
Interactions Between TCP and the IEEE 802.11 MAC Protocol

Rui Jiang Vikram Gupta

Computer Science and Engineering Department
University of California, Riverside

Chinya V. Ravishankar

Abstract

The IEEE 802.11x MAC protocol, the de facto stan-
dard for wireless LANs, includes a distributed coordination
function (DCF) mode usable for ad hoc network architec-
tures. The Transmission Control Protocol (TCP) is com-
monly used on top of this MAC for reliable transport. TCP’s
congestion control scheme assumes highly reliable frame
transmission at the link layer. Unfortunately, this assump-
tion does not hold in multi-hop wireless network scenarios,
leading to severe performance degradation. In this paper
we study the interactions between the TCP and 802.11b
MAC protocols, and examine the effects of different TCP
and 802.11b parameters on the throughput achieved. Using
simulations and analysis, we highlight the causes of perfor-
mance degradation when TCP is used over 802.11b MAC in
a multi-hop wireless scenario.

1. Introduction

A wireless ad hoc network is an autonomous system of
routers (and associated hosts) connected by wireless links.
Each node in such a network can also act as a router, for-
warding packets on behalf of other nodes. The wireless
links share the communication medium, so an efficient ac-
cess control mechanism must coordinate the use of this
shared resource. Medium access control design for wire-
less LAN has been an active area of research recently, and
a number of MAC protocols [13, 5, 15] have been pro-
posed. However, only a few of these explicitly account for
the multi-hop requirements of ad hoc networks.

The IEEE 802.11 MAC protocol [12] is the current de
facto standard for wireless links. It includes a “Distributed
Foundation Wireless Media Access Control (DFWMAC)”
to support ad-hoc and infrastructure LANs. Many appli-
cations in ad-hoc networks depend on a reliable transport
protocol. TCP is now the prevalent transport protocol in
IP-based networks, and future ad hoc networks are likely
to adopt TCP. It is important to understand the behavior of

TCP when coupled with IEEE 802.11 MAC protocol in an
ad hoc network.

It has been known that TCP does not work well in wire-
less networks [10]. Wireless channels are inherently noisy,
so that packet losses are more frequent in wireless net-
works than in wired networks. TCP does not differenti-
ate between congestion-related packet drops and transmis-
sion failures at link layer. TCP treats all packet losses as
indicators of network congestion, and triggers the conges-
tion control mechanism. Consequently, transmission fail-
ures at the MAC layer causes the activation congestion con-
trol in TCP, and reduces the throughput. Several mecha-
nisms [4, 1, 6] have been proposed to address this problem.
However, these ideas are focused on cellular network archi-
tectures, in which a base station is available and the wireless
link is used only for the last hop.

The problem is more complex in multi-hop wireless net-
works, as there are no base stations, and any node may act
as a router. Previous work [9] has shown that TCP per-
formance degrades in the multi-hop scenario under various
MAC protocols like CSMA, MACA and MACAW. Further-
more, when TCP is coupled with IEEE 802.11 there are
problems like throughput oscillation as indicated in [20].

Most previous work attributes TCP performance degra-
dation to link layer unfairness and poorly designed back-
off policies. Some new MAC protocols that address these
issues have been proposed [11, 17]. However, the behav-
ior of TCP itself or the interaction of TCP with the MAC
protocol have not been sufficiently explored. As our work
shows, TCP parameter settings also influence the through-
put achieved by applications. TCP parameters are fine-
tuned for wire-line networks, but that ad hoc networks differ
significantly from wire-line ones. The mechanisms and pol-
icy employed by TCP may turn out to be unsuitable in ad
hoc networks.

In this work we investigate the interaction between TCP
and IEEE 802.11 MAC protocols through simulations. We
first show that TCP does not work well with 802.11 MAC
in multi-hop wireless networks. We then examine the effect
of different parameters of TCP and 802.11 MAC protocols

Proceedings of the DARPA Information Survivability Conference and Exposition (DISCEX’03)
0-7695-1897-4/03 $17.00 © 2003 IEEE

on the performance of TCP throughput under different net-
work topologies. By analyzing the trace files obtained from
the simulations, we identify the causes of TCP throughput
degradation. Further, we provide insights into the MAC
protocol behavior that accentuates the problems.

2. Overview of IEEE 802.11 MAC

The IEEE 802.11 MAC protocol [12] defines two dif-
ferent access methods; a distributed coordination function
(DCF) and polling based point coordination function (PCF).
In ad hoc networks, the DCF feature is used.

