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Abstract. This paper reviews the interactions between water and nitrogen from physiological, agronomic, economic,
breeding and modelling perspectives. Our primary focus is wheat; we consider forage crops, sorghum and legumes where
relevant aspects of water–nitrogen interactions have been advanced.

From a physiological perspective, we ask: How does nitrogen deficit influence the water economy of the crop? How
does water deficit influence the nitrogen economy of the crop? How do combined water and nitrogen deficit affect crop
growth and yield? We emphasise synergies, and the nitrogen-driven trade-off between the efficiency in the use of water
and nitrogen. The concept of nitrogen–water co-limitation is discussed briefly.

From agronomic and economic perspectives, the need to match supply of nitrogen and water is recognised, but this
remains a challenge in dryland systems with uncertain rainfall. Under-fertilisation commonly causes gaps between actual
and water-limited potential yield. We discuss risk aversion and the role of seasonal rainfall forecasts to manage risk.

From a breeding perspective, we ask how selection for yield has changed crop traits relating to water and nitrogen.
Changes in nitrogen traits are more common and profound than changes in water-related traits. Comparison of shifts in
the wheat phenotype in Australia, UK, Argentina and Italy suggests that improving yield per unit nitrogen uptake is
straightforward; it requires selection for yield and allowing grain protein concentration to drift unchecked. A more
interesting proposition is to increase nitrogen uptake to match yield gains and conserve protein in grain. Increased
stomatal conductance is a conspicuous response to selection for yield which partially conflicts with the perception that
reduced conductance at high vapour pressure deficit is required to increase water- use efficiency; but high stomatal
conductance at high vapour pressure deficit may be adaptive for thermal stress.

From a modelling perspective, water and nitrogen are linked in multiple ways. In crops where water limits growth,
reduced biomass reduces nitrogen demand. Reciprocally, nitrogen limitation during crop expansion reduces leaf area
index and increases the soil evaporation : transpiration ratio. Water–nitrogen interactions are also captured in the water-
driven uptake of nitrogen by mass flow and diffusion and in the water-driven processes of nitrogen in soil (e.g.
mineralisation).

The paper concludes with suggestions for future research on water-nitrogen interactions.

Additional keywords: drought, nitrogen use efficiency, profit, rain, yield gap.
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Introduction

Management practices that increased the availability of nitrogen
and water have been major drivers of gains in crop yield on
historical time scales (Sinclair and Rufty 2012). Except for some
regions of high rainfall and fertile soil, water and nutrient

scarcity are widespread features of Australian dryland farming
(Angus 2001; Connor 2004; Fischer 2009).

Interactions between water and nitrogen influence processes
from ecosystem to molecular levels. Water–nitrogen interactions
modulate the geochemical cycling of nitrogen, shape functional
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diversity of plants and niche segregation, and affect crop yield,
grain size and protein, root demography, leaf stoichiometry,
photosynthesis and senescence, root-to-shoot translocation
and microbial enzyme activity in soil (Cossani et al. 2010,
2011; Sadras and Rodriguez 2010; Dijkstra et al. 2012;
Gonzalez-Dugo et al. 2012; Lü et al. 2012; Ye et al. 2013;
Bermúdez and Retuerto 2014; Errecart et al. 2014; Teixeira
et al. 2014; Wang et al. 2015).

Understanding the interactions between water and nitrogen
over a range of time scales and organisation levels (from
ecosystem to molecular) is important for dryland cropping
(Sadras and Richards 2014). Yield gains, however, arise from
improved agronomy, better varieties and their synergy (Fischer
2009). Therefore, for water–nitrogen interactions to be
exploited they must be linked to agronomy, breeding or both.
Agronomically, the need to match supply of water and nitrogen
is recognised and the interactions have therefore received
attention in both rainfed and irrigated cropping systems
worldwide (Dalal et al. 1997; Angus and van Herwaarden
2001; Asseng et al. 2001b; Sadras 2005; Cossani et al. 2010;
Albrizio et al. 2010; Hernández et al. 2015).

The links between water and nitrogen are less developed
in plant breeding (Sadras and Richards 2014). Breeding
for drought adaptation has partially focused on nitrogen
metabolism, including the use of N-isotope signature as a
phenotyping tool (Yousfi et al. 2012) and the maintenance
of N2 fixation in water-stressed legumes (Sinclair et al. 2007;

Sinclair 2011). Attempts to improve efficiency in the use of
nitrogen genetically have paid less attention to the interaction
with water (Cao et al. 2007; Huang et al. 2007).

This paper reviews interactions between nitrogen and
water from physiological, agronomic, economic, breeding and
modelling perspectives. Synergies between water and nitrogen
(Box 1) and trade-offs are emphasised. Environmental aspects
of the water–nitrogen interaction are important (e.g. Christianson
and Harmel 2015; Norse and Ju 2015) but are not considered
here. Our primary focus is wheat, the main crop in Australia. We
discuss other species for comparison, including forage crops,
where advanced notions on the physiology of water and nitrogen
have been proposed, sorghum, where current understanding
of stay-green illuminates some of the connections between
nitrogen and water, and legumes, where intra-specific variation
in N2 fixation under drought seems relevant for crop yield.
Directions for further research are identified.

Background: aspects of Australia’s climate and soil
related to the economies of water and nitrogen of crops

Climate

We first consider the climate drivers of potential yield. Then,
we focus on rainfall as the main constraint to achieve potential
yield; we highlight the value of quantitative patterns accounting
for the timing, intensity and duration of stress in relation to the
critical period of yield determination. We conclude with a brief

Box 1. Synergies between efficiencies

Efficiency in the use of resources can be defined at different levels of organisation and time scales (Sinclair et al. 1984; Wang
et al. 2013). To highlight synergies, here we focus on efficiencies defined as a function of crop shoot biomass (B) as follows:
transpiration efficiency, WUE (B,T) is biomass per unit transpiration (T); nitrogen-conversion efficiency (NCE) is biomass
per unit nitrogen uptake (Nupt); and radiation-use efficiency (RUE) is biomass per unit intercepted photosynthetically active
radiation (PARi). Hence:

WUE ðB;TÞ ¼ RUE� PARi� T�1 ð1:1aÞ

taking the ratio T : PARi as a coarse approximation to canopy conductance gc (Sadras et al. 1991; Caviglia and Sadras 2001):

WUE ðB;TÞ ¼ RUE� g�1
c ð1:1bÞ

Also:

WUE ðB;TÞ ¼ NCE� Nupt T�1 ð1:2Þ

NCE ¼ RUE� Nupt�1 � PARi ð1:3Þ

Enhanced radiation use efficiency, e.g. as associated with stay-green, sink-driven or nitrogen-driven enhancement of
photosynthesis (Stockle and Kemanian 2009) could increase transpiration efficiency, provided canopy conductance does not
increase much (Eqn 1.1b). Caviglia and Sadras (2001) provide empirical evidence for the enhancement in water-use efficiency
driven by higher radiation-use efficiency in response to nitrogen supply. Transpiration efficiency can increase with both higher
nitrogen-conversion efficiency and higher uptake of nitrogen per unit transpiration (Eqn 1.2). Enhanced radiation-use efficiency
per unit nitrogen uptake can increase nitrogen-conversion efficiency for a given PAR interception (Eqn 1.3). In pot-grown plants,
transpiration efficiency and nitrogen-conversion efficiency both increased with increasing level of ploidy in a comparison of
wheats: three diploid (Triticum boeoticum, AA; Aegilops speltoides, BB and Ae. tauschii, DD), two tetraploid (T. dicoccoides,
AABB and T. dicoccon, AABB) and one hexaploid (T. vulgare, AABBDD) (Huang et al. 2007).
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discussion of extreme temperatures and their interaction with
water and nitrogen.

The photothermal environment

Thephotothermal environment is the primary limit to potential
yield, as defined by Evans and Fischer (1999). Fischer (1985)
showed that wheat kernel number, the main yield component,
correlates with a photothermal quotient (PTQ) during the critical
period for grain set. The PTQ relates solar radiation (Rad) and
mean temperature (Tmean) above a base temperature (Tb):

PTQ ¼ Rad=ðTmean � TbÞ ð1Þ

Associations between PTQ, seed number and yield were later
verified in rice (Islam andMorison 1992), sunflower (Cantagallo
et al. 1997), maize (Didonet et al. 2002), field pea (Poggio
et al. 2005), barley (Francia et al. 2011), canola (Faraji 2014)
and chickpea (Sadras et al. 2015). The robustness of the PTQ
as a major driver of yield derives from its physiological basis;
it captures the positive association between seed number and
radiation, mediated by photosynthesis, and the negative association
between seed number and temperature, mediated by the
shortening of the critical window with increasing temperature.
Refinements of this index include corrections for incomplete
canopy cover affecting the radiation component (Fischer 1985)
and corrections for vapour-pressure deficit and the fraction of
diffuse radiation (Rodriguez and Sadras 2007). Doherty et al.
(2010) mapped vapour-pressure deficit and PTQ normalised for
vapour-pressure deficit and diffuse radiation at shire-level for
the Australian wheatbelt, thus highlighting latitudinal and
costal variation in climate drivers of potential yield.

Rainfall patterns

In rainfed systems, the amount of rainfall, seasonality and
frequency distribution of size of events have implications for
yield as related to the water and nitrogen economy of crops.

The amount of precipitation (P) in relation to evaporative
demand (E) sets the broad pattern of land use, separating
pastoral and cropping areas. Trumbell (1939) defined the limit
of safe wheat growth in South Australia based on P/E �0.33
for the period May–September. French (1993) identified
P/E = 0.26 for April–October based on Minnipa (338S, 1358E)
on the upper Eyre Peninsula. An isoline of P/E = 0.26 extended
around the Australian grains belt effectively fits the current
boundary between grain and pastoral land use from Western
Australia to southern Queensland (Nidumolu et al. 2012). This
fit is surprising given the different soil types, seasonality of
rainfall and land-use policies.

For a given amount of rainfall, seasonality sets the scope of
croppingoptions. In thewinter-rainfall areas of the south andwest
of Australia, cropping is constrained to wheat-based systems in
rotation with pasture, barley, grain legumes and canola. In the
Northern Grains Region, the combination of summer-dominant
rainfall and deep soils with high water-holding capacity offers
the possibility of growing winter and summer crops, as well as
opportunistic double cropping (e.g. sorghum–chickpea). Owing
to the marked seasonality of rainfall, stored soil water is a larger
component of water supply for wheat in the northern region
than the winter-rainfall regions (Sadras and Rodriguez 2007).

For a given amount and seasonality, size of rainfall events
influences the fate of water; that is, large events favour runoff
and deep drainage, whereas small events favour soil evaporation
(Sadras 2003b). High frequency of small events also favours
nitrogen mineralisation. The amount, seasonality and size
distribution of rainfall events interact with temperature, soil
properties and management to determine the fate of soil
nitrogen. Figure 1 illustrates the annual dynamics of modelled
nitrogen mineralisation in response to rainfall and temperature,
highlighting differences among locations with different rainfall
patterns. The sectionAmodelling perspective discusses limitations
to simulate nitrogen mineralisation with current models.

Rainfall events of different size and frequency drive different
biological processes (Schwinning and Ehleringer 2001;
Schwinning and Sala 2004). Schwinning and Sala (2004)
emphasise the two elements defining ‘pulse size’: pulse depth,
the depth to which soil water potential is elevated to levels that
promote specific biological activities; and pulse duration, the
time over which soil-water potential remains at biologically
relevant levels. In the space defined by pulse depth and
duration, those authors outline a hierarchy from small, short
pulses triggering processes such as nitrogen mineralisation
to large, long pulses driving pest outbreaks and shifts in
community structure (Fig. 2a). The size distribution of rainfall
events in Australia in the winter semester is mapped in Fig. 2b,
highlighting the latitudinal shift from large events in the north
to smaller events in the south. The concept of pulses has been
used to analyse the fate of water in cropping systems, particularly
in relation to the role of stubble (Sadras 2003b; Monzon et al.
2006; Verburg et al. 2012).The perspective of water pulse can
provide further insight on the connections between the dynamics
of water and nitrogen in cropping systems.

Supply and demand of water and nitrogen in relation
to critical periods of yield determination

Crop response to stress depends on the intensity and duration
of stress and the timing in relation to the critical period for
yield determination. Adaptive traits and agronomic practices to
mitigate the effect of stress thus require an understanding of the
probabilistic spatial and temporal patterns of stress in relation to
crop development. The pioneering work of Chapman et al.
(2000) modelled the patterns of water supply : demand ratio for
sorghum in northern Australia. A similar approach has been used
to characterise the patterns of water stress for Australian wheat,
maize, field pea and chickpea (Sadras et al. 2012b; Chauhan
et al. 2013; Chenu et al. 2013; Lake et al. 2016). For wheat,
environment types 3 and 4 in the classification of Chenu et al.
(2013) are widespread geographically, represent an important
share of the total diversity of environments (�50% in many
important growing regions), and cause the strongest reduction
in yield. In both of these environment types, the onset of water
stress occurs at ~500 degree-days before anthesis. This
challenges the ambiguous label of ‘terminal drought’ often
used to characterise wheat-growing environments of Australia
and other Mediterranean-type regions (Savin et al. 2015).
Patterns of water stress need to be quantified for other
important crops in Australia including barley, canola, lentil,
faba bean and lupin.

