs can be modulated by 
conformational changes or posttranslational modifica-
tions that increase glucose affinity (Asano et al. 1991; 
Levine et al. 2002). In addition, the maximal rate of cel-
lular glucose uptake (Vmax) can be modulated by activa-
tion or deactivation of GLUTs at the plasma membrane. 
A number of metabolic inhibitors and AMPK activators 
acutely stimulate glucose uptake without increasing the 
amount of GLUT molecules at the plasma membrane 
(Abbud et al. 2000; Barnes et al. 2002; Hamrahian et al. 
1999; Shetty et al. 1993; Shi et al. 1995). It was proposed 
that this increase is due to the release of “masking pro-
teins,” which display an inhibitory interaction with the 
GLUT cytoplasmic domain under basal conditions (Shi 
et al. 1995). Stomatin was proposed being a masking 
protein as it interacts with the C-terminus of GLUT1, 
and its over-expression reduces GLUT1 intrinsic activ-
ity (Rungaldier et al. 2013; Zhang et al. 2001). Another 
potential masking protein is TXNIP, which displays an 
inhibitory interaction with GLUT1 (Wu et al. 2013). 
AMPK-induced degradation of TXNIP (see previous 
section) would unmask GLUT1 leading to enhancement 
of GLUT1-mediated glucose influx (Fig. 1a; arrow 3). 
Although stimulation of GLUT intrinsic activity is often 
observed during metabolic stress, the role of ROS in this 
pathway is still incompletely understood. In a leukemic 
cell line, ROS generated by NAD(P)H oxidase (Nox) 
stimulated glucose uptake via Src-mediated phosphoryl-
ation of GLUT1 (Prata et al. 2008). On the other hand, 
antioxidants were ineffective in preventing GLUT1 acti-
vation during azide-induced CIV inhibition (Hamrahian 
et al. 1999). Taken together, various signaling pathways 
have been implied in the stimulation of glucose uptake 
as an adaptive response during oxidative stress (Fig. 1a). 
At a relatively slow timescale, ROS-induced signals 
stimulate glucose uptake via up-regulation of GLUT 
protein expression. Rapid stimulation of glucose uptake 
can occur at the level of GLUT translocation and regula-
tion of GLUT intrinsic activity. Interestingly, several of 
the signaling proteins are ROS-sensitive (i.e., AMPK and 
TXNIP) and involved in both slow and fast responses. 
This suggests that ROS-induced stimulation of glucose 
uptake is part of a (adaptive) mechanism triggered by 
oxidative and/or metabolic stress.

Effects of increased glucose uptake on ROS 
production and scavenging

The above evidence supports the conclusion that increased 
ROS levels stimulate cellular glucose uptake both at slow 
and fast time scales. However, inhibition of GLUT1 activ-
ity in myoblasts was paralleled by increased ROS levels 
(Andrisse et al. 2014). This might indicate that glucose 
uptake also plays a role in regulating the balance between 
ROS production and scavenging, suggesting that glucose 
uptake must be tightly controlled to maintain cellular 
energy homeostasis and redox status.

The role of glucose in ROS scavenging

Glucose entry into the PPP is protective against hydro-
gen peroxide-induced cytotoxicity (Le Goffe et al. 2002). 
Mechanistically, this protection is probably due to an 
increased PPP flux, leading to a higher NADPH/NADP+ 
ratio and GSH level. Compatible with this hypothesis, 
skin fibroblasts derived from patients with MERFF (myo-
clonic epilepsy with ragged red fibers) displayed GLUT1 
up-regulation and increased NADPH and GSH levels (Wu 
and Wei 2012). Preventing this NADPH increase induced 
ROS over-production and cell death (Wu and Wei 2012). 
Glucose entry into the PPP and subsequently increased 
levels of NADPH is stimulated by ATM-induced activa-
tion of G6PDH (Fig. 1b; arrow 2), which is the first and 
rate determining enzyme of the PPP (Cosentino et al. 
2011). Moreover, GLUT1 contributes to ROS scavenging 
by mediating the transport of dehydroascorbic acid (DHA), 
the oxidized form of vitamin C, which is recycled back to 
vitamin C inside the cell (Rumsey et al. 1997). Vitamin C is 
a potent antioxidant, which can prevent oxidative cell death 
(De Rosa et al. 2010; Guaiquil et al. 2001). Experimental 
evidence suggests that GLUT1 also co-localizes with mito-
chondria to facilitate mitochondrial uptake of DHA and 
quench ROS induced by mitochondrial uncoupling (Kc 
et al. 2005). In summary, enhanced PPP glucose entry and 
GLUT-mediated antioxidant uptake appear to be relevant 
for cellular ROS removal.