The DCF access is basically a carrier sense multiple
access with collision avoidance (CSMA/CA) mechanism.
When a node wants to transmit a frame, it senses the
medium. If the medium is busy, it defers this transmission.
If the medium is free for a specified time, called the dis-
tributed inter-frame space (DIFS), the node is permitted to
transmit. In order to avoid collision due to the hidden termi-
nal problem [5] the node first transmits a Request To Send
(RTS) control frame. The destination node responds with
a Clear To Send (CTS) control frame. Both RTS and CTS
frames include the duration of the transmission that will fol-
low the RTS-CTS exchange. All nearby nodes receiving
either the RTS or the CTS frame defer their pending trans-
missions for this duration. This deferral is referred to as
virtual carrier sensing as it “senses” the medium through
exchange of frames at the MAC layer. Once a success-
ful RTS-CTS frame exchange takes place, the data frame
is transmitted. The receiving node checks the received data
frame, and upon correct receipt, sends an acknowledgement
frame. If the sending node fails to receive the acknowl-
edgement frame, it assumes that the data frame was lost.
It backs-off and attempts a retransmission. After repeated
failures to get the frame across, it simply drops the frame.
Thus, although the introduction of RTS-CTS-DATA-ACK
frame format makes the transmission more reliable, there is
still the possibility of transmission failure. Such failures are
more frequent in ad hoc networks than in wire-line or single
hop wireless LANs.

3. TCP over IEEE 802.11 MAC protocol

The IEEE 802.11 MAC protocol is designed to provide
efficient and reliable frame exchange over the shared wire-
less channel. Consequently, this protocol has a rather lim-
ited view of the network conditions. The information avail-
able to it is the status of its direct neighbors. In contrast,
TCP observes the network conditions at a higher level, and
its view of the network conditions is independent of the un-
derlying protocols. Unfortunately, TCP assumes that packet
loss between the end to end hosts is always due to conges-

tion. That is, it assumes a reliable link layer, a valid as-
sumption in wire-line networks, but not over the 802.11b
MAC. Consequently, TCP’s reactions to specific network
conditions is sometimes incorrect.

In the following sections, we study the problems when
TCP is coupled with the IEEE 802.11 MAC protocol. First
we introduce the simulation setup.

4. Simulation setup

We use the NS2 network simulator from LBNL [14] with
wireless extensions from CMU [8]. The extensions include
a set of mobile ad hoc network routing protocols and 802.11
MAC protocol.

The link layer of the simulator implements the IEEE
802.11 standard MAC protocol under DCF. All nodes com-
municate over identical half-duplex wireless links with a
bandwidth of 1Mb/s. For our simulations the effective
transmission range is set to 250 meters. We assume an inter-
ference range of 550 meters, so that nodes within this dis-
tance of a transmitting node will sense the medium as busy.
Each node has a 50-packet link layer buffer queue managed
in a drop-tail fashion. The scheduling of packet transmis-
sions is FIFO. The routing protocol used in the simulation
is AODV [16].

We consider two types of network topologies. First, we
examine string topologies with different number of hops, to
serve as a simple yet effective model for multi-hop connec-
tivity scenarios. For a more realistic scenario we study two
strings that share a node, and examine media access at the
shared node, and its effects on the throughput of both TCP
connections.

The distance between any two neighboring nodes is set
to 200 meters, so that a node may communicate only with
it’s closest neighbors. The interference range (under normal
channel conditions) of a node is slightly greater than twice
its transmission range (550m in this case). By spacing all
nodes equally, we are guaranteed that the interference con-
ditions are uniform. Nodes are not mobile during the simu-
lation, so we do not address the link failure problem caused
by node mobility.

5. Interaction between TCP and IEEE 802.11

TCP and 802.11 protocols allow some parameters to be
adjusted for optimal operation. The current TCP protocol
implementations generally assume that round trip times can
be measured accurately, that links are stable, and that their
capacities are fixed. However, in a multi-hop wireless envi-
ronment, such assumptions do not hold due to dynamic link
formations. Thus, it becomes important to observe the per-
formance under various values of TCP parameters and find
an optimal setting for an ad hoc networking environment.

2

Proceedings of the DARPA Information Survivability Conference and Exposition (DISCEX’03)
0-7695-1897-4/03 $17.00 © 2003 IEEE

The IEEE 802.11b MAC protocol is primarily designed
for wireless LANs with access points, although it supports
ad hoc functionality. Thus, the parameter settings in MAC
protocol may not be ideal for multi-hop environments. Fur-
ther, when this MAC is coupled with TCP, the resulting
interactions can be quite complex. Certain TCP mecha-
nisms and policies that improve performance in wire-line
networks may have adverse effects when running over the
802.11b MAC protocol. Similarly, the MAC level unfair-
ness may be increased by short (in hops) TCP connec-
tions that are able to send more packets over the medium.
Furthermore, TCP and 802.11b both provide some similar
functions and have some similar mechanisms. For exam-
ple, TCP guarantees end-to-end reliability, but the 802.11
MAC also employs link level acknowledgement to guaran-
tee point-to-point reliability. Also, TCP has a back-off pol-
icy when it encounters packet loss, and the 802.11b protocol
uses a similar method to avoid channel access conflict.

In this section, we study the interactions between TCP
and the IEEE 802.11 MAC, and the effects of different
parameters on TCP throughput. We revisit some existing
problems and take further steps to look at the detailed rea-
sons that cause the problems, and then provide some possi-
ble ways to alleviate the problems.

