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The advent of potent new therapies for HIV has seem-
ingly turned the tide in the battle against this disease.

Specifically, combinations of antiretroviral drugs that in-
clude a member of the protease inhibitor (PI) or nonnucle-
oside reverse transcriptase inhibitor (NNRTI) family offer
new hope that the progression of the disease and death can

be delayed.1-3 However, the addition of combination thera-
pies to already complex medication regimens dramatically
increases the likelihood of drug interactions.4-7 PIs and
NNRTIs, in particular, have a propensity for causing drug
interactions as a result of their ability to either inhibit or in-
duce the cytochrome P450 (CYP450) enzyme system.8-13

The effects of medications commonly used by patients
with HIV/AIDS on the body’s various drug-metabolizing
pathways are summarized in Table 1.8-13
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While numerous interactions of varying clinical signifi-
cance have been well described10-12 with these antiretrovi-
rals, less is known about the potential for drug interactions
with recreational drugs. This is an issue of concern, since
drug use by injection remains a significant risk factor for
the acquisition of HIV infection.14,15 According to the Cen-
ters for Disease Control and Prevention,16 the proportion of
AIDS cases in the US associated with injection drug use
has increased from 12% in 1981 to 25% of all new cases
through June 2001. In Canada, the proportion of new HIV
infections attributable to injection drug use increased from
24% in 1987–1990 to 34% in 1999.17

A report18 of a suspected fatal interaction between riton-
avir and 3,4-methylenedioxymethamphetamine (MDMA,
ecstasy) has sparked demands for increased awareness and
research in this area. Realistically, however, it is unlikely
that pharmacokinetic interactions between drugs used in
HIV pharmacotherapy and most recreational agents will be
formally studied, due to legal and ethical constraints. How-
ever, it is often possible to predict potential interactions us-
ing in vitro and in vivo drug metabolism data.19 Since many
recreational drugs are metabolized to some degree by the
CYP450 system, it is reasonable to anticipate that concomi-
tant use with PIs and delavirdine could possibly result in
drug accumulation and/or toxicity. Similarly, treatment with
enzyme inducers such as the NNRTI nevirapine may pre-
cipitate withdrawal reactions to recreational agents metabo-
lized by the CYP450 system. Interactions between the
NNRTI efavirenz and recreational drugs may be more diffi-
cult to predict, given that efavirenz can both inhibit (3A4,
2C9/19) and induce (3A4) selected isoenzymes of the
CYP450 system, although induction of CYP3A4 appears to
predominate over inhibition of this particular isoenzyme.7,13

The purpose of this review is to summarize data on drug
interactions between recreational drugs and antiretrovirals.
In the absence of such data, the potential for an interaction
is addressed based on the metabolic fate of the recreational
drug. General information regarding the steps involved in
drug metabolism has been reviewed elsewhere.19

Methods

Information was collected on documented or suspected
interactions and metabolic pathways of both commonly
prescribed HIV medications and commonly used recre-
ational drugs. Information was retrieved via a MEDLINE
search (1966–August 2002) using the MeSH headings hu-
man immunodeficiency virus, drug interactions, cyto-
chrome P450, names of antiretrovirals, and chemical and
common names of frequently used recreational drugs in-
cluding methylenedioxymethamphetamine (MDMA),
methamphetamine, γ-hydroxybutyrate (GHB), ketamine,
phencyclidine (PCP), lysergic acid diethylamide (LSD),
cocaine, heroin, methadone, meperidine, codeine, mor-
phine, oxycodone, benzodiazepines, marijuana, and alco-
hol. Abstracts of international and national conferences, re-
view articles, textbooks, and references of all articles were
also searched. All literature on pharmacokinetic or phar-
macodynamic interactions was considered for inclusion.
When data on a particular combination were unavailable, a
possible or potential interaction was predicted based on the
metabolic fate of the involved agents. 

Results

Many prescription, nonprescription, and recreational
drugs undergo extensive hepatic metabolism via CYP450
isoenzymes and/or glucuronidation. Thus, there is potential
for significant interactions between these agents and an-
tiretrovirals, particularly PIs and NNRTIs. Concentrations
of many recreational drugs may be significantly increased
or decreased in the presence of these antiretrovirals and
may be associated with serious adverse outcomes. 

Rave Drugs

AMPHETAMINES 

MDMA, also known as ecstasy, XTC, Adam, and
Essence, is a commonly used substance at all-night dance
parties known as raves and is also increasingly being used
recreationally by young professionals. When MDMA is
taken orally as a capsule or tablet at average doses of
75–100 mg,20 users cite enhanced feelings of empathy for
others, anxiolysis, and strong feelings of euphoria. MDMA
is an amphetamine-like compound that undergoes
demethylenation principally by CYP2D6.21-23 Concomitant
administration with CYP2D6 inhibitors could lead to sig-
nificant increases in MDMA exposure with potentially
dangerous and even fatal consequences, as illustrated by a
case report.18 Within a few hours of taking 180 mg of
MDMA, a 32-year-old man with AIDS experienced
symptoms suggestive of a heightened serotonergic state in-
cluding tachypnea, tachycardia, cyanosis, and profuse
sweating. He then experienced an apparent tonic–clonic
seizure, tachypnea, and tachycardia (carotid pulse ~ 200
beats/min), and subsequently died from cardiorespiratory
arrest. This patient had previously taken similar amounts
of MDMA on several occasions without adverse effects,
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Table 1. Metabolic Characteristics of Antiretrovirals8-13

Class Enzyme Inhibitors Enzyme Inducers

NNRTI delavirdine nevirapine 
CYP3A4 CYP3A4

efavirenz  efavirenz 
CYP2B6, 3A4, 2C9/19 CYP3A4

PI all inhibit CYP3A4 ritonavir
ritonavir (in descending order of GCT
potency of inhibition) CYP1A2
3A4>2D6>2C9>2C19>>2A6>2E1 CYP3A4 (possible)

nelfinavir
CYP2B6 GCT

amprenavir 
CYP2C19

nelfinavir
CYP2B6

GCT = glucuronyltransferase; NNRTI = nonnucleoside reverse tran-
scriptase inhibitor; PI = protease inhibitor.



but this was the first time he had taken MDMA since
adding ritonavir 600 mg twice daily to his antiretroviral
regimen. At autopsy, the patient’s blood concentrations of
MDMA were approximately tenfold higher than expected
given the amount ingested. Since ritonavir is a well-known
potent inhibitor of many hepatic isoenzymes including
CYP2D6, the clinicians concluded that the patient likely
experienced a fatal serotonergic reaction to MDMA as a
result of an interaction with ritonavir.

The danger associated with this interaction may be mag-
nified due to the large variability in the actual amount of
MDMA between tablets and the presence of other chemi-
cals (e.g., amphetamines, ephedrine) in some MDMA
tablets whose metabolism can also be inhibited by riton-
avir, leading to a life-threatening consequence.24 Thus, the
combination of MDMA and ritonavir should be avoided.
Other isoforms of the CYP450 system may also be in-
volved in the metabolism of MDMA, notably 1A2, 2B6,
and 3A4.23 All PIs can inhibit CYP3A4 activity to varying
degrees, and ritonavir, nelfinavir, and the NNRTI efavirenz
also demonstrate inhibitory activity against 2B625; there-
fore, individuals using MDMA should be warned about
the potential for an interaction with these agents and ad-
vised to take appropriate precautions (e.g., use ~25% of the
usual amount of MDMA, take breaks from dancing, en-
sure rave or party has medical team on site, maintain ade-
quate hydration by avoiding alcohol and replenishing flu-
ids regularly). 

Other amphetamines, particularly methamphetamine
(crystal meth, speed), may be used at raves. These drugs
are also mainly metabolized by CYP2D6.26-28 Thus, poten-
tially dangerous interactions with ritonavir may occur, and
the combination should be avoided if possible.