Interactions between water and nitrogen Crop & Pasture Science C



The spatial and temporal characterisation of the patterns of
supply and demand of nitrogen has received less attention
(Angus 2001). Modelling tools can be used to relate soil, crop,
and climate as illustrated in Fig. 1. Next, it would be interesting
to link the spatial and temporal patterns of supply and demand
for water and nitrogen as background for agronomic and
breeding applications.

Extreme temperatures

Heat (Barlow et al. 2015) and frost (Zheng et al. 2012;
Frederiks et al. 2015) events in spring can disrupt reproduction
and thus reduce crop yield. The dates of the last spring frosts and
first heat events vary spatially in the Australian grain-growing

regions (Zheng et al. 2012) and influence the target flowering
window that farmers manipulate with sowing date and cultivar
choice. The actual response to heat and frost depends on timing,
intensity and duration of the event, history (acclimation),
conditions for compensation after the event, and the interaction
of these factors with nitrogen and water supply. For example, a
severe heat event around flowering caused no visible damage to
well-watered wheat crops, whereas in rainfed crops, ear damage
ranged from 10% in low density, low nitrogen crops to 60% in
their high density, high nitrogen counterparts (Table 1).

Under the modelling assumptions of Zheng et al. (2015),
the direct effect of frost was about a 10% reduction in yield of
the annual Australian wheat crop, and a further 10% reduction
in yield due to conservative sowing time to avoid frost. These
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Fig. 1. Annual dynamics of modelled nitrogen mineralisation in response to amount, seasonality and size of rainfall events interacting with temperature.

Locations represent summer-dominant rainfall (Emerald: 238500S, 1318620E; annual rainfall 561mm), uniform rainfall distribution during the year

(Condobolin: 338020S, 1478230E; annual rainfall 450mm) and winter-dominant rainfall (West Moora: 308640S, 1158920E; annual rainfall 419mm). In

b, e, h: the size of the points represents the average size of events, and the numbers indicate the smallest and largest (mm event–1).Mineralisationwasmodelled

with APSIM, assuming an initially dry soil (plant-available water 10% of maximum on 1 January 1957) and a continuous soil-water balance for the period

1957–2014. A wheat crop (cv. Hartog) was sown according to a rule combining a sowing window (15 May–10 July) and rainfall conditions (25mm

accumulated in seven events); if these conditions are notmet in a given season, the crop is sown at the end of thewindow. Stubble is reset to 1 t ha–1 on 1 January

every year and crop fertilisation is set to 150 kgNha–1 at sowing each season. A single soil was used to remove soil effects, and thus capture the climatic

drivers of mineralisation.
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risks are not well simulated in models and decision-support
systems (Barlow et al. 2015). Zheng et al. (2015) assumed
adequate nitrogen fertiliser, so the only indirect cost related to
yield loss due to delayed sowing. A further indirect cost of spring
frost and heat is likely to be conservative nitrogen rates, whereby
farmers concerned about these events diminish crop inputs to
reduce the financial loss. The perception that a vigorous crop is
more vulnerable to frost damage might further constrain nitrogen
rates in frost-prone environments despite unclear connections
between crop vigour and frost damage (Whaley et al. 2004).

Soil

Soil water directly influences the availability of mineral nitrogen
for crop uptake, and reciprocally, nitrogen influences crop water
use but, more importantly, canopy size and thus the partitioning
of evapotranspiration between soil evaporation and transpiration.
The response to nitrogen of yield per unit water use is larger
than the response to water of yield per unit available nitrogen, as
discussed later from a physiological perspective. Here, we
outline the role of soil texture in determining the upper and
lower limits for soil water and nitrogen storage and their
implications for crop growth. We then consider water as the
primary driver of soil nitrogen mineralisation and the influence
of nitrogen availability on crop water uptake. We then examine
coarse regional differences in soils with implications for the
water and nitrogen economies of crops.

Soil texture, soil water and soil nitrogen

Potential water storage is a function of soil texture, an
inherent soil property which is not under the influence of

management except for practices such as clay spreading,
which seeks to ameliorate surface water repellence (Müller and
Deurer 2011), and delving, which changes the textural profiles
of texture-contrast (or ‘duplex’) soils (Betti et al. 2015). Owing
to the association between clay content and soil porosity, soils
with higher clay content have greater soil-water storage capacity
than sandy soils. However, clay soils hold onto their water more
tightly and there is a trade-off between soil-water storage
capacity and the availability of that water for crops. The plant-
available water capacity (PAWC) is the difference between the
drained upper limit, which is the maximum amount of water
that a soil can hold against gravity, and the crop lower limit, the
residual amount ofwater in a soil that is inaccessible to crops. The
drained upper limit is a soil property, whereas the lower limit
depends on both soil and crop, because the depth, distribution
and functionality of roots affect water uptake (Ritchie 1981).

Soils with a clay content�30% are able to store about double
the amount of water of sandy soils (Oliver and Robertson 2009).
However, such difference is important for crops only when the
soil-water content is close to the drained upper limit for the sandy
soil, at which point finer textured soils become advantageous.
Therefore, under low rainfall, differences in PAWC between
soils may not be critical. There is thus an interaction between
climate and seasonal conditions with soil texture, which means
that in wetter conditions soil texture may modulate yield
whereas it exerts less influence under drier conditions. The
exception would be under very low rainfall, when soils with
lower clay content can be more productive because they hold
soil water less tightly.

Soil clay content correlates with soil organic matter and soil
organic nitrogen stock. This is because the clays offer physical
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protection to organic matter, reducing the likelihood that it is
broken down by organisms. Hence, there is a tendency for finer
textured soils to maintain higher organic fertility than coarser
textured soils under the same management and climate. Over
a single annual cropping season, 5–10% of organic nitrogen
might be mineralised (Murphy et al. 1998a), and finer textured
soils with higher organic matter densities are therefore likely to
mineralise more nitrogen within a cropping season than coarse-
textured soils, even though the organic matter is less protected
on the finer textured soil. Finer textured soils have a greater
hysteresis, more slowly unlocking legacy water and organic
nitrogen, and at the same time providing a more buffered
mineral nitrogen supply. Soil organic matter also has a small
positive influence on the ability of soils to hold and to conduct
water, primarily through the formation of soil aggregates,
although the effect is significant only at higher soil-water
content, with soil texture being the primary determinant at
lower, perhaps more relevant, soil-water content (Saxton and
Rawls 2006).