The role of glucose in stimulation of ROS production

A high glycolytic flux was associated with increased ROS 
levels (Talior et al. 2003; Zhou et al. 2005), whereas inhibi-
tion of mitochondrial pyruvate uptake lowered ROS levels 
(Nishikawa et al. 2000; Yu et al. 2006). Increased glycolytic 
flux is generally associated with and increased TCA cycle 
flux (Ishihara et al. 1996). The latter results in accumula-
tion of OXPHOS substrates and elevated NADH/NAD+ 
and FADH2/FAD ratios (Ido 2007; Ying 2008). A high level 
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of mitochondrial NADH leads to a fully reduced FMN site 
in CI, potentially stimulating superoxide production (Kuss-
maul and Hirst 2006). Similarly, a more reduced ETC might 
stimulate superoxide formation by CIII (Turrens et al. 
1985). Reduced ubiquinone, in combination with a highly 
negative (hyperpolarized) Δψ, favors reverse electron 
transfer from CII to CI, which also stimulates superoxide 
production (Batandier et al. 2006; Murphy 2009). Hyper-
glycemic conditions induced mitochondrial fragmentation 
in clone 9 liver cells, H9c2 cardiomyoblasts, and smooth 
muscle cells, which was strictly required to allow increased 
ROS production (Yu et al. 2011). However, induction of 
mitochondrial fragmentation by over-expression of the 
fission-promoting protein Drp1 (Dynamin-related protein 
1), did not stimulate ROS levels in HeLa cells, suggesting 
that increased ROS levels are not a de facto consequence 
of mitochondrial fragmentation (Distelmaier et al. 2012). 
It was proposed that fragmented mitochondria might pro-
duce more ROS due to a bigger relative membrane surface 
(allowing better uptake of metabolic substrates) and ensu-
ing Δψ hyperpolarization (Yu et al. 2006). High extracel-
lular glucose levels stimulate TXNIP expression (Stoltz-
man et al. 2008), which can aggravate oxidative stress by 
binding Trx via disulfide bridges and thereby inhibiting its 
reducing potential (Hwang et al. 2014; Kaimul et al. 2007; 
Li et al. 2015; Nishiyama et al. 1999; Schulze et al. 2004). 
Taken together, the current experimental evidence suggests 
that increased glucose uptake and glycolytic conversion to 
pyruvate can increase ROS levels.

Cellular and metabolic adaptation to increased 
ROS levels

Integrating the above mechanisms, it is conceivable that 
certain (pathological) conditions favor activation of a self-
amplifying cycle of glucose uptake and glucose-stimulated 
ROS production, ultimately leading to cell death. Glucose-
stimulated ROS production might be counterbalanced by 
the combined action of endogenous antioxidant systems 
(Sect. 1.2) and glucose-stimulated increase in ROS scav-
enging (Sect. 3.1). If these systems are insufficient, cells 
might also prevent glucose-induced oxidative stress by 
other means. As discussed in Sect. 3.2, a very high gly-
colytic flux eventually results in increased ETC electron 
input, a highly negative (hyperpolarized) Δψ, and a (prob-
ably) more reduced ETC. These phenomena all favor 
mitochondrial ROS production by the ETC. As discussed 
in the following sections, several mechanisms have been 
described that reduce ETC-mediated ROS generation. The 
latter generally are associated with a less reduced state of 
CI and CIII, likely associated with reduced electron leak 
and ROS generation, and include lowering the amount of 

electrons fed into the ETC and induction of (partial) Δψ 
depolarization.