GHB

GHB, also known as liquid ecstasy, grievous bodily
harm, or G, is a naturally occurring metabolite of the neu-
rotransmitter γ-aminobutyric acid (GABA) that is used at
raves for its euphoric effects. Colorless, odorless, and taste-
less, GHB has also been used in the context of date rape
when slipped into beverages. The pharmacokinetics of
GHB have not been well characterized. The major route of
elimination is expired breath as carbon dioxide, although
animal data29,30 suggest that first-pass metabolism may also
play a large role in GHB clearance. Since first-pass metab-
olism is often mediated by the CYP450 system, it is possi-
ble that inhibitors of this system could predispose patients
to GHB-related toxicity. As the precise metabolic pathway
involved in the metabolism of GHB is unknown, patients
who use this substance should be warned about the poten-
tial dangers of a drug interaction with PIs (especially riton-
avir) and the NNRTIs delavirdine and, possibly, efavirenz.

The potential for an interaction is highlighted by a re-
port31 of an HIV-positive patient taking ritonavir and
saquinavir who developed symptoms consistent with GHB
toxicity shortly after ingesting a small amount of GHB
(~10 mg/kg). The patient had taken GHB to counter the

agitating effects of 2 MDMA tablets, which had lasted
much longer (29 h) than when he had used MDMA prior
to initiating antiretroviral therapy. Since the man had taken
similar doses of both MDMA and GHB without incident
prior to initiating therapy with ritonavir and saquinavir, the
authors concluded that PI-mediated inhibition of MDMA
and GHB was responsible for the adverse reactions. 

KETAMINE

Ketamine, also known as special K or kit kat, may be
used at raves for its dissociative, intoxicating, and amnesic
properties. Users may inhale the powder form, while ke-
tamine liquid is usually added to drinks and ingested oral-
ly. The main route of ketamine metabolism is N-demethyl-
ation to norketamine, a metabolite with approximately
one-third the anesthetic activity of its parent compound.
Norketamine is then hydroxylated and conjugated to wa-
ter-soluble conjugates that are excreted in the urine.32

CYP2B6 appears to be the main enzyme involved in ke-
tamine metabolism, with 3A4 and 2C9 involved to a lesser
extent.33 There are no studies or case reports describing in-
teractions between ketamine and antiretroviral agents.
However, since ritonavir, nelfinavir, and efavirenz are po-
tent inhibitors of CYP2B6, patients who use ketamine
recreationally may be at risk for ketamine toxicity due to
drug accumulation. Animal studies34,35 suggest that ke-
tamine may be a weak inhibitor of CYP3A4, although the
clinical significance of this is unclear in the absence of hu-
man data. Still, until such results can be confirmed, it may
be prudent to avoid recreational ketamine use while taking
drugs that are CYP3A4 substrates and have narrow safety
thresholds (e.g., cisapride, terfenadine, astemizole).

PCP

PCP, known on the street as angel dust, rocket fuel, or
killer weed, may be used at raves for its hallucinogenic or
dissociative properties. Users may also report feelings of
empowerment and invulnerability with PCP use. PCP is
metabolized in the liver through oxidative hydroxylation,
with up to 5 metabolites being formed. CYP3A4 appears
to play a major role in the hydroxylation of PCP.36 Results
from rat model studies also suggest that CYP2C11 may be
involved in PCP metabolism37 and that CYP2B1 may be in-
hibited in vitro.38 Thus, it would be expected that concurrent
use of PCP with PIs, delavirdine, and possibly efavirenz
may result in elevated PCP concentrations and resultant tox-
icity. Patients using PCP who are also receiving treatment
with antiretrovirals should be cautioned to use less than what
they would normally use given the potential for a drug inter-
action.

LSD

LSD is also known popularly as acid or blotters, since it
may be used in the form of paper microdots for its hallu-
cinogenic and mild euphoric properties. Although the
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CYP450 system may be involved in the metabolism of
LSD, the exact contribution of this system in overall LSD
clearance and the isoenzymes involved have not been de-
tailed.39,40 Thus, anticipating drug interactions with LSD is
extremely difficult. Patients who use LSD recreationally and
who receive treatment with antiretrovirals should be cau-
tioned about the possibility of an interaction and to be famil-
iar with signs of LSD toxicity, and perhaps consider using a
smaller amount than normal. Table 218,21-23,26-40 summarizes
the interactions between rave drugs and antiretrovirals.

Methadone

Since methadone is metabolized primarily by CYP3A4,
with additional contributions by 2D6, 2C19, and 2B6, the
likelihood of interactions with NNRTIs and PIs is high.41-44

Several such interactions have been described in the litera-
ture and are summarized in Table 3.45-72

As expected, patients maintained on methadone who are
subsequently treated with either efavirenz or nevirapine are
at risk of developing opiate withdrawal symptoms due to
NNRTI-mediated enzyme induction. Such patients may re-
quire an increase in their methadone dose, although the
magnitude of the dose increase may not always parallel the
reduction in total methadone exposure. For example, data
reported by Clarke et al.45 suggest that, despite a decrease
of >50% in methadone AUC seen with the addition of

efavirenz, a mean increase in methadone dose of only 22%
(in 10-mg increments) was required to counteract symp-
toms consistent with opiate withdrawal. A similar interac-
tion has been described68 between nevirapine and metha-
done, in that a mean increase in methadone dose of 16%
was required to compensate for a 50% reduction in metha-
done AUC.

Interactions between PIs and methadone have been even
less predictable. In vitro, the AUC for methadone increased
twofold when the drug was administered with ritonavir and
30% when administered with indinavir.73 A later study74 in
healthy volunteers did not confirm these findings, noting a
decrease in the AUC of methadone of 36% with concomi-
tant ritonavir. However, these results are somewhat limited
since only a single 5-mg dose of methadone was studied.
Similarly, reduced methadone concentrations have been
noted in the presence of lopinavir/ritonavir70 and nelfi-
navir.53 These observations suggest that ritonavir, nelfi-
navir, and possibly lopinavir may be inducing an alterna-
tive route of methadone metabolism.52,57,58

Reduced methadone concentrations have not always
been accompanied by symptoms of opiate withdrawal.
This lack of correlation between concentrations and clini-
cal withdrawal may be related to a disproportionately larg-
er induction in the metabolism of methadone’s inactive
S(+)-enantiomer as opposed to the R(–)-enantiomer, which
harbors essentially all opiate activity.54 Further studies need

Recreational Drug–Antiretroviral Agent Interactions
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Table 2. Interactions Between Antiretrovirals and Rave Drugs18,21-23,26-40

Drug Metabolism Actual/Theoretical Interaction Potential Significance Recommendation

Amphetamines CYP2D626-28 possible ↑ concentrations with hypertension, hyperthermia, avoid combination with ritonavir if 
ritonavir seizures, arrhythmias, possible; alternatively, start with 

tachycardia, tachypnea 1/4–1/2 of initial amount of 
amphetamine used

GHB expired breath as possible ↑ concentrations/ 1 case31 of GHB toxicity with use cautiously with CYP450 inhibitors 
CO2; first-pass prolonged effect with ritonavir/saquinavir; myoclonic (i.e., PIs, delavirdine, efavirenz); 
metabolism29,30 antiretrovirals, especially or seizure activity, bradycardia, become aware of signs/symptoms 

ritonavir respiratory depression, loss of of GHB toxicity
consciousness

Ketamine CYP2B6 (main), possible ↑ concentrations with respiratory depression, loss of use cautiously with CYP450 inhibitors,
3A, 2C9 (both to antiretrovirals, especially, consciousness, hallucinations especially ritonavir, nelfinavir, and 
lesser extent)32-35 ritonavir, nelfinavir, and efavirenz; become aware of signs/

efavirenz symptoms of ketamine toxicity

LSD unknown39,40 possible ↑ LSD concentrations hallucinations, agitation, use cautiously with CYP450 inhibitors 
psychosis, flashbacks (i.e., PIs, delavirdine, efavirenz); 

become aware of signs/symptoms of
LSD toxicity

MDMA, Ecstasy CYP2D621-23 possible ↑ concentrations with 1 death reported18; avoid combining with ritonavir if 
(main), 1A2, ritonavir, other PIs, hyponatremia, hyperthermia, possible; alternatively use ~1/4–1/2 of
2B6, 3A4 efavirenz arrhythmias, tremor, usual amount and watch for signs of 
(to lesser extent)23 hyperreflexia, sweating, MDMA toxicity; stay well hydrated at

seizures, tachycardia, party, avoid alcohol, take breaks 
rhabdomyolysis from dancing

