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Interactions between seagrasses 
and seaweeds during surge 
nitrogen acquisition determine 
interspecific competition
Ana Alexandre1, Alexandra Baeta2, Aschwin H. Engelen1 & Rui Santos  1

Seagrasses dominate shallow coastal environments where nitrogen (N) availability in the water column 

is often sporadic and mainly in the form of pulses. We investigated the N uptake competition between 

seagrasses and seaweeds through a series of 15N surge uptake experiments combining single-species 

and mixed incubations across ammonium concentrations. N surge uptake rates of seagrasses were 2 
to 14-fold higher than those of seaweeds in the majority of combinations, showing that seagrasses 
are generally in a competitive advantage over seaweeds in N-poor environments with N-pulses. No 

threshold concentration of ammonium was found beyond which seaweeds performed better than 

seagrasses. Mixed incubations revealed interspecific interactions that affected rates positively and 
negatively. Uptake rates obtained in single-species incubations, therefore, cannot always be used to 

predict the outcome of uptake competition. Only two (Zostera marina vs. Ulva rotundata and Zostera 

marina vs. Codium decorticatum) of the nine combinations tested (Z. marina, Z. noltei and Cymodocea 

nodosa vs. U. rotundata, C. decorticatum and Dictyota dichotoma) were found to enhance macroalgal 

uptake. Our results showed that the surge uptake capacity of seagrasses represents an important 

mechanism in their N acquisition strategy that justifies their dominance in shallow oligotrophic 
environments.

Seagrasses are important habitat-formers and facilitator species that form the basis of complex ecosystems in 
shallow coastal waters throughout the world1,2. Seagrass beds provide food and shelter for a wide variety of organ-
isms, trap suspended organic matter and stabilise so� sediments protecting coastlines from erosions3. One of the 
most relevant ecological functions of seagrasses is nutrient recycling, i.e. the seagrass-mediated processes that 
cycle and retain nutrients in seagrass beds, such as nutrient acquisition and storage, internal remobilization from 
older plant parts and rapid mineralization of seagrass-derived organic matter within seagrass beds4.

�e input of high nitrogen (N) levels in seagrass-dominated systems stimulates the development of mac-
roalgae species. Excessive macroalgal growth causes seagrass displacement5, a�ecting ecosystems dramatically 
by altering fundamental biogeochemical cycles and species composition1,6–8. Macroalgal overgrowth on top of 
seagrass beds reduces the amount of light available to plants during daytime and O2 supply during darkness, lead-
ing to loss of �tness and elevated mortality9–12. However, in shallow N-poor environments seagrasses dominate 
as primary producers and biomasses of co-existing macroalgae are usually kept relatively low, suggesting that 
seagrasses may be better nitrogen competitors than seaweeds up to certain N concentrations. Competition for 
nitrogen in the sediment has been suggested as the underlying mechanism in observed interactions between the 
dominant tropical seagrass �alassia testudinum and the native seaweed Halimeda incrassata13.

In N-poor environments, such as those that characterise seagrass habitats, the availability of nitrogen in the 
water column is sporadic and occurs in the form of N pulses. In tidal systems, these N pulses, particular ammo-
nium, may originate from the sediment to the water column as the �ood tide �rst covers the sediments that were 
exposed to the air during low tide14,15. In addition, localised N pulses from microbial remineralisation16 or animal 
excretions17 also occur. In this context, surge uptake i.e. enhanced nutrient uptake during short periods (min to h)  
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that o�en exceeds the required level for growth by several-fold18, is an important physiological mechanism that 
allows species to take advantage of transient peaks of nitrogen. �e existence and characterisation of the surge 
uptake phase has been well described in macroalgae e.g.19–23, and in a few seagrass species, like Z. marina (for 
ammonium and nitrate), Z. noltei (for phosphate) and Amphibolis antarctica (for ammonium)24–26. In Z. noltei, 
the ammonium uptake rates by the leaves were 3 to 4 fold higher within the �rst 30 min of incubation, and within 
120 min in the case of nitrate27. Surge uptake o�en occurs in areas where nutrients are limited and may be cru-
cial to sustain growth under nutrient poor conditions18,19,28. We hypothesise that in N-poor environments with 
N-pulses seagrasses have a competitive advantage due to a greater surge uptake capacity relative to seaweeds, 
allowing them quicker to capture nitrogen and therefore become better N competitors.