Reducing the ETC electron input

In principle, ETC electron input can be reduced by lower-
ing cellular glucose uptake. A high extracellular glucose 
concentration triggers a rapid reduction in GLUT1 levels at 
the plasma membrane, without affecting their total cellular 
levels (Greco-Perotto et al. 1992; Sasson et al. 1997). Such 
a reduction can be induced by inhibition of GLUT translo-
cation to the plasma membrane, stimulation of GLUT inter-
nalization or both (Fig. 1c; process 1). On a slower time 
scale, down-regulation of GLUT expression (Fig. 1c; pro-
cess 2) also lowers the total and plasma membrane levels of 
GLUT (Riahi et al. 2010; Totary-Jain et al. 2005). Regula-
tion of these two processes is mediated by various signal-
ing pathways. First, a high rate of glucose uptake induces 
the buildup of glycolytic intermediates, which activate the 
transcription factor carbohydrate response element-binding 
protein (chREBP) to drive the expression of a number of 
target genes, including TXNIP, that negatively regulate 
glycolysis (Stoltzman et al. 2008). TXNIP over-expression 
inhibits glucose uptake, while TXNIP knockdown stimu-
lates glucose uptake (Parikh et al. 2007). TXNIP inhibits 
glucose uptake by interacting with GLUT1 and possibly 
inducing GLUT1 internalization through clathrin-coated 
pits (Fig. 1c; process 1). In addition, TXNIP reduces glu-
cose uptake by suppressing GLUT1 mRNA levels (Fig. 1c; 
process 2; Wu et al. 2013). A TXNIP mutant unable to bind 
Trx still inhibited glucose uptake (Parikh et al. 2007; Pat-
wari et al. 2009), suggesting that TXNIP-induced down-
regulation of glucose uptake does not exclusively depend 
on Trx (and possibly redox status). Besides having a stimu-
latory effect on glucose uptake, ROS also exert a negative 
feedback on glucose uptake. For instance, exogenous appli-
cation of ROS induced GLUT1 internalization and reduced 
glucose uptake (Fig. 1c; process 1) in retinal endothelial 
cells (Fernandes et al. 2004, 2011). Similarly, a prolonged 
exposure to exogenous ROS triggered Akt inactivation and 
GLUT1 internalization (Fernandes et al. 2011). In contrast, 
a short exposure to exogenous ROS stimulated Akt activa-
tion and translocation of GLUT1 to the plasma membrane 
(Fernandes et al. 2011). The above suggests a mechanism 
in which ROS first transiently stimulates glucose uptake 
(perhaps to increase NADPH levels) and subsequently 
down-regulates glucose uptake to prevent that too much 
electrons are fed into the ETC. However, internalization 
of GLUT1 does not always occur efficiently and high glu-
cose-induced ROS production is prolonged (Cohen et al. 
2007; Rosa et al. 2009). The exact reason for the absence 
of GLUT1 reduction at the plasma membrane is not well 
understood. It is possible that regulatory proteins such as 
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Akt are bypassed. It may also be a consequence of irre-
versible damage (induced by ROS) of regulatory proteins, 
such as those comprising the proteasome machinery. In 
muscle, increased ROS levels during enhanced glucose 
uptake reduce the level of GLUT1 mRNA by increasing the 
expression of 12-lipoxygenase. This enzyme converts ara-
chidonic acid to 12-hydroperoxyeicosatetraenoic acid (12-
HPETE) (Alpert et al. 2002) and ROS-induced oxidation 
of the latter leads to formation of 4-hydroxydodecadienal 
(4-HDDE). This molecule activates the peroxisome prolif-
erator-activated receptor δ (PPARδ) to drive the expression 
of calreticulin (Riahi et al. 2010). On its turn, calreticulin 
interacts with a cis-acting element in the 3′UTR of GLUT1 
mRNA, making it susceptible to degradation (Totary-Jain 
et al. 2005) (Fig. 1c; process 2).