PCP CYP3A,36 possible ↑ concentrations with seizures, hypertension, use cautiously with CYP450 inhibitors 
CYP2C11,37 antiretrovirals rhabdomyolysis, hyperthermia (i.e., PIs, delavirdine, efavirenz); 
inhibits become aware of signs/symptoms 
CYP2B138 of PCP toxicity

GHB = γ-hydroxybutyrate; LSD = lysergic acid diethylamide; MDMA = methylenedioxymethamphetamine; PCP = phencyclidine; PI = protease inhibitor.
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Table 3. Interactions Between Antiretrovirals and Methadone45-72

Antiretroviral Study Type Patients Interaction Recommendation

NRTIs

abacavir62 pharmacokinetic 19 pts. titrated to constant slight ↑ in methadone clearance by combination appears safe
methadone dose (≥40 mg/d) abacavir; no statistically significant change 
over 14 d; days 15–28, in Cmax, half-life, or renal clearance of 
received concomitant metha- methadone; methadone causes slight 
done and abacavir delay in rate but not extent of abacavir 

absorption

didanosine/
stavudine59 pharmacokinetic 17 pts. on methadone mainte- stavudine AUC  23%; didanosine AUC no data to guide dose adjust-

nance and 10 control pts.; ↓ 57%; effect primarily related to reduced ments; monitor for virologic 
2 pharmacokinetic studies bioavailability failure
completed for each subject 
and control (1 each for both 
drugs)

didanosine 
EC capsule72 pharmacokinetic HIV-negative patients (n = 17) EC formulation provided didanosine combination of EC capsule of

on stable methadone dose; plasma AUC concentrations comparable didanosine appears safe
randomized to EC or tablet to historical controls in nonmethadone
formulation, and crossed-over patients
to alternative regimen after
pharmacokinetic monitoring
over 24 h; comparisons
made to historical data in 
nonmethadone pts.

zidovudine60 pharmacokinetic 14 HIV-positive pts. on metha- zidovudine AUC ↑ 43% vs. control; no monitor for zidovudine-related 
done maintenance for at least effect on methadone maintenance toxicities (e.g., nausea, 
6 mo and 5 control pts.;  all pts. vomiting, bone marrow 
were receiving zidovudine suppression)
200 mg po q4h

zidovudine61 pharmacokinetic 8 pts. started on acute metha- zidovudine AUC ↑ 41% during acute 
within subject done therapy as inpatients; methadone treatment and 29% during 

both po and iv zidovudine chronic treatment
pharmacokinetics determined 
before starting methadone, 
following acute methadone 
treatment, and after 2 mo of 
daily methadone

NNRTIs

delavirdine63 pharmacokinetic 16 HIV-negative volunteers methadone did not alter pharmacokinetics since delavirdine inhibits 3A4, 
maintained on methadone of delavirdine or N-delavirdine; effect of monitor for symptoms of 
and 15 controls, each treated delavirdine on methadone not studied opiate toxicity (e.g., miosis, 
with delavirdine 600 mg bid drowsiness, ↓rate and depth 
for 5 d of respiration, nausea, vomit-

ing, constipation, bradycardia, 
hypotension) until further data
available

efavirenz45 pharmacokinetic 11 pts. on stable methadone efavirenz ↓ methadone Cmax (p = 0.007) monitor for symptoms of opiate 
maintenance, due to begin and AUC by mean of 60%; pts. withdrawal (e.g., lacrimation, 
antiretroviral therapy with developed symptoms of methadone rhinorrhea, diaphoresis, 
2 NRTIs and efavirenz withdrawal 8–10 d after starting restlessness, insomnia, 

efavirenz and received ↑ methadone dilated pupils, piloerection); 
dose (10-mg increments) until symptoms adjust methadone dose if 
resolved (22% mean ↑ in methadone necessary
dose required)

efavirenz47 case report 1 pt. on methadone 100 mg/d 4 wk after introduction of efavirenz, pt. 
for >1 y; switched from reported tiredness, headache, cold 
nelfinavir/lamivudine/ sweats, shivering; concentrations of 
stavudine to efavirenz- (R)-methadone (active enantiomer of 
containing regimen methadone) before and after introduction 

of efavirenz were 168 and 90 ng/mL, 
respectively; methodone dose ↑ to 180 
mg/d before symptoms disappeared

Cmax = maximum plasma concentration; Cmin = minimum plasma concentration; EC = enteric coating; EC50 = 50% effective concentration; HAART =
highly active antiretroviral therapy; HCV = hepatitis C virus; HGC = hard-gel capsule; NNRTI = nonnucleoside reverse transcriptase inhibitor; NRTI =
nucleoside reverse transcriptase inhibitor; PI = protease inhibitor; SGC = soft-gel capsule.

(continued on page 1603).
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Table 3. Interactions Between Antiretrovirals and Methadone45-72 (continued)

Antiretroviral Study Type Patients Interaction Recommendation

efavirenz64 case report 3 HIV-infected iv drug users opiate withdrawal symptoms emerged 
on methadone 4–7 d following introduction of efavirenz; 

methadone concentrations in 1 pt. were 
65% lower with efavirenz than at baseline; 
pts. required 66-133% ↑ in methadone dose

nevirapine, case report pt. stabilized on methadone 2 d following change, pt. experienced 
then 40 mg/d; antiretroviral therapy symptoms compatible with opiate with-
efavirenz48 changed from zidovudine/ drawal (e.g., cramps, tremor, rhinorrhea); 

lamivudine to stavudine/ symptoms stopped with discontinuation 
didanosine/nevirapine and, of nevirapine and recurred with nevirapine 
later, efavirenz rechallenge; symptoms recurred following 

change to efavirenz in spite of dose ↑ to 
80 mg/d; methadone concentrations 
stable despite dose increase

nevirapine46 case report 1 pt. on methadone 80 mg/d for 1 wk following the change to a nevirapine- monitor for symptoms of opiate 
3 y; switched from stavudine/ containing regimen, the pt. experienced withdrawal (see Efavirenz); 
didanosine/saquinavir-HGC symptoms of methadone withdrawal (e.g., adjust methadone dose if 
nelfinavir after 1 mo (because total body pain, nausea, vomiting, necessary
of didanosine intolerance) to insomnia, sweats, sense of impending 
stavudine/nelfinavir/ doom); the dose ↑ over 4 wk to 130 mg/d 
saquinavir-SGC/nevirapine and symptoms resolved

nevirapine50 retrospective 7 pts. on chronic methadone methadone withdrawal precipitated in all 
chart review maintenance following pts. within 4–8 d of initiating nevirapine; 

initiation of treatment with methadone concentrations subtherapeutic
nevirapine-containing in 3 pts.; dose ↑ necessary; 4 pts. 
regimens discontinued nevirapine therapy

nevirapine51 case series 5 pts. in methadone 4 pts. exhibited symptoms of opiate 
maintenance program starting withdrawal 6–15 d after beginning 
nevirapine-based HAART nevirapine therapy; 2 pts. discontinued 

nevirapine; 2 pts. remained on therapy 
but required ↑ methadone dose (33% 
and 100%)

nevirapine49 prospective 45 iv drug users stabilized on 30% of the pts. required ↑ methadone 
methadone and treated with dose due to withdrawal symptoms
nevirapine, didanosine, and 
lamivudine, all once daily

nevirapine68 pharmacokinetic 8 pts. on stable daily doses of nevirapine ↓ methadone AUC by a mean 
methadone beginning of 50%; 6 pts. reported symptoms of 
treatment with nevirapine- methadone withdrawal 8–10 d after 
based HAART starting nevirapine; methadone dose ↑ in 

increments of 10 mg (mean ↑ 16%)