We assessed the nitrogen competition dynamics between seagrasses and seaweeds using a variety of seagrasses 
and co-occurring seaweed species through a series of 15N surge uptake experiments combining single-species and 
mixed incubations, i.e. species were incubated individually and under direct competition. Speci�cally, we aimed 
to provide answers to the following questions: i) are seagrasses better than seaweeds in surge uptake, and up to 
what threshold N concentration do seagrasses perform better, ii) are there any signi�cant interspeci�c interac-
tions between seagrasses and seaweeds that a�ect their nitrogen uptake rates and iii) which seagrass vs. seaweed 
combinations are most prone to macroalgal development, i.e., in which combinations do seaweeds perform better 
at taking up N? Nitrogen is a fundamental nutrient for seagrass and seaweed growth and one of the most limit-
ing in the marine environment. Ammonium was chosen as the inorganic nitrogen source in these experiments 
because, in Ria Formosa lagoon, where the study was carried out, N pulses from the sediment to the water column 
with the incoming tide are mostly in the form of ammonium15, and because a compilation of more than thirty 
published studies comprising eight seagrasses and thirty-four seaweed species showed that ammonium is con-
sistently preferred over nitrate29,30.

Results
�e surge ammonium uptake rates of both seagrasses and seaweeds increased with nutrient concentration both 
when incubated in isolation or combination with other species (Fig. 1). In general, the e�ects of species (S), treat-
ment (T) and nitrogen concentration (C) on the ammonium surge uptake of macrophytes were highly signi�cant 
(Tables 1 and 2). �e relative uptake rates of species when incubated in isolation or combination were maintained 
along the gradient of ammonium concentration in the majority of cases. �e uptake rates of the seagrass Z. noltei 
were 3 to 14-fold higher than the seaweeds Ulva and Dictyota irrespective of treatment and N concentration 

Figure 1. Nitrogen surge uptake rates (µmol cm−2 h−1) of seagrasses vs. seaweeds: (a) Zostera noltei vs. Ulva,  
(b) Z. noltei vs. Dictyota, (c) Z. noltei vs. Codium, (d) Zostera marina vs. Dictyota, (e) Z. marina vs. Ulva,  
(f) Z. marina vs. Codium, (g) Cymodocea nodosa vs. Codium, (h) C. nodosa vs. Ulva and (i) C. nodosa vs. 
Dictyota, incubated alone or in competition as a function of 15NH4Cl concentration (µM). Symbols indicate 
signi�cant e�ects of species (S) and treatment (*) (p < 0.05). Values are mean ± standard deviation.
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(Fig. 1a,b), and higher than Codium only in monospeci�c incubations at 100 µM N (Fig. 1c). �e surge uptake 
rates of the seagrass Z. marina exceeded those of seaweeds only in the combination Z. marina vs. Dictyota, where 
seagrass uptake rates were 4 to 17-fold higher (Fig. 1d). Z. marina uptake rates were 3 and 6-fold lower than those 
of Ulva and Codium, respectively (Fig. 1e,f). N surge uptake rates of C. nodosa were 2 to 14-fold higher than all 
seaweed species, except in competition with Codium (Fig. 1g) and Ulva at 3 µM N (Fig. 1h), where rates were 
similar.