Although it is generally thought that nitrogen is primarily
taken up from superficial soil layers, deeper soil nitrogen
provides an additional source of nitrogen in sandy soils
(Anderson et al. 1998), and possibly on some finer textured
soils (Page et al. 2003). Management of nitrogen becomes

more critical as PAWC decreases (Oliver and Robertson
2009). Soils with low PAWC are typically sandier and crops
grown on these soils are more responsive to nitrogen than finer
textured soils (Oliver and Robertson 2009; Unkovich 2014),
probably because organic nitrogen reserves are lower, the soil
is more often dry, and nitrate cannot be held in the profile against
leaching. Fields with low PAWC (<75mm) (Oliver and
Robertson 2009) might be economically more sensitive to
nitrogen management because the margin between nitrogen
deficiency, sufficiency and excess is small compared with soils
with higher PAWC where water and nitrogen buffers are larger.

Soil texture can influence processes leading to loss of nitrogen
from the crop–soil system. In soils with low oxygen availability,
usually caused by high soil-water content, nitrate can be
converted to gaseous N2O or N2 (Dalal et al. 2003). Because
this also requires a readily available supply of carbon for
microbial growth, it tends to be a greater problem on finer than
coarser textured soils. Waterlogging also causes transient
nitrogen deficiency, where recovery is a function of available
nitrogen after the waterlogging rather than antecedent nitrogen
availability (Robertson et al. 2009). Coarse-textured soils are
also more prone to leaching of nitrate (Anderson et al. 1998).

Soil water and nitrogen mineralisation

A strong, short-term interaction between available soil water
and available nitrogen derives from moisture pulses that sustain
the activity of microorganisms involved in the mineralisation
of soil organic nitrogen and turnover of microbial biomass and
carbon (Murphy et al. 1998a). Small and frequent rainfall events
favour superficial soil moisture and nitrogen mineralisation
(Sadras 2003a; Sadras and Baldock 2003), resulting in
mineralisation of native organic matter and microbial turnover
but not decomposition of fresh organic matter (Sparling et al.
1995). Hence, soil organic matter stock is likely to be eroded
under regular wetting and drying of surface soils. Most (>70%)
nitrogen mineralisation is likely to occur in the surface 5 cm of
soil (Murphy et al. 1998b) where the organic matter typically
resides. Whether modern, reduced tillage, stubble retention
systems have stratified this organic matter nearer the surface,
increasing the potential effects of short wetting and drying
cycles on organic matter cycling and nitrogen mineralisation is
unclear.

Recently, the primary nitrogen supply for cereal crops in
Australia has shifted to fertiliser and away from that
mineralised from legumes in rotations (Angus 2001), or from
historical soil nitrogen reserves in the northern grain growing
regions (Herridge 2013); this is further developed below in the
section An agronomic perspective. This has likely also been
associated with a decline in soil organic matter stocks. As soil
organic matter declines, so too does the ability to retain nutrients
via the microbial biomass and other organic matter. High
temperature favours mineralisation but not immobilisation of
nitrogen (Luxhøi et al. 2008); hence, mineral nitrogen can
build up over a warm fallow period provided the topsoil is
wet, a condition more likely to occur in northern Australia
(Fig. 1). The size of the soil microbial biomass further
modulates themagnitude of mineralisation (McNeill et al. 1998).

Table 1. Interaction between water and nitrogen supply, sowing

density, frost and heat in wheat (cv. Chara) crops on a Grey Vertosol

at Horsham, south-eastern Australia (36.658S, 142.108W)

Rainfed crops received 270mm and irrigated crops 390mm during the

growing season. Ear tipping is a visual assessment of damaged ears

attributable to stress. Growth rate is for the period from 12 days before

anthesis to anthesis. Anthesis started at 115 days after emergence (DAE) for

all rainfed crops and irrigated, low nitrogen (N) treatments, and at 121 DAE

for the irrigated, high N plots. At 114 DAE, temperature was �08C for ~4 h

frommidnight. At 115DAE, temperature was >318C from 11 : 40 until 19 : 00

and peaked at 378C; average daily vapour-pressure deficit was 1.5 kPa, with

an absolute maximum of 6 kPa at 16 : 00. Yield correlated with ear tipping

for rainfed crops (r2= 0.23) andwith pre-flowering growth rate for the pooled

data (r2= 0.81). Source: Rodriguez et al. (2005)

Sowing density

(kg seed ha–1)

N rate

(kgN ha–1)

Ear tipping

(%)

Yield

(kg ha–1)

Growth rate

(gm–2 day–1)

Rainfed

52 0 10 1245 0.0

16 20 1446 –0.1

39 27 2043 –4.5

163 33 1005 0.7

102 0 22 1341 3.0

16 28 1537 1.5

39 37 1845 8.8

163 60 525 2.0

Irrigated

52 0 0 4181 16.5

16 0 4505 12.0

39 0 3889 12.6

163 0 3200 10.1

102 0 0 3361 11.0

16 0 4862 11.6

39 0 4767 11.2

163 0 4174 10.9
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Soil nitrogen and crop water use

Annual crops tend to root to the depth of available water
in south-eastern Australia (Norton and Wachsmann 2006;
Kirkegaard et al. 2007). Rooting depth and access to water
and nutrients could be curtailed by pathogens (Lorimer and
Douglas 2001) or by physical or chemical soil constraints
(Dracup et al. 1992; Nuttall et al. 2003; Sadras et al. 2005;
Rodriguez et al. 2006; McDonald et al. 2012).

Increased available nitrogen can increase root density directly
by stimulation of growth near the nitrogen-rich zone (Officer
et al. 2009), and indirectly through crop vigour (Palta et al.
2011). The impact of a nitrogen-driven larger root system on
crop water uptake depends on the availability and distribution of
water in the soil, the distribution of roots in the soil profile and
the crop demand for water. Increased availability of nitrogen
can increase crop water extraction, but this effect is generally
modest (typically ~10mm) in southern Australia (Angus 2001;
Norton and Wachsmann 2006; Sadras et al. 2012c), perhaps
because of lack of water at depth, soil chemical constraints or a
combination of both. In the Middle East, fertilisation increased
seasonal evapotranspiration by up to 16% in rainfed barley
(Cooper et al. 1987) and by 8% in irrigated durum wheat
(Karam et al. 2009) in relation to unfertilised controls. In
environments where crops depend on stored water in deeper
soils layers, increased nitrogen availability may have larger
effects on rooting depth and water use. Brown (1971) showed
a large response of seasonal evapotranspiration of winter wheat,
increasing from 221mm in unfertilised crops to 315mm in
their fertilised counterparts (268 kgNha–1) on a silt-loam soil
developed on deep loess in a summer-rainfall region of
USA. Soil-water extraction was constrained to 0.9m in the
unfertilised crops and increased to 1.8m under fertilisation. In
the deep soils of the Loess Plateau in China, seasonal water use
of winter wheat increased up to 19% in response to nitrogen
fertilisation, mostly by enhanced water uptake between depths
1.2 and 2.4m (Zhong and Zhouping 2014). Increasing water
use through improved nitrogen nutrition may increase grain
yield (Norton and Wachsmann 2006), but the combinations of
crop, soil, climate, and management that are more likely to be
responsive are unknown.