PIs

amprenavir55 pharmacokinetic 16 opiate-dependent, HIV- preliminary data for 12 subjects: AUC of combination appears safe 
negative pts. on at least 30 d R-methadone ↓ 12%, AUC of based on preliminary data
of stable methadone doses; S-methadone ↓ 24%; no change in 
methadone concentrations opiate pharmacodynamics
reassessed after 10 d of 
amprenavir 1200 mg bid

indinavir69 pharmacokinetic 12 HIV-positive pts. on no significant effect of indinavir on combination appears safe
methadone 20–60 mg/d; methadone AUC vs. historical controls; 
indinavir 800 mg po q8h no significant effect of methadone on 
added indinavir AUC, but ↑ indinavir Cmin

50–100% and ↓ indinavir Cmax 16–36%, 
all vs. historical controls

indinavir, case series methadone concentrations methadone concentrations unchanged in monitor for symptoms of opiate 
nelfinavir, measured prior to and at least 6 pts. switched to indinavir and 1 pt. withdrawal (see Efavirenz) 
ritonavir, 1 wk after addition of a PI to switched to saquinavir; methadone with nelfinavir and ritonavir; 
saquinavir58 stable dual NRTI therapy in steady-state concentrations ↓ 40–50% adjust methadone dose if 

10 pts. in methadone in 1 pt. switched to ritonavir and 2 pts. necessary
maintenance program switched to nelfinavir

Cmax = maximum plasma concentration; Cmin = minimum plasma concentration; EC = enteric coating; EC50 = 50% effective concentration; HAART =
highly active antiretroviral therapy; HCV = hepatitis C virus; HGC = hard-gel capsule; NNRTI = nonnucleoside reverse transcriptase inhibitor; NRTI =
nucleoside reverse transcriptase inhibitor; PI = protease inhibitor; SGC = soft-gel capsule.

(continued on page 1604)
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Table 3. Interactions Between Antiretrovirals and Methadone45-72 (continued)

Antiretroviral Study Type Patients Interaction Recommendation

lopinavir/ prospective 8 HIV/HCV coinfected pts. lopinavir/ritonavir ↓ methadone AUC 36% combination appears safe; 
ritonavir70 pharmacokinetic on methadone maintenance; and ↓ methadone Cmax 44%; no pt. monitor for symptoms of 

methadone concentrations exhibited symptoms of methadone opiate withdrawal (see 
measured prior to and following withdrawal during the study or the Efavirenz) and adjust metha-
14 d of lopinavir/ritonavir in 6-wk follow-up done dose if necessary
combination with 2 NRTIs 

nelfinavir53 prospective 14 pts. stabilized on a fixed concentrations of S(+)-methadone and monitor for symptoms of opiate 
pharmacokinetic methadone dose for at least R(-)- methadone ↓ by 47% and 39%, withdrawal (see Efavirenz); 

1 mo before nelfinavir 1250 mg respectively; no pt. exhibited adjust methadone dose if 
po bid for 8 d was added withdrawal symptoms; no dosage necessary

adjustments were necessary

nelfinavir56 retrospective 75 pts. on stable methadone 2 of 75 pts. needed slight ↑ in methadone 
case series dose started on nelfinavir dose (10 mg/d); otherwise, no impact of 

nelfinavir on methadone activity

nelfinavir57 case report 1 pt. on stable methadone dose within 6 wk of medication change, pt.
of 100 mg/d, indinavir and developed opiate withdrawal symptoms, 
zalcitabine; stavudine and which ↑ in severity over 3 mo; methadone 
nelfinavir added to regimen dose ↑ at 1 to 2-wk intervals; subtherapeutic 

methadone concentrations documented 
until dose of 285 mg/d attained

nelfinavir65 pharmacokinetic 16 HIV-negative volunteers on nonsignificant ↑ in median nelfinavir 
stable methadone dose for 12-h trough concentration with 
4 wk and 13 controls received methadone; 12-h AUC of M8 53% lower 
nelfinavir 1250 mg po bid than control
for 5 d

nelfinavir66 multisite, 32 pts. on stable methadone 17% of pts. required methadone dose 
retrospective dose receiving nelfinavir- adjustments (mean 26 mg); otherwise, 

based HAART; 84% of pts. well-tolerated combination
coinfected with HCV

ritonavir/ case report 1 pt. on methadone 90 mg/d 1 wk following initiation of ritonavir- monitor for symptoms of opiate 
saquinavir52 for 2 y; antiretrovirals changed containing regimen, pt. was admitted to withdrawal (see Efavirenz); 

from indinavir/lamivudine/zido- hospital with shakiness, diaphoresis, adjust methadone dose if 
vudine to ritonavir/saquinavir/ blurred vision, anxiety, and hypotension; necessary
stavudine because of methadone plasma concentration on 
virologic progression admission was 210 ng/mL (within thera-

peutic range; however, no concentrations 
prior to initiation of ritonavir); methadone 
dose gradually ↑ to 130 mg/d

ritonavir/ pharmacokinetic 12 HIV-negative volunteers on clinically insignificant change in unbound 
saquinavir67 stable methadone dose methadone concentrations; 83% of 

evaluated before and after subjects had Cmin of saquinavir >EC50

14 d of once-daily saquinavir/
ritonavir (1600 mg/100 mg)

ritonavir/ 24-h study 12 pts. receiving stable ↓ S-methadone AUC 40% and ↓
saquinavir54 before and methadone dose for at least R-methadone AUC 32%; however, when 

after 15 d of 2 wk change in methadone AUC expressed 
antiretroviral in terms of unbound methadone, change 
therapy to exam- in AUC no longer significant; no evidence 
ine effect of of opiate withdrawal
ritonavir/saquin-
avir on methadone 
kinetics

ritonavir/ retrospective 18 HIV-positive pts. beginning no pt. required methadone dose adjustment
saquinavir71 once-daily therapy with 

ritonavir 100 mg, and 
saquinavir-SGC 1600 mg and 
5 HIV-positive pts. beginning 
once-daily therapy with ritona
vir 200 mg and indinavir 
1200 mg; all pts. on 
methadone, 19 pts. coinfected 
with HCV

Cmax = maximum plasma concentration; Cmin = minimum plasma concentration; EC = enteric coating; EC50 = 50% effective concentration; HAART =
highly active antiretroviral therapy; HCV = hepatitis C virus; HGC = hard-gel capsule; NNRTI = nonnucleoside reverse transcriptase inhibitor; NRTI =
nucleoside reverse transcriptase inhibitor; PI = protease inhibitor; SGC = soft-gel capsule.



to be conducted comparing methadone with PIs to better
clarify the nature of these interactions. Clinicians should be
prepared for the possibility that some patients stabilized on
methadone might require a dose increase when nelfinavir
or ritonavir is introduced.

Interactions between methadone and the nucleoside re-
verse transcriptase inhibitors zidovudine, didanosine, and
stavudine have also been described.59-61 Overall, methadone
appears to increase total exposure to zidovudine. The
mechanisms underlying this interaction appear to involve
inhibition of zidovudine glucuronidation and, to a lesser
extent, decreased renal clearance of zidovudine. Although
the clinical implications of these findings are unclear, pa-
tients receiving the combination of methadone and zidovu-
dine should be monitored for zidovudine-related toxicities
such as nausea, vomiting, headaches, and myelosuppres-
sion.60,61 Since many of these symptoms may mirror those
of opiate withdrawal, patients may confuse the symptoms
of zidovudine toxicity with a requirement for a higher
methadone dose. However, methadone concentrations do
not appear to be altered by concomitant zidovudine admin-
istration, thereby discounting the association of such
symptoms with opiate withdrawal.

In contrast to zidovudine, methadone appears to de-
crease concentrations of both stavudine and didanosine
(buffered tablet formulation), possibly by delaying absorp-
tion of these agents and thereby allowing enhanced time
for enzymatic or acid-catalyzed degradation. Since didano-
sine is more prone to acid-catalyzed degradation than is
stavudine, the impact of methadone on didanosine concen-
trations is more pronounced than for stavudine.59 This the-
ory is corroborated by recent evidence72 which indicates
that the impact of methadone on didanosine concentrations
is negligible when didanosine is administered as an enter-
ic-coated capsule preparation, as such a coating would be
expected to protect the drug from degradation until it has
cleared the stomach. As well, the significance of reduc-
tions in didanosine concentrations is unclear, since intra-
cellular concentrations of dideoxyadenosine triphosphate
were not measured, and neither virologic nor immunologic
outcomes were addressed. Although an increase in the
dose of didanosine may be necessary when the buffered
tablet formulation is taken with methadone, there are cur-
rently no guidelines for dosage adjustment. 