Mixed incubations of seagrasses and seaweeds revealed the existence of both negative and positive interac-
tions between macrophytes that a�ected their individual ammonium uptake rates (Table 3). Negative e�ects on 
uptake rates were observed on both competitors (Z. noltei and Ulva), or only on one competitor (on Dictyota 
in the presence of Z. noltei or Z. marina). Positive e�ects on uptake rates of the seagrasses Z. marina and C. 
nodosa were found in the presence of Ulva, on Z. noltei and C. nodosa in the presence of Dictyota and of the 
seaweeds Ulva in the presence of Z. marina (only at 100 µM) and Codium in the presence of C. nodosa (Table 3). 
�e absence of any interaction between macrophytes was found in the combinations Z. noltei vs. Codium and  
Z. marina vs. Codium at all ammonium concentrations. �us, in most cases seagrasses were winners over sea-
weeds when competing for ammonium surges.

Discussion
Surge uptake is an important component of the uptake process as it may determine the competitive ability of a 
species to obtain the necessary nutrients in environments where nutrient concentrations generally are low. We 
showed here that seagrasses exhibit a remarkable uptake capacity of ammonium surges, which exceeded that of 
co-occurring seaweeds by several-fold in the majority of combinations. All seagrass species studied were able to 
take up ammonium more rapidly than seaweeds, except Z. marina when combined with Ulva and Codium. No 
threshold concentration of ammonium was found beyond which seaweeds performed better than seagrasses, 
suggesting that competition between seagrasses and seaweeds for ammonium surges is determined by the 
species-speci�c surge uptake rate rather than by the surge concentration.

Mixed species incubations revealed the existence of interactions between seagrasses and seaweeds. Both pos-
itive and negative e�ects on uptake rates were observed relatively to the rates of monospeci�c incubations, deter-
mining the competitive uptake winner at speci�c combinations. �is important �nding shows that the uptake 
rates of macrophytes, when incubated individually, cannot always be used to predict the outcome of uptake 
competition between seaweeds and seagrasses. Similar �ndings were also reported in a competition study of 
macroalgae vs. phytoplankton31, where the nutrient uptake dynamics under competitive conditions could not 

Z. noltei vs. Ulva Z. marina vs. Dictyota C. nodosa vs. Codium

Source df P (perm) P (perm) P (perm)

S 1 <0.001 <0.001 0.130

T 1 0.013 0.008 0.041

C 6 <0.001 <0.001 <0.001

S × T 1 0.541 0.008 <0.001

S × C 6 <0.001 <0.001 0.917

T × C 6 0.135 0.035 0.267

S × T × C 6 0.615 0.632 0.111

Table 1. Summary of PERMANOVA results for the nitrogen surge uptake rates of each species (S = Species) 
for the combinations Zostera noltei vs. Ulva, Zostera marina vs. Dictyota and Cymodocea nodosa vs. Codium, 
measured when species were incubated alone or in competition (T = Treatment) at di�erent ammonium 
concentrations (C = Concentration). Signi�cant P-values are in bold (p < 0.05).

vs.

Z. noltei Z. marina C. nodosa

Dictyota Codium Ulva Codium Ulva Dictyota

Source df P (perm) P (perm) P (perm) P (perm) P (perm) P (perm)

S 1 0.0001 0.0001 0.0001 0.0004 0.0003 0.0001

T 1 0.0001 0.1506 0.0023 0.2145 0.0115 0.1625

C 1 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

S × T 1 0.0001 0.6825 0.0916 0.5324 0.5296 0.0058

S × C 1 0.0001 0.0004 0.0001 0.0005 0.0005 0.0001

T × C 1 0.0004 0.2343 0.0046 0.2348 0.0166 0.2412

S × T × C 1 0.0001 0.8916 0.1093 0.5911 0.6641 0.0072

Table 2. Summary of PERMANOVA results for the nitrogen surge uptake rates of each species (S = Species) 
for the combinations Zostera noltei vs. Dictyota, Z. noltei vs. Codium, Zostera marina vs. Ulva, Z. marina vs. 
Codium, Cymodocea nodosa vs. Ulva and C. nodosa vs. Dictyota, measured when species were incubated alone 
or in competition (T = Treatment) at di�erent ammonium concentrations (C = Concentration). Signi�cant 
P-values are in bold (p < 0.05).
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be predicted using individual nutrient uptake parameters. To our knowledge, our work is the �rst that directly 
measures competitive dynamics of nutrient uptake rates between seagrasses and macroalgae.