5.1. TCP congestion window size

In this section we investigate the effect of TCP conges-
tion window size on TCP throughput. We simulate string
topologies with different numbers of hops, as shown in Fig-
ure 1. A TCP sender and TCP receiver is chosen and a TCP
session is established. There is no background traffic in the
network.

1 2 3 4 5 60

Figure 1. String topology.

The TCP congestion control mechanism continuously
increases its congestion window until it consumes all the
available bandwidth or detects a packet loss. The Reno
version of TCP also employs a fast recovery mechanism
to achieve stable throughput. In this simulation we setup
single TCP session. Since there is no background traffic
contending with this TCP session, we might expect to see
stabilized throughput. However, we do not observe a stable
throughput. When the maximum congestion window at the
TCP sender increases, TCP throughput fluctuates, as found
in previous work [20]. Moreover, we find that the conges-
tion window size that causes such oscillation depends on
the number of hops in the TCP connection. The longer (in
hops) the connection, the smaller the congestion window
size that triggers the fluctuation effect.

0 20 40 60 80 100 120
0

5

10

15

20

25

30

Time (secs)

T
hr

ou
gh

pu
t (

pk
ts

/s
ec

)

(a) 3-hop connection, W=4

0 20 40 60 80 100 120
0

5

10

15

20

25

30

Time (secs)

T
hr

ou
gh

pu
t (

pk
ts

/s
ec

)

(b) 3-hop connection, W=16

0 20 40 60 80 100 120
0

5

10

15

20

25

30

Time (secs)

T
hr

ou
gh

pu
t (

pk
ts

/s
ec

)

(c) 6-hop connection, W=8

0 20 40 60 80 100 120
0

5

10

15

20

25

30

Time (secs)

T
hr

ou
gh

pu
t (

pk
ts

/s
ec

)

(d) 12-hop connection, W=4

Figure 2. Oscillations for string topology.

3

Proceedings of the DARPA Information Survivability Conference and Exposition (DISCEX’03)
0-7695-1897-4/03 $17.00 © 2003 IEEE

Our simulation results are shown in Figure 2, which plots
the throughput of TCP connections with different number
of hops and various TCP congestion window sizes (W). As
the current version of NS2 only supports fixed-size TCP
packets, we fix the packet size at 1460 bytes and measure
throughput in terms of the number of packets received. The
throughput is measured over a one-second interval. The
transmission time for a 1500 byte packet over 12 hops is
approximately 0.15 secs. Our choice of 1 second aggre-
gation interval is based on this value. Choosing a larger
value may occlude the analysis. It should be noted that we
do not intend to justify the need for smooth TCP through-
put at any time granularity. Our objective is to simply ob-
serve the oscillatory behavior of TCP. However, measures
taken to smoothen the TCP throughput over 1 second inter-
val may suffice most application’s needs. Each simulation
runs for 120 seconds. Figure 2 illustrates the fluctuation ef-
fect for 3-hop, 6-hop, and 12-hop connections. These are
representative of different deployment scenarios for multi-
hop wireless networks. We conduct the experiments for dif-
ferent congestion window sizes and hop counts. Our results
show consistently similar pattern, so we present only some
of them here.

From Figure 2(a), we can see that for a 3-hop connection,
the throughput is relatively stable within the 120s simula-
tion period when the maximum size of TCP congestion win-
dow is 4. The TCP window size here is counted in number
of packets. However, when this value is increased to 16, we
see severe oscillations as indicated in Figure 2(b). Figure
2(c) plots the throughput of a 6-hop connection. It shows
that with the value 8, we see the oscillation of throughput.
The throughput even reduces to zero at certain times. In
Figure 2(d), the situation worsens. For a 12-hop connec-
tion, the throughput reduces to zero for a 14 second duration
even for a low value (4) of TCP congestion window size.

Given the above observations, it is clear that the oscilla-
tion effect can be alleviated by reducing the TCP congestion
window size. Previous studies show that the optimal win-
dow size is 1/3 path length [19] or even 1 in most practical
situations [18]. The reason that such a small congestion
window generates the highest throughput is partially due
to the MAC protocol’s contention for the channel. For ex-
ample, in a 3-hop connection, almost every node is in the
interference range of all others, which means only one node
can transmit at any time. (The details of link layer conflict
are discussed later.) Limiting the TCP congestion window
size is acceptable for a short (1-4 hop) connection since its
round trip time is also short. Thus even a small window can
keep the “pipe” full. However, for a relatively longer con-
nection, a smaller window limits the number of packets in
transit, which means fewer nodes will have packets avail-
able to transmit. A smaller window size can thus reduce re-
source utilization for longer connections. However, we first

need an in-depth understanding of the causes of throughput
oscillation.

We simulate only one connection in a static string topol-
ogy, so there is no contention for the bandwidth with other
flows and no mobility related link failures. Hence, there
is no a priori reason to expect throughput oscillations, with
long periods of zero throughput. Our trace files indicate that
the problem originates at the link layer, and occurs when
a node fails to reach its neighbor, even though they are in
transmission range of each other. If a packet is not acknowl-
edged, the 802.11b standard mandates the sending node to
attempt 7 retransmissions for a short packet (RTS) times and
4 for a long (data) one. If a packet still cannot be sent across,
a link failure is to be inferred. This inference in turn triggers
a route failure at the network layer protocol (AODV). If the
sending node is an intermediate node, it drops all the pack-
ets destined to go over that link, and reports a route failure
to the source of the packet.