As well as being a substrate of the CYP450 system,
methadone can also act as an inhibitor of the 2D6 and 3A
isoforms.75-77 It is therefore possible that concomitant use
of methadone and PIs or NNRTIs may result in increased
antiretroviral concentrations and predispose patients to
drug-specific adverse events. However, methadone did not
alter the pharmacokinetics of delavirdine, a CYP3A4 sub-
strate.63 In addition, aside from a reduction in concentra-
tions of the pharmacologically active M8 metabolite, sig-
nificant changes to the pharmacokinetics of nelfinavir
were not observed with concomitant administration of
methadone.65 The metabolism of nelfinavir to its M8 me-
tabolite is mediated by CYP2C19, suggesting that metha-
done may inhibit this isoenzyme as well. Although viro-

logically active, a reduction in M8 concentrations does not
appear to be clinically significant.78 Thus, significant eleva-
tions in the concentrations of PIs and NNRTIs may not oc-
cur with methadone. Still, the impact of methadone on oth-
er members of these classes is unknown and, as with zi-
dovudine, it may be difficult to discriminate between
symptoms associated with PI toxicity (e.g., nausea, vomit-
ing, diarrhea) and methadone withdrawal. However, since
enzyme inhibition is an acute process, while enzyme in-
duction occurs following several days of drug administra-
tion, it may be possible to distinguish the 2 interactions
based on the time course of symptom development.
Specifically, symptoms that develop within 2–3 days of
concomitant administration may be due to PI toxicity,
whereas those that develop after 6 days are more likely to
be related to opiate withdrawal.

Meperidine and Other Opiates

Two pathways are involved in meperidine metabolism:
hydrolysis to meperidinic acid by liver carboxylesterases
and demethylation to normeperidine by microsomal en-
zymes. Demethylation to normeperidine may be mediated
by the CYP450 system, although the exact isoenzyme in-
volved is unknown.79,80 In patients with renal failure or
with frequent dosing, normeperidine can accumulate, lead-
ing to central nervous system (CNS) excitatory toxicity.

In an open-label study,81 8 HIV-negative volunteers re-
ceived meperidine 50 mg prior to treatment and following
10 days of treatment with escalating doses of ritonavir.
Meperidine AUC decreased 67% in the presence of riton-
avir (p < 0.005), while normeperidine AUC increased
47%, suggesting that ritonavir induces the metabolism of
meperidine to normeperidine. However, since normeperi-
dine has some pharmacologic activity, the potential for de-
creased analgesic effect and risk of opiate withdrawal may
be lessened. On the other hand, because normeperidine
possesses CNS excitatory effects, patients who use meperi-
dine and ritonavir concomitantly may be at increased risk
for seizures. Patients with renal failure may also be at in-
creased risk for CNS excitatory toxicity due to normeperi-
dine accumulation. 

Reports detailing interactions between antiretrovirals
and commonly used opiate analgesics such as codeine,
morphine, or oxycodone are lacking. Postulated interac-
tions between these opiates and antiretrovirals are de-
scribed in Table 4.79-91

Cocaine and Heroin

The significant role played by cocaine in the transmis-
sion of HIV cannot be underestimated. While injecting co-
caine or heroin puts users at risk of acquiring HIV through
contaminated syringes, smoking “crack” cocaine may inde-
pendently be associated with acquisition of HIV infection
through its association with high-risk sexual practices such
as the exchange of drugs for sex.92-94 Since patients who ac-
quire HIV in the context of crack or cocaine use may con-
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tinue their drug use practices, an understanding of the po-
tential for interactions with antiretrovirals is important.

Cocaine is metabolized chiefly by 1 of 3 pathways.95

Spontaneous hydrolysis of cocaine to benzoylecgonine ac-
counts for approximately 39%, 30%, and 16% of a single
dose of cocaine administered by the intravenous, intranasal,
and smoked routes, respectively.96 Degradation by serum
and hepatic cholinesterases to ecgonine methyl ester can
account for up to 32– 49% of an administered cocaine
dose.95,97 Finally, N-demethylation to norcocaine, mediated
by CYP3A4, makes up <10% of cocaine’s biotransforma-
tion.95,98,99 Other metabolites (e.g., anhydroecgonine methyl
ester, p-hydroxy cocaine) are also produced in the metabo-
lism of cocaine, although in smaller amounts. 

Interactions between cocaine and antiretrovirals have
not been described. Theoretically, inhibition of CYP3A4
may increase concentrations of the parent compound by
blocking a route of cocaine metabolism. However, given
that N-demethylation is a relatively small component of
cocaine metabolism, such an interaction would not be ex-
pected to increase the risk of cocaine toxicity. An excep-
tion may occur in patients who are also cholinesterase defi-

cient, since they lack the complementary enzymes neces-
sary to metabolize the excess cocaine burden.100

Inhibition of the CYP3A4 isoform would consequently
result in decreased production of norcocaine; norcocaine is
thought to play a critical role in mediating the hepatotoxici-
ty of cocaine.101,102 In vitro studies103 documenting the pro-
tective effect of 3A4 inhibitors against cocaine-elicited hep-
atotoxicity lend credence to this notion. Thus, it is possible
that inhibition of CYP3A4 by some antiretrovirals may the-
oretically ameliorate the hepatotoxicity associated with co-
caine, although it should be stressed that there are no clini-
cal data to support this. Furthermore, such postulated ef-
fects may not be clinically significant in the context of other
factors, such as concomitant hepatitis B or C infection.

However, if inhibition of CYP3A4 is theoretically pro-
tective against cocaine-mediated liver injury, the reverse
may be true. That is, induction of CYP3A4 by nevirapine
or efavirenz may lead to increasing amounts of norcocaine
being formed, potentially increasing the risk of hepatotoxic-
ity. Again, further research is necessary to clarify the na-
ture and consequences of interactions between enzyme in-
ducers and cocaine. 

1606 ■ The Annals of Pharmacotherapy    ■ 2002 October, Volume 36 www.theannals.com

T Antoniou and AL Tseng

Table 4. Postulated and Actual Interactions Between Commonly Used Opiate Drugs and Antiretrovirals79-91

Drug Metabolism Actual/Theoretical Interaction Potential Significance Recommendation

Codeine 3 pathways: ↓ morphine concentrations: opiate withdrawal, monitor for signs/symptoms 
glucuronidation to codeine- 2D6 inhibition (inhibit loss of analgesia of opiate withdrawal (see 
6-glucuronide (~70%); O-demethylation); 3A4/glucuronide Meperidine); reassess level 
N-demethylation to norcodeine induction (less substrate of analgesia
(3A4) (<10%); O-demethylation available for 2D6)
to morphine (2D6) (10–15%)82-87 ↑ morphine concentrations: opiate toxicity monitor for signs/symptoms of 

3A4 inhibition (shunting of opiate toxicity (e.g., miosis, 
substrate to 2D6 pathway) drowsiness, ↓ rate and depth

of respiration, nausea, vomit-
ing, constipation, hypotension,
bradycardia)

Meperidine 2 pathways: AUC of meperidine ↓ 67% and possible opiate withdrawal, monitor for signs/symptoms of 
hydrolysis to meperidinic acid AUC of normeperidine ↑ 47% loss of analgesia; opiate withdrawal (e.g., 
by liver carboxylesterases; in open-label study81 of 8 possible ↑ risk of seizures lacrimation, rhinorrhea, 
demethylation by CYP450 volunteers receiving treatment with normeperidine diaphoresis, restlessness, 
system to normerperidine with meperidine 50 mg prior accumulation insomnia, dilated pupils, 
(exact isoenzyme unknown)79,80 to and following 10 d of piloerection); reassess level of

treatment with ritonavir analgesia; avoid combination
of ritonavir and meperidine in
pts. with renal failure and pts.
who use meperidine regularly
for analgesia or recreationally
due to risk of neurotoxicity

Morphine glucuronidated to M6G and increase glucuronidation: possible opiate withdrawal, monitor for signs/symptoms 
M3G89-91 accelerate morphine metabolism, and loss of analgesia, of opiate withdrawal (see 

↓ concentrations of morphine,↑ although may be Meperidine); reassess level of 
concentrations of pharma- attenuated by ↑ analgesia
cologically active M6G formation of M6G

Oxycodone 3 pathways: ↓ oxymorphone concentrations: possible opiate withdrawal monitor for signs/symptoms 
CYP2D6 to oxymorphone; inhibition of 2D6; 3A4 induction and loss of analgesia, of opiate withdrawal (see 
CYP3A4 to noroxycodone; (less substrate for 2D6 pathway) although ↓ oxymorphone Meperidine); reassess level 
ketoreductase88 concentrations do not of analgesia

↑ oxymorphone concentrations: appear to alter pharmaco- monitor for signs/symptoms of 
3A4 inhibition (shunting to dynamics of oxycodone; opiate toxicity (see Codeine)
2D6 pathway) possible opiate toxicity

M3G = morphine-3-glucuronide; M6G = morphine-6-glucuronide.