�e ability of seagrasses to quickly remove nitrogen as it becomes available re�ects their adaptation to envi-
ronments where nutrient concentrations are typically very low but where pulses of nutrients normally occur32,33. 
In N-limited environments, where competition for the nutrient is high, seagrasses may be in a competitive advan-
tage over seaweeds since they can explore short-lived pulses of nitrogen from the water column more e�ciently, 
thus increasing their ability to maintain growth in environments with �uctuating N concentrations. Our results 
suggest that the surge uptake capacity of seagrasses represents an important mechanism in their N acquisition 
strategy that favors their survival and dominance in shallow oligotrophic environments.

In this study, the leaves and roots of seagrasses were incubated in the same compartment at the same concen-
trations, and the uptake by both plant parts was integrated as a whole-plant uptake, which we compared with the 
seaweed uptake. Even though ammonium-rich sediments are o�en considered the primary source of nitrogen 
for seagrasses, previous studies showed that the uptake of ammonium through the roots does not contribute 
signi�cantly to the overall seagrass N acquisition because root uptake is typically much lower compared to those 
by the leaves in several seagrass species34 and references therein. �us, the whole-plant uptake rates of ammo-
nium obtained in this study by incubating leaves and roots in the same concentration should not vary much 
from uptake rates obtained from incubating both plant parts separately at di�erent concentrations. To completely 
unveil the hypothesis currently formulated that seagrasses are more e�cient than seaweeds in nutrient uptake 
under low nutrient concentrations4, and may thus prevent macroalgal development when some nutrient thresh-
old is exceeded, the long-term uptake rates of seagrasses versus seaweeds must also be analysed. However, care 
should be taken to address this hypothesis as nutrient uptake studies have been mostly done in single-species 
incubations. As we showed here, in some speci�c cases the uptake rates can be signi�cantly altered in the presence 
of other species.

�e observed interspeci�c interactions between seagrasses and seaweeds, which a�ected positively or nega-
tively their individual ammonium uptake rates, may be explained by a speci�c limitation of other essential ele-
ments (e.g. phosphorus and carbon) that interfere with the uptake of ammonium. For example, Z. noltei has been 
shown to use the dissolved organic carbon excreted by Ulva to enhance growth35, something that could have 
bene�t some of the seagrass species in our experiments (Z. marina and C. nodosa). More complex interspeci�c 
interactions may be expected if seagrasses are incubated with multiple species of seaweeds, and vice-versa, as in 
the natural environment. However, the hypothesis that a limitation by essential nutrients may a�ect the ammo-
nium uptake rates between seagrasses and seaweeds must be experimentally tested. Another possible explana-
tion is allelochemical-mediated interference. Allelopathy, i.e. the release of chemical substances by one plant 
eliciting positive or deleterious responses on another36, is known to be involved in interspeci�c competition 
between several aquatic macrophytes37–40. �e chemicals released can a�ect numerous physiological processes 
in the target species, such as growth, photosynthetic performance, enzymatic activity and nutrient uptake39,41. 
In the present study, the ammonium uptake rates of the seaweeds Ulva and Dictyota were negatively a�ected by 
the presence of the seagrasses Z. noltei and Z. marina (except in the combination Ulva vs. Z. marina). We are not 
aware of any studies reporting allelochemical e�ects of seagrasses on macroalgae, but water soluble extracts of 
leaves of Zostera species contain several inhibitory substances, such as zosteric acid, �avonoids and phenolics42, 
which negatively a�ected the development and photosynthetic carbon uptake of epiphytic diatoms43,44, as well as 
growth of microalgae and marine bacteria45. A negative e�ect of macroalgae on the N uptake rates of seagrasses 
was found only in the combination Z. noltei vs. Ulva. Ulva species are well known for their strong allelopathic 
inhibitory e�ects on micro- and macroalgae40,46–48 but e�ects on seagrasses have not been reported. Although by 
de�nition bene�cial allelopathic e�ects may also occur, only a few studies reported such e�ects, and they were 
mainly observed in crop plants e.g.49. Nonetheless, in our study, we found positive seagrass-seaweed interactions 
in a large number of combinations, where the N uptake rates of at least one species increased relatively to those 
of monospeci�c incubations. As a result, the collective nitrogen uptake in mixed incubations was higher than the 
total N uptake in monospeci�c incubations. �is is an interesting result and suggests that macrophyte diversity 