Regional differences in soils

We have used the Australian three-dimensional soil grid
(Rossel et al. 2015) to estimate the soil clay content, bulk
density and soil organic carbon stock across the croplands for
each state (Fig. 3). There is a trend of decreasing topsoil clay
content from the north-east (Queensland) to the south-west
(Western Australia). This correlates with a decrease in soil
organic fertility and coincides with a shift from summer-
dominant to equi-seasonal and then strongly winter-dominant
rainfall from the north-east to south-west of the cropping zone
(Sadras and Rodriguez 2007; Unkovich et al. 2009).

These broad changes in texture have implications for water
and nitrogen, as outlined above. The magnitude of availability
and release of soil nitrogen is likely greater in the east and
north and is thus a pivotal variable for nitrogen management.
By contrast, the lower capacity of soils to store and supply
nitrogen and water, and the strong seasonality of rainfall,

increase the focus on matching fertiliser nitrogen input to
seasonal rainfall in the southern and western regions. The
amount of total nitrogen required per unit yield seems
consistent across the southern and northern cropping regions
(Bell et al. 2013). There is a strong tendency for coarse-textured
soils to produce lower protein wheat, perhaps because those
soils have difficulty supplying both nitrogen and water during
grain filling, although regional differences in the cultivar grown
would also be implicated.

A physiological perspective: reciprocal influences
between water and nitrogen and co-limitation

Here we address the questions of how nitrogen deficit influences
the water economy of the crop, how water deficit influences the
nitrogen economy of the crop, and how combined water and
nitrogen deficit affect crop growth and yield.

Effect of nitrogen deficit on the water economy of crops

This effect can be interpreted in light of the equation (Cooper
et al. 1987):

WUE Y;ET; sð Þ ¼
WUE B;T; sð Þ

1þ
E

T

� HI ð2Þ

where, using the nomenclature of Sinclair et al. (1984), WUE
(Y, ET, s) is yield (Y) per unit evapotranspiration (ET) on a
seasonal basis (s); WUE (B, T, s) is biomass (B) per unit
seasonal transpiration (T); E is seasonal soil evaporation; and
HI is harvest index. Owing to the links between foliar nitrogen
and radiation-use efficiency (Stockle and Kemanian 2009) and
between radiation-use efficiency and transpiration efficiency
(Box 1), nitrogen deficit reduces biomass per unit transpiration.
Brueck (2008) compiled the response of biomass per unit
transpiration to nitrogen supply for major crop species.
Nitrogen deficit slows canopy growth and increases the ratio
of soil evaporation to transpiration (Cooper et al. 1987; Angus
and van Herwaarden 2001). Often, shortage of nitrogen reduces
crop transpiration, which could be reflected in residual water in
the soil at maturity (see the previous section Soil nitrogen and

crop water use). Nitrogen deficit can be neutral, positive or
negative for HI (Albrizio et al. 2010; Bandyopadhyay et al.
2010) and it can respond to the interaction between water and
nitrogen; that is, high nitrogen supply can increase HI under
favourable water conditions, but decrease it under water deficit
(Hernández et al. 2015). However, the effects of nitrogen on HI
are small compared with those on biomass in agronomically
meaningful conditions (Fig. 4d v. Fig. 4b). Thus, nitrogen
deficit reduces yield per unit evapotranspiration (Eqn 2)
primarily by reducing biomass per unit transpiration, increasing
soil evaporation and reducing transpiration, with a minor effect
of HI reinforcing or partially counteracting this reduction.
Owing to the law of diminishing returns, the yield per unit
nitrogen supply declines with increasing nitrogen supply
(Gastal et al. 2015). From these, a nitrogen-driven trade-off
between the efficiency in the use of water and the efficiency in
the use of nitrogen emerges irrespective of species, soil, climate
and management. Experimental and modelling evidence for
this trade-off can be found for wheat and barley in southern
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Italy, USA and Australia (Brown 1971; Albrizio et al. 2010;
Sadras and Rodriguez 2010), maize in USA and Argentina
(Kim et al. 2008; Albarenque 2015), rice in Philippines
(Belder et al. 2005), and potato in Egypt (Badr et al. 2012),
thus highlighting the universality of this trade-off.

Effect of water deficit on the nitrogen economy of crops

The effect of water deficit on the nitrogen economy of crops
is complex because water deficit affects the growth-driven
nitrogen demand (i.e. potential crop biomass� critical nitrogen
concentration), critical nitrogen concentration, and supply (i.e.
nitrogen availability at the root surface), assimilation and
partitioning of nitrogen. Gonzalez-Dugo and colleagues have
investigated the influence of water on nitrogen-related processes
in forages, and they advanced a conceptual framework for the
interpretation of experiments (Gonzalez-Dugo et al. 2005, 2010,

2011, 2012; Durand et al. 2010; Debaeke et al. 2012). In drying
soil, three processes—mineralisation, mass flow and diffusion
of nitrogen—are impaired and collectively this can reduce the
availability of nitrogen at the root surface; a high root : shoot
ratio may partially compensate these effects. In parallel, drying
soil reduces crop growth primarily by reducing the capture of
resources (radiation, water and nutrients), hence reducing
nitrogen demand. Water deficit can also impair transport of
nitrogen from root to shoot and activity of nitrate reductase.
Although water deficit could reduce the nitrogen status of
plants, the actual response depends on the relative effect of
water deficit on growth-driven demand and supply. However,
the lack of allometric relationships of nitrogen concentration and
biomass under water deficit to derive a reliable nitrogen-nutrition
index (Sadras and Lemaire 2014) means that we have little or
no reliable information on the nitrogen status of water-stressed
crops.

0.8

0.9

1.0

1.1

1.2

B
u
lk

 d
e
n
s
it
y
 (

g
 c

m
–
3
)

C
la

y
 c

o
n
te

n
t 
0
–
3
0
 c

m
 (

%
)

O
rg

a
n
ic

 c
a
rb

o
n
 c

o
n
te

n
t 
0
–
3
0
 c

m
 (

%
)

1.3

1.4

1.5

1.6

1.7

1.8

Qld NSW Vic SA WA

5

15

25

35

45

55 (a) (b)

(c)

Qld NSW Vic SA WA
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Qld NSW Vic SA WA

MedianInterquartile
range

Max.