Heroin is rapidly metabolized to 6-monoacetylmorphine
and morphine by plasma and liver esterases, respectively.
Maximal blood concentrations of heroin and 6-monoacetyl-
morphine are attained within minutes and are cleared rapid-
ly, while morphine concentrations increase and decrease
more slowly.104-107 Thus, potential interactions of concern
may be similar to those noted with morphine (Table 4).

Benzodiazepines

Benzodiazepines remain among the most commonly
prescribed psychotropic drugs. In Canada, the overall
prevalence of benzodiazepine use for anxiolysis in the
1990s was estimated at roughly 8% of the adult popula-
tion, while about 2.5% of adults were prescribed this group
of drugs for insomnia.108 Benzodiazepines may be used
recreationally either alone or, more commonly, in the set-
ting of multiple drug abuse. Potential abuses of benzodi-
azepines include moderating the effects of stimulants, al-
laying withdrawal symptoms from other recreational sub-
stances, acting as disinhibitory agents, or augmenting the
effects of other recreational drugs. As a class, benzodi-
azepines are extensively metabolized by the liver, with in-
dividual agents metabolized predominantly by either the
CYP450 system or glucuronyltransferases.

Midazolam, triazolam, and alprazolam are metabolized
mainly by CYP3A4.109,110 Interactions with PIs, delavirdine,
and, possibly, efavirenz are thus likely to produce increased
concentrations of these compounds and place patients at
risk of toxicity such as extreme sedation and respiratory de-
pression. Pharmacokinetic studies and case reports docu-
menting such interactions are summarized in Table 5.111-115

It is interesting to note that conflicting data exist regarding
the interaction between alprazolam and ritonavir. While
Frye et al.111 noted a reduction in alprazolam exposure and
relatively little change in pharmacodynamic effect follow-
ing 12 days of ritonavir, subsequent work by Greenblatt et
al.112 found that acute exposure to ritonavir reduced alprazo-
lam clearance and enhanced alprazolam’s pharmacodynam-
ic properties. This discrepancy may be accounted for by the
fact that ritonavir, over time, may induce as well as inhibit
CYP3A4.116 Thus, acute exposure to ritonavir may place
patients at increased risk for alprazolam toxicity, while
longer-term exposure to ritonavir may result in a loss of
anxiolysis and possible withdrawal in patients who are us-
ing alprazolam recreationally. A longer-term study is neces-
sary to further clarify the time course and nature of the in-
teraction between alprazolam and ritonavir. 

Additional information is also required to clarify the safe-
ty of using midazolam with PIs. Palkama et al.113 concluded
that, aside from the possibility of a longer sedative effect,
the use of bolus doses of intravenous midazolam with
saquinavir is likely safe. However, other investigators114 re-
ported on a patient who experienced prolonged sedation
secondary to the combination of midazolam and saquinavir;
their experience warrants that patients receiving the combi-
nation should be closely monitored. Data with other PIs are
lacking. The use of midazolam with PIs and delavirdine

should be avoided if possible, given the risk of prolonged
sedation and respiratory depression associated with large in-
creases in midazolam concentrations. Although formal
pharmacokinetic studies are lacking, similar interactions be-
tween clonazepam and flunitrazepam and PIs are possible,
since both agents are substrates of CYP3A4.117,118 As well,
caution should be exercised with diazepam, particularly in
combination with ritonavir, since both the 3A4 and 2C19
systems appear to be important in its metabolism.119,120 In
contrast, nevirapine and efavirenz may put patients who are
using midazolam, triazolam, alprazolam, clonazepam, and
flunitrazepam at risk for loss of effect and/or withdrawal
due to their 3A4 inductive potential. 

Interactions between lorazepam, oxazepam, or temazepam
and antiretrovirals differ from those described above, since
these members of the benzodiazepine family are metabo-
lized primarily by glucuronidation.121,122 Thus, drugs that
increase the activity of glucuronyltransferases (i.e., riton-
avir, nelfinavir) may accelerate the metabolism of these
compounds, resulting in lower drug exposure. Although
reports are lacking, concomitant use of lorazepam, ox-
azepam, or temazepam with either ritonavir or nelfinavir
may decrease the anxiolytic effect of these agents or pre-
cipitate symptoms consistent with benzodiazepine with-
drawal reaction due to the aforementioned interaction. A
higher dose of the benzodiazepine may be necessary to
compensate for the interaction.

Tetrahydrocannabinol

Tetrahydrocannabinol (THC), the active ingredient of
smoked marijuana, remains a commonly used recreational
agent. In Canada, 23.1% of surveyed adults had used mari-
juana more than once in their lives, and current use was es-
timated at 7.4%.123 In the context of HIV/AIDS, smoked
marijuana or THC-containing preparations may also be
used for antiemetic or appetite stimulation purposes.

THC is metabolized in humans by microsomal oxida-
tion to several hydroxylated metabolites, among them 11-
hydroxy-THC, which is pharmacologically active. Con-
centrations of 11-hydroxy-THC vary with the route of ad-
ministration, with oral administration generally producing
more of the active metabolite than inhaled THC due to sig-
nificant first-pass effect. Limited data suggest that CYP3A
and 2C9 isoenzymes are involved in microsomal oxidation
of THC.124-127 Although inhibition of CYP3A4 or 2C9 may
decrease the formation of pharmacologically active metabo-
lites, the effects of THC are unlikely to be significantly at-
tenuated, as THC itself is active and will be more bioavail-
able. Increased THC concentrations may lead to dose-re-
lated effects including frank hallucinations, delusions,
paranoid thinking, accentuation of altered time sense, anxi-
ety, panic, depersonalization, loss of insight, orthostatic hy-
potension, and increased heart rate. Furthermore, inhibi-
tion of THC metabolism to 11-hydroxy-THC may be im-
portant only in the setting of oral administration, since just
trace amounts of the active metabolite are present follow-
ing smoking. 
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Induction of CYP3A4 may increase the formation of the
pharmacologically active metabolite; however, the conver-
sion of active metabolite to its inactive counterparts may
also be accelerated, thereby decreasing the duration of
THC effect. This action may be more clinically important
with oral THC administration due to its large first-pass ef-
fect. The impact of THC on the pharmacokinetics of indi-
navir and nelfinavir has been evaluated in a small, random-
ized, placebo-controlled study.128 Patients on stable indi-
navir or nelfinavir therapy were randomized to receive
either THC 3.95% cigarettes, THC 2.5-mg capsules, or

placebo, each administered 3 times a day. Nelfinavir and
indinavir concentrations were determined prior to and on
day 14 of THC use. A statistically significant 14% reduc-
tion in indinavir maximum concentration was observed
with smoked THC. As well, smoked THC significantly re-
duced the ratio of M8 (active metabolite of nelfinavir) to
nelfinavir by 18% (p = 0.039). However, as mentioned
previously, reductions in M8 concentrations do not appear
to be clinically important. Furthermore, a significant re-
duction (p = 0.025) in M8 concentrations relative to base-
line was observed in patients receiving placebo. Other
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Table 5. Interactions Between Antiretrovirals and Benzodiazepines111-115