Zostera noltei Zostera marina Cymodocea nodosa Ulva Dictyota Codium

vs. Ulva −12%
0 (3 µM) 0 (3 µM)

 +30% (100 µM)  +65% (100 µM)

vs. Dictyota
0 (3 µM)

0  +35%
 +35% (100 µM)

vs. Codium 0 0 0

vs. Z. noltei −30% −40% 0

vs. Z. marina
0 (3 µM)

−50% 0
 +35% (100 µM)

vs. C. nodosa 0 0  +50%

Table 3. Summary of the e�ects of interspeci�c interactions on the ammonium surge uptake rates of 
each species. 0 = no e�ect; − % = percentage decrease relative to the species uptake in monospeci�c 
incubation; + % = percentage increase relative to the species uptake in monospeci�c incubation. Split cells 
indicate that more than one e�ect was observed for a speci�c combination, depending on the nutrient 
concentration. Values in brackets indicate the speci�c ammonium concentration at which the e�ect occurred.
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may increase the total nitrogen uptake capacity of seagrass-dominated ecosystems as reported for seaweeds in 
tidal rock pools50.

�e winners for ammonium uptake in di�erent seagrass-seaweed combinations depend not only on the surge 
uptake capacity of each species but also on their interactions. Consequently, one seagrass species may be a winner 
in one speci�c combination but not in others. For example, the seagrass Z. marina was the uptake winner when 
combined with Dictyota, but not when combined with Ulva or Codium, irrespective of the ammonium concen-
tration. �e combinations Z. marina vs. Ulva and Z. marina vs. Codium were the most prone to macroalgal devel-
opment because the surge uptake rates of the seagrass were always lower than the seaweeds. Z. marina is one of 
the most threatened seagrass species worldwide51, mainly due to the N enrichment of coastal habitats52, and is the 
most endangered of the three existing species in Ria Formosa lagoon53. It is possible that the global decline of Z. 
marina may be related to its lower surge uptake capacity relative to seaweeds. In the speci�c case of Ria Formosa, 
Z. marina appears to be close to a light-mediated ecophysiological threshold being less competitive for light than 
the sympatric seagrass Cymodocea nodosa54.

In conclusion, this study clearly shows that seagrasses can compete with seaweeds during surge uptake and 
thus prevent opportunistic macroalgae blooms in N-poor environments with high, transient ammonium inputs 
irrespective of their concentration. Signi�cant species-speci�c interactions may a�ect the seagrass-seaweed com-
petitive outcome. Although no interspeci�c interactions were observed in most of the combinations, positive 
e�ects were mostly observed over the uptake rates of seagrasses in the presence of seaweeds.