Min.

Fig. 3. State-level frequency distribution of spatially averaged soil properties for the Australian croplands: (a) clay

content, (b) organic carbon content and (c) bulk density. Croplands are as defined in the national land-use map

(ABARE 2010b) and the carbon stock calculated as in Valzano et al. (2005). Clay and organic carbon are for the top

0.3m and bulk density for the top 0.1m.

H Crop & Pasture Science V. O. Sadras et al.



0

2
0
0
0

4
0
0
0

6
0
0
0

Yield (kg ha
–1

)

Total grain nitrogen (kg N ha
–1

) Crop nitrogen uptake (kg N ha
–1

)

Grain N content (%)

N removed per unit N applied

Harvest index

Total biomass (kg ha
–1

)

F
e
rt

ili
s
e
r 

ra
te

 (
k
g
 N

 h
a

–
1
)

F
e
rt

ili
s
e
r 

ra
te

 (
k
g
 N

 h
a

–
1
)

8
0
0
0

1
0
 0

0
0

(a
)

(b
)

(d
)

(c
)

(e
)

(f
)

(g
)

01234

0

<25

26–50

51–75

76–100

101–125

126–150

>151

<25

26–50

51–75

76–100

101–125

126–150

>151
5
0
0
0

1
0
 0

0
0

1
5
 0

0
0

2
0
 0

0
0

0

0
.1

0
.2

0
.3

0
.4

0
.5

0

0
0

5
0

1
0
0

1
5
0

2
0
0

1
0
0

2
0
0

1
0
0

2
0
0

E
va

p
o

tr
a

n
s
p

ir
a

ti
o

n
 (

m
m

)

0
2
0
0

4
0
0

6
0
0

8
0
0

0

1
0
0

2
0
0

3
0
0

4
0
0

0123

F
e
rt

ili
s
e
r 

a
lo

n
e
 

F
e
rt

ili
s
e
r 

+
 N

 f
ix

a
ti
o
n
 

2
3

 ±
 7

.2
*

7
 ±

 1
.4

**

N
S

0
.0

0
1
3
 ±

 0
.0

0
0
5
*

3
3
 ±

 1
2
.7

*
1

7
 ±

 3
.8

**

N
S

N
S

F
ig
.
4
.

F
re
q
u
en
cy

d
is
tr
ib
u
ti
o
n
o
f
w
h
ea
t
(a
)
g
ra
in
y
ie
ld
,(
b
)
sh
o
o
t
b
io
m
as
s,
(c
)
g
ra
in
n
it
ro
g
en

co
n
ce
n
tr
at
io
n
,a
n
d
(d
)
h
ar
v
es
t
in
d
ex

in
re
la
ti
o
n
to
n
it
ro
g
en

fe
rt
il
is
er
ra
te
.B

o
x
es

in
d
ic
at
e
5
th
,1
0
th
,5
0
th
,9
0
th

an
d
9
5
th

p
er
ce
n
ti
le
s.
V
al
u
es

ar
e
th
e
sl
o
p
e
o
f
re
g
re
ss
io
n
b
et
w
ee
n
fe
rt
il
is
er

ra
te
an
d
th
e
tr
ai
t
fo
r
th
e
9
0
th

(u
p
p
er

v
al
u
es
,
b
la
ck
)
an
d
1
0
th

(l
o
w
er

v
al
u
es
,
b
lu
e)

p
er
ce
n
ti
le
s
w
it
h
*
P
<
0
.0
5
an
d
*
*
P
<
0
.0
1
.

(e
)
R
el
at
io
n
sh
ip

b
et
w
ee
n
ex
p
o
rt
o
f
n
it
ro
g
en

in
g
ra
in

an
d
in
p
u
t
o
f
n
it
ro
g
en

as
fe
rt
il
is
er
;
th
e
re
fe
re
n
ce

li
n
e
is
y
=
x.
(f
)
R
el
at
io
n
sh
ip

b
et
w
ee
n
cr
o
p
n
it
ro
g
en

u
p
ta
k
e
an
d
se
as
o
n
al

ev
ap
o
tr
an
sp
ir
at
io
n
;
th
e

re
fe
re
n
ce

li
n
e
h
as

sl
o
p
e
o
f
0
.6
5
k
g
N
h
a–

1
m
m

–
1
(F
re
n
ch

an
d
S
ch
u
lt
z
1
9
8
4
b
)
an
d
x-
in
te
rc
ep
t
o
f
6
0
m
m

(S
ad
ra
s
an
d
R
o
g
et
2
0
0
4
).
(g
)
R
at
io

o
f
n
it
ro
g
en

ex
p
o
rt
ed

in
g
ra
in

an
d
n
it
ro
g
en

in
p
u
t
as

a
fu
n
ct
io
n

o
f
fe
rt
il
is
er

ra
te
in

a
lo
n
g
-t
er
m

ex
p
er
im

en
t
at
D
ah
le
n
,
V
ic
to
ri
a.
D
at
a
so
u
rc
es
:
a
–
f,
se
e
A
p
p
en
d
ix

1
;
g
,
N
o
rt
o
n
et
a
l.
(2
0
1
5
).

Interactions between water and nitrogen Crop & Pasture Science I



Two knowledge gaps thus require attention in relation to the
influence of water on nitrogen processes: nitrogen availability
and the quantification of crop nitrogen status. The concept of
plant-available water is well established (see the previous section
Soil). By contrast, particularly for management purposes, we
assume that all inorganic nitrogen in soil is available for the crop.
In dry soil, however, part of the inorganic nitrogen may not be
available if root growth, nitrogen diffusion and mass flow are
constrained. Beyond water, chemical and physical subsoil
constraints can also reduce nitrogen availability (Sadras 2005).
By analogy with plant-available water, the concept of plant-
available nitrogen needs to be developed for management
applications.

Quantification of crop nitrogen status requires dilution curves
to account for the allometry between shoot nitrogen concentration
and biomass (Gastal et al. 2015). However, nitrogen dilution
curves have been parameterised in well-watered crops, whereas
theory and limited experimental evidence indicates that the
parameters of the curve shift with water deficit (Bélanger et al.
2001; Gonzalez-Dugo et al. 2010; Errecart et al. 2014). Further,
dilution curves assume two compartments, metabolic, with high
nitrogen concentration, and structural, with lower concentration
(Gastal et al. 2015). In some crops such as wheat, water-soluble
carbohydrates are an important part of crop biomass, with zero
nitrogen concentration. Where cultivar or growing conditions
alter the amount of water-soluble carbohydrates, dilution curves
based on total biomass will be biased (Hoogmoed and Sadras
2016); we further discuss this topic below in the section
A breeding perspective.