In a carrier sense wireless network, the interference
range is typically larger than the communication range. The
signal fading pattern of the WaveLAN wireless system that
NS2 based on is such that the interference range is slightly
more than two times larger than the effective communica-
tion range. Thus, in our simulation topologies, one node
can sense the signal sent from two hops away but can only
communicate to its directly adjacent neighboring nodes.

A typical collision condition is as follows. Consider the
transmission of an RTS or a data packet from node 1 to
node 2. Node 2 may receive the packet correctly but may
be unable to send the corresponding CTS back to node 1.
This problem can occur, for example, if node 4 is sending
to node 5. During the transmission between nodes 4 and 5,
node 2 can sense the signal from node 4. Even though node
4 has sent RTS to reserve the channel and node 3 responds
with CTS indicating the length of the transmission to its
neighboring nodes, node 1, being two hops away, cannot
correctly receive this CTS. When node 4 is transmitting,
node 1 will sense the channel as free and try to send its own
packet. Node 1 fails to get response from node 2. Failing
to receive a CTS from node 2 after the specified number of
retransmissions, node 1 quits and assumes link breakage. At
this point, a route failure is triggered, and the source node
starts a route discovery process. Until a route is found, no
data can be sent. If the route discovery process is not quick
enough, the TCP sender may timeout, causing it to enter the
slow start phase.

If an RTS-CTS mechanism is employed at the link layer,
link utilization may be as low as one in four hops. Con-
sider the 10-node string connection shown in Figure 3. The
dotted circles denote the approximate interference range of
each transmission. A transmission from node 1 interferes
with node 3, which cannot simultaneously communicate
with node 4. Similarly, a transmission by node 4 may cause

4

Proceedings of the DARPA Information Survivability Conference and Exposition (DISCEX’03)
0-7695-1897-4/03 $17.00 © 2003 IEEE

1 3 4 5 6 7 8 9 102

Figure 3. Communication and Interference
ranges.

a collision at node 2. Thus, links 1-2, 5-6 and 9-10 represent
maximum possible concurrent channel usage. For a string
connection of n nodes, the maximum number of simultane-
ous transmissions possible is d(n�1)=4e. If link 4-5 or 8-9
is active, only 2 simultaneous transmissions are possible.
This analysis ignores the flow of TCP-ACK packets. An in-
crease in number of nodes in the string may not change the
number of simultaneous transmissions. However, it does
permit a larger number of choices for non-interfering trans-
mitters, increasing the likely channel utilization. Hence, us-
ing a TCP window size higher than d(n� 1)=4e may not be
useful.

For analysis purposes, consider a 6-hop connection with
maximum TCP congestion window set to 8 packets. During
the 120s simulation period, 1179 packets were successfully
received by the TCP receiver. However, the TCP sender
sent out 1278 data packets, so that 98 packets, or 7.7 per-
cent, are dropped during transmission. At the same time,
38 out of 1179 TCP ACK packets were dropped. In TCP
Reno, with fast recovery mechanism, when a packet loss
is detected, the congestion window is halved. Consecutive
packet loss can reduce the congestion window sharply. The
7.7 percent packet loss rate causes the congestion window to
change frequently, This explains the observed oscillation in
throughput. Within 120 seconds simulation period, we also
observe that route failure is triggered 21 times. We believe
route failures to be the primary cause of the long pauses in
TCP throughput observed.

Let us now compare the above connection with the maxi-
mum TCP congestion window reduced to 4 packets. During
the simulation time, only 45 out of 1275 TCP data pack-
ets, or 3.5 percent, are dropped. The route failure event oc-
curs only 5 times. These figures are significantly lower than
that in the previous case. Thus, the resulting oscillation in
throughput is significantly reduced.

Given the above results, it is clear the problem results
from interaction between TCP and 802.11 protocol. When
TCP increases its congestion window and sends out more
packets, the probability of link layer collision(s) and trans-
mission failures increases. Frequently, this leads to link fail-
ures at MAC sublayer, route failure at the network layer,
and timeout at TCP sender. At the very least, TCP reduces

0 20 40 60 80 100 120
0

5

10

15

20

25

30

Time (secs)

T
hr

ou
gh

pu
t (

P
kt

s/
se

cs
)

(a) 6-hop connection, W=8, Retry
limit = 14/10

0 20 40 60 80 100 120
0

5

10

15

20

25

30

Time (secs)

T
hr

ou
gh

pu
t (

P
kt

s/
se

cs
)

(b) 12-hop connection, W=4, Retry
limit = 14/10

Figure 4. Increased retry limit.

the congestion window by half in reacting to every packet
loss. When the congestion window is small, fewer packets
are sent out to the medium, and the probability of failures
at MAC sublayer is low. This explains why we see stable
throughput if the TCP congestion window is limited to a
small value, and oscillations otherwise.