Methods
Site description and plant collection. Ria Formosa is a mesotidal coastal lagoon located in South 
Portugal (37°01′N, 7°51′W). In this system, Zostera noltei is the most abundant seagrass species, developing 
extensive meadows along the intertidal mud�ats and major contributor to the lagoon’s metabolism55. �e subtidal 
areas of the lagoon are occupied by the seagrass species Zostera marina and Cymodocea nodosa. Bloom-forming 
macroalgae co-occur with seagrasses in the lagoon. Ulva species, mostly U. rotundata cover mostly the intertidal 
areas occupied by the seagrass Z. noltei, but also settle over Z. marina and C. nodosa meadows. Other seaweeds 
also thrive, namely species of Dictyota dichotoma and Codium decorticatum, although these species develop more 
frequently in the subtidal areas of the lagoon. Ammonium and nitrate concentrations in the water column are 
usually less than 5 µM due to a high water exchange with the adjacent ocean during each tidal cycle56, but ammo-
nium pulses (∼10 µM) from the sediment to the water column occur with the incoming tide15. Ammonium 
concentration in the sediment pore water is higher (12–38 µM), whereas nitrate concentration is almost negligible 
(0.2–0.9 µM)57. Macroalgae (U. rotundata, D. dichotoma and C. decorticatum) and seagrass species (Z. noltei, Z. 
marina and C. nodosa) were collected during the autumn and winter of 2012. In the laboratory, seagrass roots 
were carefully cleaned of adherent sediment and leaves were cleaned of epiphytes. �e species were kept sepa-
rately in aquaria with seawater from the collection site for two days to acclimate to the experimental conditions 
(seawater temperature of 14 °C and light intensity of 300 µmol quanta m−2 s−1).

Experimental procedure. In a �rst experiment, the competitive dynamics of ammonium uptake between 
seagrasses and seaweeds was studied using three di�erent combinations of co-occurring species in the lagoon: Z. 
noltei vs. Ulva, Z. marina vs. Dictyota and C. nodosa vs. Codium. In each combination, the ammonium uptake rate 
of each species was assessed by incubating them separately and in competition in nitrogen-free arti�cial seawater 
(salinity of 35‰, pH of 8.24) enriched with 15NH4Cl (atom % = 98, Sigma) at seven di�erent concentrations (3, 
6, 12, 25, 50, 100, 200 µM) for 30 min. Incubations were performed in triplicate for each nutrient concentration.

In a second experiment, N competition dynamics was studied in another six di�erent combinations of sea-
weeds and seagrasses (Z. noltei vs. Dictyota, Z. noltei vs. Codium, Z. marina vs. Ulva, Z. marina vs. Codium, C. 
nodosa vs. Ulva and C. nodosa vs. Dictyota), so that all possible combinations of the three seagrass and seaweed 
species were tested. �e ammonium uptake rate of each species was assessed at low (3 µM) and high (100 µM) 
ammonium concentrations by incubating species separately or in competition as described above.

The incubation conditions were identical in the two experiments. The media were constantly stirred to 
decrease the thickness of the boundary layer and to ensure a homogeneous distribution of the isotopic labels. 
�e biomass to volume relationship of the incubations was previously determined in preliminary experiments to 
ensure that the ammonium concentrations remained constant throughout the speci�c incubation period (i.e. no 
substantial change in the nutrient concentration occurred), preventing any signi�cant ammonium limitation that 
could interfere in the rate of nutrient uptake. When in competition, one single seagrass module (i.e. shoot with 
respective rhizome and roots) and its equivalent fresh weight of seaweed were collectively incubated to eliminate 
the possibility that any existing interspeci�c interactions that could a�ect the uptake rates was due to di�erences 
in biomass between the two species. In single-species incubations, two seagrass modules and the equivalent fresh 
weight of seaweed were incubated separately. Species were immersed in 1 L of nitrogen-free arti�cial seawater 
(salinity of 35‰, pH of 8.24). Seawater was prepared using MilliQ ultrapure water with a pH of 5. �e pH of 
the seawater solution was adjusted to 8.24 using HCO3