A gap in the assessment of nitrogen-nutrition status of
legumes relates to the lack of appropriate dilution curves
ensuring nitrogen supply that maximises growth; published
curves have relied on nitrogen-fixing crops where this
condition might not have been met (Lemaire et al. 1985; Ney
et al. 1997; Divito et al. 2016).

Combined effect of water and nitrogen deficit
on crop growth and yield: co-limitation

Plants in the field are often exposed to multiple stresses (Mooney
et al. 1991). Because a single limiting factor is unlikely, the
Liebig paradigm is generally inappropriate to understand and
manage crops (Sinclair and Park 1993; Kaspari and Powers
2016; Sperfeld et al. 2016). Bloom et al. (1985) used
economic analogies to formulate testable hypotheses on plant
acquisition and allocation of resources, and proposed that plant
growth is maximised when it is equally limited by all resources.
This notion was tested in studies combining modelling and
experimental data in Mediterranean-type environments of
Australia and Spain where it was concluded that, for a given
intensity of stress, a high degree of water and nitrogen co-
limitation favours wheat grain yield (Sadras 2005; Cossani
et al. 2010). Savin et al. (2015) recently reviewed the
co-limitation perspective to integrate nitrogen and water
limitations quantitatively in wheat and barley.

Albarenque (2015) used the concept of water–nitrogen co-
limitation to explore maize response to within-field spatial
variation in availability of resources in the eastern Pampas of
Argentina. She combined field experiments andmodelling to test

two hypotheses: there is variation inwater–nitrogen co-limitation
at the scale of management zones within paddocks, and yield
per unit evapotranspiration is more responsive to co-limitation
than yield per unit available nitrogen. The second hypothesis
stems from the observation that the response to nitrogen of
yield per unit water use is larger than the response to water of
yield per unit available nitrogen. Experiments were conducted
in two fields (12–14 ha) with either four management zones
corresponding to levels of soil erosion or three management
zones corresponding to soil types, where each management
zone was fertilised with rates from 0 to 210 kgN ha–1. The
study supported the working hypotheses, and the author
concluded that co-limitation can be used for zone-management
of fertilisation accounting for both water and nitrogen-use
efficiency.

Current methods to calculate co-limitation require involved
experiments, modelling or a combination of these. Practical
methods to quantify the degree of co-limitation, such as using
remote sensing to quantify the nitrogen and water status of the
crop, and its application for management are worth exploring.

An agronomic perspective: yield gap and management
practices

Many practices influence the fate of both water and nitrogen at
field to regional scales. Rotations, tillage, stubble, disease and
weedmanagement can all affect the amount ofwater and nitrogen
stored in the soil, their availability to the crop and partitioning
between unproductive losses (e.g. soil evaporation, nitrogen
leaching) and productive plant uptake. Here, we present an
overview of management practices that provides explicit crop
and cropping-system perspectives, followed by consideration of
the interaction between water and nitrogen from the perspective
of yield gap. After establishing that shortage of nitrogen is a
proximal cause underlying part of the yield gap of wheat crops in
Australia, we revise tactical and strategic approaches to manage
the water–nitrogen interaction of wheat, with an emphasis on the
winter-rainfall regions of south-eastern and Western Australia.
Wheat and sorghum in the northern region are briefly discussed
to contrast winter- and summer-rainfall regions.

Overview

Recent reviews relevant to the agronomy of water–nitrogen
interactions in Australia include Kirkegaard and Hunt (2010)
and Kirkegaard et al. (2014), with a primary focus on water and
a broad view on management options; Angus and Peoples
(2012), assessing the contribution of pastures to the nitrogen
economy of annual crops; Angus et al. (2015), on the impact
of break crops on wheat yield, including the contribution of
nitrogen from previous grain crops; and Scott et al. (2010), on
the role of stubble management for water storage. A series of
papers (Bell et al. 2013; Conyers et al. 2013; Watmuff et al.
2013) analysed soil nitrogen test and its value as a diagnostic
tool for fertilisation, primarily based on yield–nitrogen response
curves. Gastal et al. (2015) dissected the problems of
yield–nitrogen curves and highlighted the nitrogen-nutrition
index as a benchmark for the assessment of crop nitrogen
status. Readers are referred to these reviews.
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In a dataset of crops across diverse soils, climates and
managements in Australia, median wheat yield was 2.7 t ha–1

andmedian grain nitrogen concentration 1.7%where fertilisation
was <25 kgN ha–1; by comparison, median yield was 5.3 t ha–1

andmedian grain nitrogen concentration 2.1%where fertilisation
was >151 kgN ha–1 (Fig. 4a, c). Despite this trend, there was
large scatter in the response of yield to nitrogen, as expected from
the effects of other factors. Likewise, there is well-established,
large scatter in the relationship between yield and water use
(French and Schultz 1984a; Grassini et al. 2009, 2011). Variation
in yield was mostly related to variation in biomass, whereas
median HI was relatively stable, ranging from 0.38 with
<25 kgN ha–1 to 0.41 at �151 kgN ha–1 (Fig. 4b, d). The data
were further analysed by using percentile regression to capture
the top and bottom boundaries of crop responses to fertiliser
(Cade and Noon 2003). This is summarised in the slopes of
regressions for the 10th and 90th percentiles in Fig. 4a–d. Yield
and biomass response to fertiliser was 2–3 times larger under
favourable conditions (90th percentile) than under stressful
conditions (10th percentile). Grain nitrogen concentration
correlated with nitrogen fertiliser rate under favourable
conditions but not under conditions conducive to low grain
protein. The relationship between HI and fertiliser had slopes
undistinguishable from zero for both 90th and 10th percentiles
(P > 0.60). Interactions between available soil nitrogen and
seasonal water supply may influence HI (Kirkegaard and Ryan
2014). In this context, it is interesting to note the stability of HI
in response to nitrogen fertilisation across soils, management,
varieties and climates (Fig. 4d).

Comparisons of nitrogen export in grain and the input of
nitrogen fertiliser across these environments indicate an export-
input balance around 50 kgNha–1 (Fig. 4e); below this rate,
export exceeds input, suggesting likely soil mining. This
coarse estimate of partial nutrient balance is consistent with
a detailed, long-term experiment at a single site in Victoria
where the ratio nitrogen removed : applied was 1 for rates of
fertilisation 40–80 kgN ha–1 (Fig. 4g). Empirical information
on the rate of nitrogen fertiliser required to match export for
specific combinations of sites and management is an interesting
reference for management.