Reference Study Type Patients Nature of Interaction Recommendation

Alprazolam

Frye et al. pharmacokinetics of alprazolam healthy alprazolam AUC ↓ 12%; ritonavir short-term PI administration: 
(1997)111 1.0 mg determined prior to volunteers did not produce clinically important monitor for alprazolam toxicity 

ritonavir treatment and after impairment and had no effect on (e.g., sedation, dizziness, ataxia,
12 d of escalating ritonavir peak sedation; combination respiratory depression) with acute 
doses appeared to prolong sedation administration of ritonavir and, pos-

sibly, other PIs and delavirdine

Greenblatt double-blind, randomized, 10 healthy alprazolam t1/2 ↑ from 13 to 30 h chronic ritonavir administration:
et al. 2-way crossover study of volunteers (p < 0.005); alprazolam clearance monitor for alprazolam withdrawal
(2000)112 pharmacokinetics of alpraz- ↓ to 41% of control values with (e.g., anxiety, dysphoria, nausea,

olam 1.0 mg with ritonavir ritonavir (p < 0.001); ritonavir ↑ muscle twitching, insomnia, panic/
or placebo benzodiazepine agonist effects paranoia, convulsions) and loss of 

(e.g., sedation, performance anxiolysis with chronic ritonavir use
impairment)

Midazolam

Palkama randomized, double-blind, 12 healthy po midazolam: saquinavir ↑ Cmax midazolam contraindicated with PIs, 
et al. crossover study; pts. received volunteers 2.3-fold (p < 0.001); ↑ AUC 5-fold delavirdine, and efavirenz; if 
(1999)113 treatment with saquinavir-SGC (p < 0.01), ↑t1/2 from 4.3 to 10.9 h necessary to use combination, 

1200 mg or placebo 3 times/d (p < 0.01), ↑ bioavailability from consider dose ↓ of 50% with careful 
for 5 d; on day 3, received 41% to 90% (p < 0.001); sedative titration and monitoring for toxicity 
midazolam 7.5 mg po or effects of po midazolam profoundly (e.g., extreme/prolonged sedation, 
0.05 mg/kg iv over 2 min; enhanced respiratory depression, 
on day 5, second dose of iv midazolam: saquinavir ↓ clearance; hypotension)
midazolam given, alternating by 56% (p < 0.001), ↑ t1/2 from 4.1 
routes of administration to 9.5 h (p < 0.001); authors suggest

↓ initial midazolam dose by 50% 
when given by infusion, followed by 
careful titration

Merry et al. case report: pt. received 32-y-old man following second dose, pt. did not 
(1997)114 midazolam 5.0 mg iv for with advanced wake spontaneously and required 

bronchoscopy with no ill HIV flumazenil due to prolonged 
effect; 8 wk later, pt. sedation, possibly as a result of 
received second dose for an interaction with saquinavir
bone marrow aspirate and 
biopsy; between the first 
and second dose, pt. 
began saquinavir-HGC-
based HAART regimen

Triazolam

Greenblatt double-blind, randomized, 6 healthy ritonavir ↑ triazolam t1/2 from 3 to avoid combination of triazolam and 
et al. crossover study of pharmaco- volunteers 41 h (p < 0.005) and ↓ triazolam PIs, delavirdine, or efavirenz
(2000)115 kinetics of triazolam 0.125 mg clearance to 4% of control values 

concurrent with ritonavir or (p < 0.005); sedation and 
placebo performance impairment magnified 

by ritonavir

Cmax = maximum plasma concentration; HAART = highly active antiretroviral therapy; HGC = hard-gel capsule; PI = protease inhibitor; SGC = soft-gel
capsule; t1/2 = half life.



variables did not change significantly, nor did oral THC
produce significant changes in indinavir or nelfinavir phar-
macokinetics. The long-term clinical consequence of these
changes is likely negligible, especially with the increasing
use of boosted PI regimens. There are no reports docu-
menting the impact of antiretrovirals on THC pharmacoki-
netics or pharmacodynamics. The nature of such an inter-
action would be difficult to predict, as several variables, in-
cluding route of administration and the concentration of
THC smoked, may confound the outcome. 

Considering the widespread use of smoked and oral
THC derivatives for appetite stimulation and control of
nausea and vomiting, and the lack of reports documenting
deleterious effects secondary to the combination of THC
and PIs, a clinically significant drug interaction may not
exist when THC is used in moderate amounts. Patients
who use THC and are beginning antiretroviral therapy
should be warned about possible accentuation of the ef-
fects of THC, and that they may need to use less THC for
the same effect following treatment initiation.

Alcohol

Ethanol metabolism is mediated chiefly by the enzymes
alcohol dehydrogenase (formation of acetaldehyde) and
aldehyde dehydrogenase. Since 1 of the 2 main metabo-
lites of abacavir is a carboxylate derivative, the formation
of which is catalyzed by the alcohol dehydrogenase en-
zyme, an interaction between ethanol and abacavir is pos-
sible due to competition for metabolism. A randomized,
open-label, crossover study129 confirmed the existence of
such an interaction. Twenty-five HIV-positive patients
were randomized to receive either a single dose of abacavir
600 mg, ethanol 0.7 g/kg, or the combination of abacavir
and ethanol, with a washout period of 7 days between treat-
ments. Concomitant administration of ethanol and abacavir
resulted in a statistically significant 41% increase in aba-
cavir AUC (CI 1.35 to 1.48); no changes in ethanol blood
concentrations were observed. The increase in abacavir
AUC is unlikely to be clinically significant, as the concen-
trations were within the ranges observed in previous phar-
macokinetic studies of abacavir that employed higher aba-
cavir doses and did not demonstrate additional safety is-
sues.128

Acute administration of alcohol may increase plasma
concentrations of other substrates by inhibiting isoforms
such as CYP2D6 and 2C19.130 On the other hand, chronic
administration may reduce plasma concentrations of drugs
metabolized by CYP2E1 and 3A.131,132 Thus, there is po-
tential for induction of PI and NNRTI metabolism with
chronic alcohol use. Such an interaction may result in sub-
therapeutic concentrations of these agents, predisposing to
resistance and compromising antiretroviral efficacy over
time. However, there are currently no data documenting
such an interaction. Appropriately conducted pharmacoki-
netic studies are necessary to confirm the existence of an
interaction between antiretrovirals and chronic alcohol use
and to clarify appropriate management strategies.

Discussion

The increasing numbers of available PIs and NNRTIs
and the identification of various isoforms of the CYP450
enzyme system have heightened awareness about the sig-
nificance of drug interactions in the HIV population. How-
ever, recreational drugs are often not considered by both
clinicians and patients when reviewing a particular medi-
cation regimen for potential interactions. One of the inher-
ent concerns associated with recreational drug use is that
the margin of safety for many of these substances is often
poorly defined, and quality control is often highly variable.
Thus, factors that may lead to unpredictable drug concen-
trations can further increase the risk of adverse outcomes.
Given the increasing incidence of HIV infection among
substance users and the increasing use of complex combi-
nation antiretroviral regimens, the risk of adverse drug in-
teractions with possibly fatal consequences cannot be
overlooked or ignored. Clinicians should, therefore, strive
to gather information about recreational drug use as part of
a comprehensive medication history. Reassuring the pa-
tient that confidentiality will be respected and the use of
open-ended questions directed in a nonthreatening and
nonjudgmental manner will facilitate the information-gath-
ering process.