−, which also provided the media with a source of inor-
ganic carbon. �e fresh weight of one seagrass module of Z. noltei was on average 0.12 ± 0.07 g (0.02 ± 0.01 g 
dry weight). One module of Z. marina averaged 1.06 ± 0.90 g fresh weight (0.19 ± 0.16 g dry weight) while one 
module of C. nodosa averaged 1.13 ± 0.57 g FW (0.20 ± 0.1 g dry weight). �e aboveground: belowground bio-
mass ratio was 1.47 for Z. noltei, 4.83 for Z. marina and 0.76 for C. nodosa. All experiments were performed in a 
walk-in culture chamber at constant temperature (14 °C) and light intensity (300 µmol quanta m−2 s−1). �is light 
intensity has been shown to saturate, or nearly saturate, photosynthesis in virtually all studied species58–61. At the 
end of the incubation, tissues were removed from the media, seagrass leaves were immediately separated from 
the rhizomes and roots, and all tissues were brie�y rinsed with deionised water to remove adherent salts and label 
(15N). Tissues were dried at 60 °C for 48 h and reduced to a �ne powder. Total nitrogen content and the percentage 
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of 15N of dried tissues were determined using a Flash EA 1112 Series elemental analyser coupled on line via a 
Finningan con�o II interface to a �ermo delta V S mass spectrometer. Precision in the overall preparation and 
analysis was better than 0.2‰. 15N background levels of seagrass leaf, root and rhizome tissues and seaweed tissue 
were measured as controls (n = 5).

�ough in nature the rhizosphere of seagrasses can be anoxic, in these experiments we incubated whole plants 
in an oxygenated medium. Previous experiments showed no e�ects of rhizosphere oxygenation on the ammo-
nium uptake rates of leaves and roots of Z. noltei34,62, which was con�rmed for Z. marina in preliminary experi-
ments of the present study.

Data analysis. 15N enrichment (%) of tissues after incubations were calculated by subtracting the 
post-incubation 15N levels from the initial background levels, which was multiplied by the total nitrogen content 
of the tissue (g) and then divided by its weight (g dry weight). For seagrasses, the uptake rates were expressed as 
whole-plant uptake rates and were calculated by the sum of the uptake rates of leaves and roots calculated using 
the surface area of the respective plant part and then divided by the sum of the surface areas of the plant parts. 
Because nutrient uptake during the surge phase is di�usive, the extent of the surge uptake rate is expected to be 
a direct function of the number and activity of sites available for the nutrient transport into the cells at the plant 
surface63. We, therefore, believe that, when evaluating interspeci�c competition during the surge phase, uptake 
rates should be expressed per surface area units rather than per biomass units. �e latter would be more appro-
priate when comparing uptake rates during the subsequent internally controlled phase, i.e. when uptake rates 
are controlled by the rate of nutrient assimilation in the cells22. All incubated tissues were photographed, and 
their surface areas were calculated using the so�ware Image J64. Signi�cant di�erences in the nitrogen uptake 
rates of seagrass and seaweed species (S) incubated alone or in competition (T) at di�erent nitrogen (N) concen-
trations were analysed for all combinations of species tested using a permutational analysis of variance65, using 
the PERMANOVA module66,67 within Primer 5 so�ware68, with three �xed factors: 1) species, with two di�erent 
levels: seagrass and seaweed, 2) treatment, also with two levels: alone and in competition; and 3) N concentration, 
with seven di�erent levels: 3, 6, 12, 25, 50, 100 and 200 µM in the �rst experiment, and two levels: 3 and 100 µM 
in the second experiment. �is method does not require implicit assumptions about the underlying distribution 
(i.e. normality) or spread (i.e. variance) of the data, hence does not assume either normality or homoscedasticity. 
Permutation of residuals under a reduced model, with 9999 permutations on a data matrix of average distance 
measures was performed as recommended to test distance based homogeneity of dispersion, main e�ects and 
pair-wise tests on signi�cant factors/interactions. In case the number of unique permutations was lower than 100, 
Monte Carlo permutations(9999) p-values were used.

Data availability statement. �e datasets generated during and/or analysed during the current study are 
available from the corresponding author on reasonable request.
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