5.2. Retry limit in 802.11 MAC

We have observed that if a response to a frame trans-
mission is not received after the specified number of retries,
the packet is dropped and link breakage reported. Also, the
node drops all the packets destined to the same node in its
IFQ. In our simulations, all nodes are static, so all packet
drops are due to collision with neighboring nodes. Un-
der the above scenario, an improvement for MAC protocol
would be to let the sender retransmit an increased number
of times. Therefore, if we increase the retry limit, we expect
to reduce the chances of a packet being dropped at the link
layer. Furthermore, we expect a reduction in the number of
route failures and oscillatory behavior. In many cases such
an improvement will also increase overall throughput.

In this section we look into the effects of increasing the
MAC protocol’s retry limit. We increase the retry limit for

5

Proceedings of the DARPA Information Survivability Conference and Exposition (DISCEX’03)
0-7695-1897-4/03 $17.00 © 2003 IEEE

1 2 4 5 60 3

10

11

12

13

14

15

Figure 5. Cross connection topology.

short frames from 7 to 14 and for long frames from 4 to
10. We repeat our earlier experiments for 6 and 12 hop
connections. Figure 4 shows the experimental results for
variation in throughput with these parameters. Compared
with Figures 2(c) and 2(d), we find much lower throughput
oscillation than with retry limits 7 and 4. The aggregated
throughput is also increased. For example, for the 6-hop
connection, total packets received increases from 1179 to
1396, which a 18 percent increment. For a 12-hop con-
nection, the throughput improves by 39 percent, with total
packets received increasing from 896 to 1243.

The current retry limits appear to be reasonable for wire-
less LANs with a base station, as every node is within the
interference range of all other nodes. With a low retry limit,
the node can detect link breakage early. If the retry limit is
too high, it could end up wasting resources as a link fail-
ure due to mobility will take longer to be detected. An-
other drawback of a high retry limit is that the transmission
of other packets in the link layer queue (IFQ) is delayed
due to the FIFO scheduling of IFQ. Overall, this results in
longer end-to-end delays. In many cases in multi-hop wire-
less networks, the cost of unnecessary packet drop may far
outweigh the drawbacks of higher retry limits. This would
be especially true in a low mobility situation. Thus, one
of the possible ways to improve throughput of TCP based
applications is by increasing the MAC protocol retry limit.

5.3. Capture effect at the MAC layer

Previous studies [18, 19] show that IEEE 802.11 MAC
suffers from a severe channel capture effect, causing an un-
fairness problem. Channel capture stems from the binary
exponential back-off mechanism of the 802.11 MAC proto-
col. Binary exponential back-off favors the last successful
node. The capture effect causes the most active connection
to dominate the shared channel. Thus, when several TCP
connections share the bandwidth, the connections starting
early or more heavily loaded ones may have a higher prob-
ability of capturing the channel.

3 5 7 9 11 13 15 17 19 21 23 25
0

200

400

600

800

1000

1200

1400

1600

1800

Start Time Difference (secs)

T
hr

ou
gh

pu
t (

pk
ts

)

Connection 1
Connection 2

Figure 6. Capture effect with start time.

In our simulations we studied this effect for two connec-
tions that share a single intermediate node. The topology
is shown in Figure 5. Connection 1 is from node 0 to node
6, and connection 2 is from node 10 to node 15. Our sim-
ulations suggest that under heavy load conditions starting
early cannot guarantee that a connection will dominate the
shared channel. Even if one connection has much higher
data rate than the other, it may not dominate the channel
under certain conditions. The length of the connection has
more prominent effect on capturing the channel. A short
connection (in hops) tends to dominate over longer connec-
tions and captures more bandwidth.

Figure 6 compares the overall throughput of the two
crossed connections. In the simulation, the two TCP con-
nections have the same load and the congestion window was
not limited, which means that it can increase to the default
maximum value specified by TCP protocol. The first con-
nection starts early, and we simulate the scenarios where
the second connection starts from 3 seconds to 25 seconds
later than the first connection. The simulation time is set to
120 seconds. The duration of the second TCP connection
is smaller than the first. If the channel is evenly shared be-
tween the two connections, we would expect to see connec-
tion 1 having a larger aggregate throughput than connection
2 in all scenarios. However, the results show that even if
connection 2 starts later and runs a shorter time, it too has a
chance to capture the shared channel.

In Figure 6, we notice that in some situations, connection
2 is completely dominated by connection 1, but in other sit-
uations, connection 2 gets more bandwidth than connection
1. In our experiments, all the parameters of the two con-
nections are identical, except for their start times. So the
difference in the throughput distribution is affected only by
the start time of connection 2. The TCP receives data at a
constant bit rate from the application. We simulate heavy
load conditions, i.e., TCP has packets to send at all times.
Thus, if there is no contention from other flows, every TCP
connection will attempt to exhaust the available bandwidth
at all times.