Inhibition of lactate dehydrogenase (LDH) enhanced 
oxidative stress and cell death in tumor cells (Le et al. 
2010), whereas stimulating pyruvate-to-lactate conversion 
reduced oxidative stress (Brand 1997). This suggests that 
ETC electron input is reduced by stimulating conversion 
of pyruvate into lactate and secretion of the latter by the 
cell into the extracellular environment (Fig. 1c; process 
3). Another mechanism to reduced ETC electron input is 
shown by the fact that ROS can stimulate glutathionylation 
or sulfenation, and thereby inactivation, of several TCA 
cycle enzymes including PDH, KGDHC, aconitase, isoci-
trate dehydrogenase, and CII (Bulteau et al. 2005; Chen 
et al. 2007b; Kil and Park 2005; McLain et al. 2011, 2013; 
Yan et al. 2013). Although ROS-induced inhibition of the 
TCA cycle results in a decline of NADH and in turn dimin-
ish the mitochondrial electron feed and hence reduced 
state of CI, it may also be detrimental to cells (Tretter and 
Adam-Vizi 2000). Increased ROS levels can also reduce the 
glycolytic flux by activation of poly(ADP-ribose) polymer-
ase (PARP), leading to subsequent inactivation of glycer-
aldehyde-3-phosphate dehydrogenase (GAPDH) (Du et al. 
2003; Nishikawa et al. 2000). Although this mechanism 
might be useful to lower ETC electron input, it also makes 
glucose enter the polyol pathway, which consumes NADPH 
and generates NADH (Giacco and Brownlee 2010). This is 
unfavorable since NADPH depletion and increased NADH/
NAD+ ratios are associated with increased ROS production 
and/or levels.

Depolarization of Δψ

The magnitude of Δψ is mainly determined by the gradi-
ent of protons across the MIM, but also other charged ions 
and small molecules (e.g., ATP3−, ADP4−) can play a role. 
Therefore, every mechanism that reduces proton influx or 
increases proton efflux into the MIM, when not counterbal-
anced, stimulates (partial) Δψ depolarization. In this sense, 
Δψ depolarization can be induced by ETC inhibition, 

CV stimulation (increased coupling efficiency) and/or 
increased trans-MIM proton leak (uncoupling). The latter 
is mediated by mitochondrial uncoupling proteins (UCPs) 
1-3 (Fig. 1c; process 4, UCP). In mitochondrial fractions 
from various tissues, GDP-induced inhibition of UCP1 
and UCP2 was associated with Δψ hyperpolarization 
and increased production of hydrogen peroxide (Negre-
Salvayre et al. 1997). Similarly, in muscle mitochondria 
and intact muscle fibers inhibition of UCP3 by GDP-
stimulated superoxide and hydrogen peroxide production, 
respectively (Anderson et al. 2007; Talbot et al. 2004). 
Also genetic intervention studies revealed that absence of 
either UCP2 or UCP3 resulted in higher ROS production 
and oxidative stress in mitochondria and cells (Anderson 
et al. 2007; Arsenijevic et al. 2000; Brand et al. 2002; Lee 
et al. 2009; McLeod et al. 2005; Seifert et al. 2008; Toime 
and Brand 2010; Valsecchi et al. 2013). In line with these 
results, UCP2 or UCP3 over-expression lowered mitochon-
drial ROS production (Lee et al. 2005; Teshima et al. 2003; 
Valsecchi et al. 2013). Surprisingly, ROS can activate both 
UCP2 and UCP3 via deglutathionylation rather than glu-
tathionylation, although the latter is normally stimulated 
by high ROS levels (Mailloux et al. 2011). In this sense, 
high levels of ROS activate UCPs and thereby constituting 
a negative feedback loop that lowers mitochondrial ROS 
production presumably via mitochondrial uncoupling and 
ensuing Δψ depolarization. In addition to the role of UCPs 
in controlling mitochondrial ROS production via Δψ depo-
larization, also a role for these proteins in metabolism has 
been proposed (Bouillaud 2009; Huppertz et al. 2001). This 
suggests that UCP-mediated metabolic changes might (co)
determine mitochondrial ROS generation.