Much of the information presented in this article is
largely extrapolated from in vitro pharmacokinetic experi-
ments, case reports, or animal model studies. There are ob-
viously many limitations in applying such data to clinical
practice settings. With case reports, information is often
anecdotal in nature. Patients’ own recall bias is an obvious
limitation, making direct causality difficult to establish.
Even when in vitro or in vivo data are available, results of-
ten may not be directly extrapolated to clinical situations.
For instance, much of the interaction information for riton-
avir is based on full-dose (i.e., 600 mg twice daily) studies.
However, ritonavir is now frequently used at lower doses
(e.g., 100–200 mg twice daily) as a pharmacokinetic boost-
ing agent. Ritonavir can inhibit CYP450 activity and in-
crease protease trough concentrations in a dose-related
manner.133 Therefore, the frequency, extent, and/or clinical
significance of interactions with ritonavir 100 mg twice
daily may be lower compared with higher doses of riton-
avir. As an example, when efavirenz was added to a com-
bination of amprenavir 600 mg twice daily plus ritonavir
100 mg twice daily, amprenavir concentrations were de-
creased by almost 80%; however, when the ritonavir dose
was increased to 200 mg twice daily, amprenavir concen-
trations remained stable in the presence of efavirenz.134

These confounding factors highlight the importance of
designing interaction studies that accurately reflect situa-
tions encountered in clinical practice. However, due to le-
gal and ethical constraints, it is highly unlikely that rigor-
ous, prospective, controlled interaction studies between an-
tiretrovirals and recreational drugs will ever be conducted.
As such, these limited data may serve as a tool for clini-
cians in anticipating and hopefully averting potential detri-
mental interactions with recreational drugs. 
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Summary

Adverse interactions between agents commonly pre-
scribed in HIV and recreational drugs can occur, and may
possibly be associated with serious clinical consequences.
This issue highlights the need for clinicians to obtain thor-
ough patient histories on both prescription as well as recre-
ational drug use and to counsel and/or adjust therapeutic
regimens when required to minimize the risk of morbidity
or mortality. 
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EXTRACTO

OBJETIVO: Resumir los datos que existen sobre las interacciones
potenciales entre las drogas recreativas y aquellas comúnmente usadas
en el manejo de pacientes con VIH.

FUENTES DE DATOS: Se obtuvo información por medio de una búsqueda
en el banco de datos de MEDLINE (años 1966—agosto 2002) usando
los términos MESH tales como “virus de inmunodeficiencia humana”,
“interacciones”, “citocromo P450”. También se uso en la búsqueda
nombres de medicamentos comúnmente prescritos en el manejo del
VIH e infecciones oportunistas relacionadas y nombres de los
medicamentos de recreación comúnmente usados. También se repaso
extractos de conferencias nacionales e internacionales, artículos de
repaso, textos y referencias de todos los artículos encontrados. 

SELECION DE ESTUDIOS Y EXTRACCIÓN DE DATOS: Literatura sobre
interacciones farmacocinéticas fue considerada para inclusión.  En la
ausencia de datos específicos, la predicción de interacciones
significativas clínicas potenciales fue basada en características
farmacocinéticas y farmacodinámicas. 

RESULTADOS: Todos los inhibidores de proteasa e inhibidores de la
transcriptasa reversa no nucleósidos  son sustratos y potentes inhibidores
o inductores del sistema   de encima citocromo P450.  Muchas clases de
drogas recreativas, incluyendo las benzodiacepinas, anfetaminas y
opioides, también son metabolizados por el hígado y pueden interactuar
potencialmente con los antirretrovirales.  Frecuentemente no existen
estudios de interacciones controlados, pero se ha observado
interacciones clínicas significativas en un número de casos reportados.
Se han reportado sobredosis secundarias entre drogas de “rave” como la
MDMA y GHB e inhibidores de proteasa. Los inhibidores de proteasa,
particularmente el ritonavir, también pueden inhibir el metabolismo de
anfetaminas, ketamina, LSD, y PCP. Series de casos e estudios
farmacocinéticos sugieren que la nevirapina y el efavirenz pueden
inducir el metabolismo de metadona, lo cual puede resultar en síntomas
de retiro de opioides.  Una interacción similar puede existir entre
metadona y los inhibidores de proteasa ritonavir y nelfinavir, aunque los
datos de estas  interacciones son menos consistentes.  El metabolismo
opiáceo se puede inhibir o inducir con el uso concomitante de
inhibidores de proteasa y se debe monitorear estos pacientes para
síntomas de toxicidad y/o pérdida de analgesia.  No se debe de
administrar los inhibidores de proteasa conjuntamente al midazolam y
triazolam, ya que la combinación puede resultar en sedación prolongada. 

CONCLUSIÓNES: Pueden ocurrir interacciones entre agentes comúnmente
prescritos para pacientes con VIH y drogas recreativas, y estas

combinaciones pueden tener serias consecuencias clínicas.  Los clínicos
deben de tener un dialogo abierto con sus pacientes en cuanto a este
tópico para así poder evitar comprometer la eficacia o aumentar el riesgo
de toxicidad a estos medicamentos.  

Carlos C da Camara

RÉSUMÉ

OBJECTIF: Rassembler toutes les données disponibles concernant les
interactions médicamenteuses possibles entre les agents antirétroviraux
fréquemment utilisés pour le traitement de l’infection par le VIH et les
médicaments consommés à des fins “récréationnelles” ou drogues de
rue.

REVUE DE LITTÉRATURE: L’information a été obtenue par une recherche
effectuée dans la banque informatisée Medline (1966—août 2002) en
employant les mots-clé suivants : virus de l’immunodéficience
humaine, interactions médicamenteuses, cytochrome P-450, les noms
des médicaments utilisés fréquemment pour le traitement de l’infection
par le VIH ainsi que des infections opportunistes l’accompagnant et le
nom des drogues de rue les plus souvent consommées. Les abrégés de
conférences nationales ou internationales, les articles de revue, les livres
de base ainsi que les articles cités dans la bibliographie des documents
consultés ont aussi été analysés. 

SÉLECTION DES ÉTUDES ET DE L’INFORMATION: Tous les articles sur les
interactions de nature pharmacocinétique ont été inclus. L’information
pertinente a été extraite et synthétisée pour faire l’objet de la discussion.
En l’absence de données spécifiques, des prévisions d’interactions
possibles cliniquement significatives ont été basées sur les propriétés
pharmacocinétiques et pharmacodynamiques des médicaments. 

RÉSULTATS: Tous les inhibiteurs de la protéase et les inhibiteurs non
nucléosidiques de la transcriptase inverse sont des substrats et des
inhibiteurs ou des inducteurs potentiels du système enzymatique du
cytochrome P450. Plusieurs classes de drogues de rue, incluant les
benzodiazépines, les amphétamines et les opiacés sont aussi
métabolisées par le foie et peuvent possiblement interagir avec les
agents antirétroviraux. Des données issues d’études contrôlées
concernant les interactions médicamenteuses sont rarement disponibles
mais des interactions cliniquement significatives ont été observées chez
un bon nombre de patients. Des intoxications secondaires à la prise
concomitante des médicaments “rave” 3,4-
méthylènedioxymetamphétamine (MDMA, ectasy) et gamma
hydroxybutyrate (GHB) avec les inhibiteurs de la protéase ont été
rapportées. Les inhibiteurs de la protéase, particulièrement le ritonavir,
peuvent aussi inhiber le métabolisme des amphétamines, de la kétamine,
du LSD et du PCP. Des séries de cas et des études sur la
pharmacocinétique suggèrent que la névirapine et l’éfavirenz induisent
le métabolisme de la méthadone et peuvent provoquer des symptômes
de sevrage aux opiacés. Une interaction semblable peut exister entre la
méthadone et les inhibiteurs de la protéase ritonavir et nelfinavir, mais
les données sont moins concluantes. Le métabolisme des opiacés peut
être inhibé ou induit par l’administration concomitante des inhibiteurs de
la protéase et les patients devraient être suivi afin de détecter des signes
de toxicité ou une perte d’efficacité analgésique. Les inhibiteurs de la
protéase ne devraient pas être co-administrés avec le midazolam ou le
triazolam car une sédation prolongée pourrait apparaître. 

CONCLUSIONS: Des interactions médicamenteuses entre les agents
antirétroviraux utilisés pour le traitement de l’infection par le VIH et les
drogues de rue peuvent survenir et peuvent présenter des effets cliniques
indésirables importants. Les cliniciens devraient encourager des
discussions franches avec leurs patients sur ce sujet afin d’éviter de
compromettre l’efficacité antirétrovirale des divers agents et
d’augmenter le risque de toxicité. 

Denyse Demers