6

Proceedings of the DARPA Information Survivability Conference and Exposition (DISCEX’03)
0-7695-1897-4/03 $17.00 © 2003 IEEE

3 5 7 9 11 13 15 17 19 21 23 25
0

200

400

600

800

1000

1200

1400

1600

1800

Start Time Difference (secs)

T
hr

ou
gh

pu
t (

pk
ts

)

Connection 1
Connection 2

(a) 6-hop and 4-hop (50kbps)

3 5 7 9 11 13 15 17 19 21 23 25
0

200

400

600

800

1000

1200

1400

1600

1800

Start Time Difference (secs)

T
hr

ou
gh

pu
t (

pk
ts

)

Connection 1
Connection 2

(b) 6-hop (20kbps) and 4-hop (10kbps)

Figure 7. Capture effect with path length.

In the simulation topology, the only node shared by the
two connections is node 3. Whether connection 2 is able to
capture the channel or not is determined by the state of con-
nection 1 when connection 2 starts. This state includes the
current TCP congestion window size for connection 1 and
the value of back off timers at the shared node and nearby
nodes. If connection 1 is in a slow start phase, and has a
small congestion window, connection 2 will have a high
probability of capturing the shared channel at the intersect-
ing node. Such a scenario can occur when there are only a
small number of packets for connection 1 in transit, i.e. con-
nection 1 does not use all available bandwidth at the shared
node. If connection 1 has a large congestion window at the
time when connection 2 starts transmission, more packets
from connection 1 will be in transit. Thus, connection 2
has little chance of interrupting it and capturing the shared
channel instead. Connection 1 will increase its congestion
window until packet loss occurs. At this point, TCP de-
creases the congestion window sharply (by half). This will
permit another connection to get the shared channel. Thus,
TCP’s congestion window oscillates continuously. The to-

1 2 4 5 60

13

14

15

3

Figure 8. Neighborhood capture topology.

tal throughput of connection 2 shows some randomness de-
pending on the network conditions when it starts. In some
extreme cases, one connection can completely dominate the
other.

The length (in hops) of the connection plays a more im-
portant role in determining the TCP throughput than the
connection start time and traffic load. Consider two TCP
connections that have same traffic load (heavily loaded in
this case) but connection 2 being shorter than connection
1. The shorter (in hops) connection (2) captures the shared
channel in most of the cases independent of the starting
times.

Our experimental results are shown in Figure 7. Fig-
ure 7(a) is for two connections carrying the same data rate
of 50kb/s but of different lengths. The first connection (1)
is from node 0 to node 6 while the second connection (2)
is from node 11 to node 14. Connection 2 is only 4 hops
long and thus, shorter than connection 1. Again, only node
3 is shared by the two connections. Comparing these re-
sults with those in to Figure 6, we observe that connection
2 dominates the shared channel in all cases. In a second
experiment, we set different data rate for the two connec-
tions. Connection 1 has a data rate 20kbps, while connec-
tion 2 has a data rate of 10kbps, which is only half the rate
of connection 1. Furthermore, connection 1 starts earlier
than connection 2. However, the results in Figure 7(b) show
that even when connection 2 has a lower rate and lasts for a
shorter duration than connection 1, its overall throughput is
still larger than that of connection 1.

The above results can be explained by noting that con-
nection 2 has a smaller round trip time (RTT) value than
connection 1. A short RTT value means successfully re-
ceived data packets can be acknowledged faster, and the
TCP congestion widow also grows quickly. So the pack-
ets from the short connection pass the shared node more
frequently, and the short connection has a better chance at
capturing the shared medium. The capture effect is more
pronounced as the difference between the lengths of two
connections increases. If there is a very short connection
near by, a long connection can be completely dominated,
even if the short connection does not have a node shared
with the long connection. Such a scenario can occur when
one of the nodes along the short connection is in the inter-

7

Proceedings of the DARPA Information Survivability Conference and Exposition (DISCEX’03)
0-7695-1897-4/03 $17.00 © 2003 IEEE

0 20 40 60 80 100 120
0

10

20

30

40

Time (secs)

T
hr

ou
gh

pu
t (

P
kt

s/
se

cs
)

(a) 6-hop connection, node to node
6

0 20 40 60 80 100 120
0

10

20

30

40

Time (secs)

T
hr

ou
gh

pu
t (

P
kt

s/
se

cs
)

(b) 2-hop connection, node 13 to
node 15

Figure 9. Neighborhood capture effect.

ference range of the long connection.
Figure 8 shows such an example. Connection 1 is 6 hops

long, from node 0 to node 6, while connection 2 is from
node 13 to node 15, which is only 2 hops in length. Al-
though connection 1 starts earlier, as soon as connection
2 starts, its throughput reduces to zero until connection 2
stops. The results of the experiment are shown in Figure 9.
In Figure 9(a), connection 1 starts first and maintains a sta-
ble throughput when it is the only data flow in the network.
As soon as connection 2 starts at 20th second and captures
the channel after that, as shown in Figure 9(b), connection
1 stops completely, It resumes when connection 2 finishes
its transmission.