Fast Δψ depolarization can also be induced by open-
ing of the mitochondrial permeability transition pore (PTP) 
(Fig. 1; process 4, PTP). Although the mitochondrial matrix 
protein Cyclophilin D (CypD) is a well-characterized regu-
lator of PTP opening, the exact molecular composition of 
this channel remains elusive. Genetic intervention studies 
revealed that the adenine nucleotide translocase (ANT) 
and the mitochondrial phosphate carrier (PiC) are not core 
components but also regulators of PTP opening (Gutierrez-
Aguilar et al. 2014; Kokoszka et al. 2004; Kwong et al. 
2014; Varanyuwatana and Halestrap 2012). More recently, a 
central role for mitochondrial CV has been proposed (Ala-
vian et al. 2014; Bonora et al. 2013; Giorgio et al. 2013). 
However, it may well be that an interaction of the CV with 
ANT and PiC is the mechanism of PTP formation (Hale-
strap 2014). Most of the above proteins have been shown 
to be prone to ROS-induced modification. The ANT con-
tains several thiol residues that are sensitive to redox modi-
fication and involved in regulating PTP opening (Costan-
tini et al. 2000; McStay et al. 2002; Queiroga et al. 2010). 
Upon diamide-induced oxidative stress, Cys160 cross-links 
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to Cys257 thereby locking the ANT in its “c-conformation,” 
which sensitizes the PTP to elevated calcium levels within 
the mitochondrial matrix (McStay et al. 2002). Carbon 
monoxide is able to induce glutathionylation of ANT and 
decreasing PTP opening, while in turn diamide is able to 
deglutathionylate ANT (Martinez-Reyes and Cuezva 2014). 
Cys203 of CypD is another target for oxidative modifica-
tion, shown to be involved in ROS-induced PTP opening 
and cell death. Upon Cys203 mutation, PTP opening is 
reduced to a level similar to that in CypD-negative cells 
(Linard et al. 2009; Nguyen et al. 2011). The α-subunit of 
the CV can also be glutathionylated leading to a decrease 
in CV activity (Garcia et al. 2010). Whether this decrease 
reduces PTP opening still needs to be elucidated. Although 
PTP opening might reduce the mitochondrial ROS levels 
by lowering ROS production and/or allow the release of 
mitochondrial ROS into the cytosol, this phenomenon has 
also been associated with induction of superoxide “flashes” 
(Wang et al. 2008; Zhang et al. 2013). However, the exist-
ence and chemical nature of these flashes is currently 
debated as the biosensor used for superoxide detection also 
appears to be pH-sensitive (Muller 2009; Schwarzlander 
et al. 2012, 2014). More importantly, sustained PTP open-
ing triggers apoptosis and has been linked to pathophysiol-
ogy and cell death (Brenner and Moulin 2012; Ichas and 
Mazat 1998). This suggests that only short reversible PTP 
openings, associated with reversible Δψ depolarizations 
(Blanchet et al. 2014), are suited to reduce mitochondrial 
ROS levels and preserve cell viability.

Other mechanisms that reduce ROS

Increased coupling efficiency of the OXPHOS system (i.e., 
between ETC electron transport and CV-mediated ATP 
production) has also been described as a mechanism to 
depolarize Δψ and lower ROS production (Fig. 1; process 
4, HK/CV) (Starkov and Fiskum 2003). Recruitment of 
hexokinase (HK) to the outer surface of the mitochondrial 
outer membrane (MOM) was associated with decreased 
hydrogen peroxide production (Sun et al. 2008). A mech-
anism was proposed in which HK uses OXPHOS-derived 
ATP to metabolize glucose and form ADP. The latter 
is exchanged with ATP across the MIM by the ANT and 
used to fuel ATP production by CV. In principle, such a 
mechanism would increase coupled respiration and thereby 
reduce ETC electron leak and ROS production. However, 
glucose-6-phosphate accumulation is stimulated under 
conditions of increased glycolytic flux. This accumulation 
might inhibit HK activity and thereby increase mitochon-
drial ROS production (da-Silva et al. 2004). As increased 
HK-mediated ADP cycling enhances ETC electron trans-
port, this mechanism should also result in a less reduced 
state of the FMN site of CI and thereby might decrease 

mitochondrial ROS formation. The latter could also be 
achieved by lowering NADH production (Sect. 4.1) or by 
decreasing OXPHOS activity. In case of CII and CV, their 
glutathionylation has been associated with reduced activ-
ity (Chen et al. 2007b, 2008; Garcia et al. 2010). CI also 
contains subunits that are sensitive to oxidative modi-
fication. These include the 51-kDa (NDUFV1) subunit 
(Cys187, Cys206, Cys425) and 75-kDa (NDUFS1) subunit 
(Cys367 Cys531 Cys704 Cys226 Cys727), which can be glu-
tathionylated and thereby diminish the activity of CI (Beer 
et al. 2004; Chen et al. 2007a; Hurd et al. 2008; Kang 
et al. 2012). NDUFV1 and NDUFS1 glutathionylation is 
reversible and protects CI from further oxidative damage 
such as sulfenylation and thereby irreversible deactivation 
(Hurd et al. 2008). Compatible with inhibitor studies (Koo-
pman et al. 2010), CI inhibition by glutathionylation was 
linked to increased superoxide production (Taylor et al. 
2003). This suggests that CI inactivation is not necessar-
ily associated with reduced mitochondrial ROS production. 
Taken together, the above suggests that oxidative stress 
triggered by increased glucose uptake could trigger adap-
tive responses to reduce mitochondrial ROS production 
via reducing ETC electron input, depolarization of Δψ or 
increasing coupled respiration.

Summary and conclusion

ROS are produced as a consequence of normal mitochon-
drial energy metabolism. When transiently and/or mod-
erately increased, ROS can activate signaling pathways 
involved in cellular adaptation to various types of (meta-
bolic) stress. One of these pathways is the stimulation 
of glucose uptake. When ROS levels are too high and/
or remain increased during a prolonged period of time, a 
vicious circle of ROS-stimulated glucose uptake and glu-
cose-stimulated ROS production can be triggered. This 
pathological cycle can be broken by restoring mitochon-
drial ROS production to normal levels. We presented three 
major mechanisms that, in principle, can lower mitochon-
drial ROS production: (1) reducing glucose uptake, (2) 
increasing lactate secretion and (3) depolarization of Δψ. 
Unfortunately, these mechanisms have also been associ-
ated with increases in ROS and/or appear to be not effec-
tive in all experimental models. Undesirable side effects 
include reduced NADPH production during reduced glu-
cose uptake, a high rate of lactate secretion potentially 
inducing lactic acidosis and induction of mitochondrial 
dysfunction and apoptosis by (high-magnitude) and/or pro-
longed Δψ depolarization. We conclude that cellular glu-
cose metabolism and mitochondrial ROS production are 
coupled by various signaling mechanisms, which need to 
be controlled by the cell to avoid oxidative stress. A more 
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detailed understanding of how these pathways interact with 
mitochondrial ROS production, endogenous antioxidant 
systems and mitochondrial/cellular function is required to 
explain why oxidative stress induction still appears to con-
tribute to pathology induction in humans (e.g., diabetes, 
cancer, mitochondrial dysfunction).
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