5.4. TCP packet size

During a transmission, nodes within the interference
range are “captured”, i.e, they cannot respond to any com-
munication requests or transmit. The duration of such a cap-
ture period is determined by the length of the data packet be-
ing transmitted. Nodes in the network that attempt to com-
municate with the captured nodes will infer the link to be
broken after certain number of attempts. The duration be-
tween successive retransmissions is governed by the expo-

nential back-off algorithm in IEEE 802.11 protocol. Thus,
larger packet size can lead to increased link failures at MAC
layer. Similarly, a small packet size can reduce duration of
capture, resulting in frequent opportunities for channel ac-
cess. However, a small packet size also increases the con-
trol overhead and can increase collisions at the link layer.
In this section we examine the trade-off between increasing
the packet size and the corresponding increase in false link
failures.

We observe the variation in TCP throughout with packet
size. The simulations are conducted for a single TCP con-
nection on a string topology. For multiple connections, ag-
gregate throughput can become biased by the shorter (in
hops) connection’s throughput. The results for 6-hop, 9-
hop and 12-hop TCP connections are shown in Figure 10.
The bytes received by TCP receiver is compared with the
bytes sent by the TCP sender.

From the results it is evident that the fraction of packets
delivered successfully decreases with the increase in packet
size. This is an expected result. Increasing the packet
size increases the throughput till a certain threshold. For
a short (in hops) connection this threshold occurs around
1000 bytes. Beyond this threshold, the gains of sending a
larger packet are largely offset by the increase in false link
failures. As we increase the hop-length of a TCP connec-
tion, any transmission potentially faces more interference.
Thus, increasing the length of the connection will increase
the probability of link failures at MAC layer.

We observe that for the longer connections (9 and 12
hops) there is a decrease in throughput after the thresh-
old. This largely due to the increase in false link failures
cause by increased interference. The link failure and the
packet loss reduce the TCP window size, which in turn re-
duces the overall throughput. This decrease cannot be com-
pensated by the corresponding throughput increase due to
larger packet size. We also observe that for longer path
lengths, beyond the threshold there is an oscillatory be-
havior in TCP throughput. This is due to the fact that for
longer paths the link failures occur randomly. These ran-
dom link failures and the associated packet drops stifle the
TCP sender’s congestion window. Thus, we do not see a
steadily decreasing trend in TCP throughput with packet
size beyond the threshold.

During the transmission of a 1000-byte data packet a
node within the interference range may receive 2 to 3 RTS
packets. This follows from the default values for the slot
duration, contention window used by binary exponential al-
gorithm and the data transmission rate at the physical layer
specified in the IEEE 802.11 standards. The node may not
be able to respond to any of these RTS packets. If such
a node cannot obtain the channel for the duration of two
successive data packet transmissions by other nodes, it will
still not infer a link failure as the number of retransmission

8

Proceedings of the DARPA Information Survivability Conference and Exposition (DISCEX’03)
0-7695-1897-4/03 $17.00 © 2003 IEEE

2 4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000

2500

Packet Size (100 bytes)

K
ilo

B
yt

es
KB Sent
KB Received

(a) 6-hop connection

2 4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000

2500

Packet Size (100 bytes)

K
ilo

B
yt

es

KB Sent
KB Received

(b) 9-hop connection

2 4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000

2500

Packet Size (100 bytes)

K
ilo

B
yt

es

KB Sent
KB Received

(c) 12-hop connection

Figure 10. Variations with Packet size.

attempts is below the retry limit of 7. However, when the
packet size is 1400 bytes, a node within the interference
range of a transmission may receive up to 4 RTS packets. In
this case, medium capture by two successive packet trans-
missions will trigger a link failure. Thus, depending on the
network topology and traffic conditions there is likely to be
a threshold for TCP packet size, beyond which link fail-
ures due to interference become more probable. This also
explains why increasing the retry limit in the IEEE 802.11
MAC protocol improves performance.

6. Conclusion

Our work focuses on TCP and IEEE 802.11 MAC pa-
rameters that affect performance in a multi-hop wireless en-
vironment. Our simulations and analysis show that both
IEEE 802.11 MAC protocol and TCP contribute to the per-
formance degradation when they are coupled.

The fundamental cause of degradation is the occurrence
of false link failures at the MAC layer. An aggressive TCP
sender causes an increased contention at the MAC layer
which results in increased link failures. We show that the
default value for the maximum TCP congestion window is
too high. Our analysis shows that using a lower limit, which
is a function of the number of hops in the TCP connection,
provides better performance.

The IEEE 802.11 MAC protocol mandates a certain
number of retransmission attempts for failed packets. Our
simulations show that the default values suggested for these
attempts are not optimal. The optimal values are a function
of traffic load as well as mobility. For a static topology or
a low mobility environment, increasing the retransmission
limits results in significant improvement in performance.
For a highly mobile environment, such an increase will re-
sult in increased delay in link failure detection.

We investigated the effects of the link failures when 2
TCP connections share an intermediate node. We observe
that in such a case the throughput achieved by the TCP con-
nection is primarily dependent on its hop-length relative to
the other TCP connection. In the presence of a short hop-
length connection, the longer connection does not get much
bandwidth.

We observe the effect of TCP packet size on the over-
all throughput. We find that an increase in packet size re-
duces the fraction of packets delivered successfully. It also
increases the interference related link failures and packet
drops. However, larger packets provide better channel uti-
lization. Thus, we find that there is a trade-off involved.
We explore this trade-off and find that there is threshold
packet size for TCP connections. Increasing packet size
beyond this threshold results in degradation in throughput.
The threshold is dependent on the path length as interfer-
ence increases with number of hops.

9

Proceedings of the DARPA Information Survivability Conference and Exposition (DISCEX’03)
0-7695-1897-4/03 $17.00 © 2003 IEEE

7. Future work

Our work indicate that further work is necessary to make
TCP and IEEE 802.11 MAC protocols compatible in a
multi-hop environment. For the MAC protocol, timers and
queue scheduling, and their interplay with TCP’s back off
schemes need further investigation. For TCP, congestion
control mechanism needs more refinement when coupled
with IEEE 802.11 MAC in a multi-hop wireless network.

8. Acknowledgements

This work was supported by the Fault-Tolerant Networks
program of DARPA under contract F30602-01-2-0535, and
by grants from Tata Consultancy Services and the DiMI
program of the University of California.

References

[1] Bakre and B. R. Badrinath. I-TCP: Indirect TCP for mobile
hosts. Proc. 15th Int. Conf. Distributed Computing Systems,
1995.

[2] B. Bakshi, P. Krishna, N. H. Vaidya, and D. K. Pradhan. Im-
proving Performance of TCP over Wireless Networks. Proc.
Int. Conf. Distributed Computing Systems, 1997.

[3] C. Barakat, E. Altman, and W. Dabbous. On TCP Perfor-
mance in a Hetergeneous Network: A Survey. IEEE Com-
munications Magazine, Jan 2000.

[4] B. Bensaou, Y. Wang, and C. C. Ko. Fair Media Access in
802.11 Based Wireless Ad-hoc Networks. Proc. Mobihoc,
2000.

[5] V. Bhargavan, A. Demers, S. Shenker, and L. Zhang.
MACAW: A Media Access Protocol for Wireless LANs.
Proc. ACM SIGCOMM, 1994.

[6] K. Brown and S. Singh. M-TCP: TCP for mobile cellular
networks. ACM Compueer Communication Review, 27(5),
1997.

[7] K. Chaandran, S. Raghunathan, S. Venkatesan, and
R. Prakash. A Feedback based Scheme for Improving of
TCP Performance in Ad hoc Wireless Networks. IEEE Per-
sonal Communications Magazine, Feb 2001.

[8] K. Fall and K. Varadhan. notes and documentation, LBNL.
http://www.mash.cs.berkeley.edu/ns, Aug 1998.

[9] M. Gerla, K. Tang, and R. Bagrodia. TCP Performance in
Wireless Multihop Networks. IEEE WMCSA, 1999.

[10] G. Holland and N. Vaidya. Analysis of TCP performance
over mobile ad hoc networks. Proc. ACM Mobicom, 1999.

[11] G. Holland, N. Vaidya, and P. Bahl. A Rate-Adaptive MAC
Protocol for Multi-Hop Wireless Networks. Proc. ACM Mo-
bicom, 2001.

[12] IEEE Std. 802.11. Wireless LAN Media Access Control
(MAC) and Physical Layer (PHY) Specifications. 1999.

[13] P. Karn. MACA - A New Channel Access Method for Packet
Radio. Proc. 9th ARRL/CRRL Amateur Radio Computer
Networking Conference, Sept 1990.

[14] NS2. Network simulator. http://www.isi.edu/nsnam.

[15] C. Parsa and J. J. Garcia-Luna-Aceves. TULIP: A Link-
Level Protocol for Improving TCP over Wireless Links.
Proc. IEEE WCNC, 1999.

[16] C. E. Perkins, E. M. Royer, and S. R. Das. Ad Hoc On-
Demand Distance-Vector (AODV) Routing. IETF Internet
draft (draft-ietf-manet-aodv-o6.txt).

[17] R. Rozovsky and P. R. Kumar. SEEDEX: A MAC Protocol
for Ad hoc Networks. Proc. ACM MobiHOC, 2001.

[18] K. Tang and M. Gerla. Fair Sharing of MAC under TCP in
Wireless Ad-hoc Networks. Proc. IEEE MMT, 1999.

[19] K. Xu, S. Bae, S. Lee, and M. Gerla. TCP behavior across
multihop wireless networks and the wired internet. Proc.
WoWMoM, 2002.

[20] S. Xu and T. Saadawi. Does the IEEE 802.11 MAC protocol
Work Well in Multihop Wireless ad hoc networks. IEEE
Communications Magazine, June 2001.

10

Proceedings of the DARPA Information Survivability Conference and Exposition (DISCEX’03)
0-7695-1897-4/03 $17.00 © 2003 IEEE