Yield gap

The previous section (A physiological perspective) highlighted
the lowwater-use efficiency of nitrogen-deficient crops; here, we
look at the same association from the perspective of yield gaps.
Where soils with low fertility combine with uncertain rainfall
that makes fertiliser investment a risky proposition, nitrogen
availability accounts for an important part of the gap between
water-limited potential yield and actual yield of wheat (French
and Schultz 1984b; Sadras and Roget 2004; Hochman et al.
2009, 2013). Nitrogen deficiency also accounts for part of the
yield gap in other rainfed systems, e.g. sunflower in Argentina
(Grassini et al. 2009) and millet in Sub-Saharan Africa (Sadras
et al. 2012a). Where irrigation eliminates the uncertainty in
water supply, the yield gap attributable to nitrogen can be
negligible (Grassini et al. 2011).

Figure 5 illustrates the nitrogen-driven yield gap for an
experiment involving two locations in South Australia, two

rates of fertiliser and 13 wheat varieties. For crops with
187 kgNha–1 in the soil profile at sowing, the yield gap across
varieties averaged 890 kg ha–1 and protein concentration in grain
averaged 10.7%; increasing initial nitrogen to 284 kg ha–1

reduced the average yield gap to 375 kg ha–1 and increased
protein to 14.3% (Fig. 5b, c). For a given nitrogen supply,
varieties with higher capacity to absorb nitrogen had a smaller
yield gap (Fig. 5d, e); this varietal effect is discussed in a later
section (A breeding perspective). Closing the yield gap in
the experiments in Fig. 5 required 0.7� 0.11 kgNha–1mm–1

for grain with 14.3% protein, and 0.5� 0.07 kgN ha–1mm–1

for grain with 10.7% protein. For the data of French
and Schultz (1984b), yield gaps were closed at an uptake
of 0.65 kgNha–1mm–1. This ratio is physiologically and
agronomically meaningful, and can be explored further for
practical applications linking water and nitrogen.

Finding the causes of yield gaps is a necessary first step to
close them. In this context, it is important to separate the
proximate and ultimate causes of gaps. For example, shortage
of nitrogen is a common proximate cause of yield gaps for
wheat in Australia and millet in the Sahel in Africa, but the
ultimate causes, and therefore the solutions, are different.
Shortages of nitrogen inputs in Africa relate to underdeveloped
markets and infrastructure, concerns about perceived and
realised risks, inaccessibility of input services and credit, and/
or inconsistency with personal aspirations (Tittonell and Giller
2013), whereas financial risk is the main constraint to fertiliser
use in Australia (Monjardino et al. 2013, 2015).

Wheat in winter-rainfall environments

Seasonal variation in rainfall is a major driver of seasonal
variation in yield (Box 2). For example, in a latitudinal
transect in the Eyre Peninsula, the coefficient of variation of
wheat yield at the shire level was 20–40% in the higher rainfall
southern region and increased to 80–100% in the lower rainfall,
northern boundary of the grain region (Doherty et al. 2010).
Hence, different farming practices have evolved in the low- and
high-rainfall districts of south-eastern andWesternAustralia.We
compiled the following information directly from local experts—
mostly advisors; this information is largely undocumented,
hence the scarcity of supporting references compared with the
other sections of this paper.

In South Australia, low–medium-rainfall districts are loosely
defined as those receiving >400mm annual rainfall and crop
yield generally >2.5 t ha–1 (Doherty et al. 2010). The low-rainfall
districts of the north and east of Western Australia often
feature short growing season, <4 months. These regions have
traditionally been low users of nitrogen fertiliser, and rotations
incorporating ley pastures, predominantly self-regenerating
medics, have been a major source of nitrogen. In recent
decades, however, nitrogen from pastures has declined
because of reductions in both fixation per unit land area and
the proportion of land allocated to pastures (Angus and Peoples
2012). In the Mallee and Wimmera regions, land allocated to
pastures decreased by 63% whereas cropping increased by
66% between 1975 and 2005 (Duncan and Dorrough 2009).
This combination of increased intensification of cropping and
reduced nitrogen fixation per unit land has increased the focus
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on the importance of effective nitrogen management in these
environments.

Current advice in low-rainfall areas is to apply nitrogen early,
either at seeding or by tillering. The main difficulty with this
approach is that information available to assess water-limited
potential yield is often limited. The trend to earlier seeding,which
may translate to dry seeding before the season break (Fletcher
et al. 2015), further compounds these difficulties.

Advisors increasingly accept the need to overcome the tactical
difficulties of nitrogenmanagement in low-rainfall environments
by amore strategic approach focusing on increased share of high-
quality, well-managed leguminous pastures (Kirkegaard et al.
2014). The current profitability of livestock provides additional
impetus for this approach.What is an adequate shareof pastures in
the cropping mix remains unresolved; modelling for a cropping
farm in southern New South Wales indicated that a pasture
intensity of ~40% would overcome historical nitrogen
deficiency (Angus and Peoples 2012). In low-rainfall cropping
regions of South Australia, 25–33% of land area apportioned to
leguminous pastures is more common. In cropping rotations
incorporating leguminous pastures, there is an inter-seasonal
trade-off between maximising pasture biomass for N2 fixation
and plant-available water for the next crop. Brown manuring
involving early termination of a pasture (usually vetch) in spring,
resulting in some residual carryover of water, can become
important in the nitrogen–water management decisions for the
following season.

Logistics may further contribute to strategic approaches.
Recent history involving substantial losses on fertiliser stock
held by importers has seen an increased reluctance on behalf of
suppliers to hold uncommitted stock, resulting in a decline in the
flexibility of supply of urea at reseller and farmer level. Although
actual shortages have been uncommon and only temporary in
recent years, there is a trend for (usually) larger users of urea to
lock-in supplies early in the season to avoid supply risks. This
can compromise flexibility in the face of variable seasons and
encourage more strategic thinking.

The increased intensification of cropping noted earlier has
seenadecline in the traditional long fallow.However, recentwork
has highlighted the importance of summer-fallow management
and its influence on water and nitrogen (Kirkegaard et al. 2014);
control of summer weeds is now accepted best practice even
after allowing for the reduction in summer grazing from sheep
(Hunt et al. 2013).

The shift in cultural practice towards stubble retention and
direct drilling has been undertaken to deal with soil erosion and
decline in soil structure, as well as allowing quicker and earlier
crop establishment. Whereas farmers’ perception is that these
practices favour soil-water storage by reducing unproductive
water loss, the evidence does not fully support this view
(Ward et al. 2009; Scott et al. 2010; Sadras et al. 2012c).

In South Australia, high-rainfall districts receive >400mm
annual rainfall. Crop yields are typically >3.0 t ha–1 (Doherty
et al. 2010). The traditional approach has been to apply nitrogen
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Fig. 5. Nitrogen-driven gap betweenwater-limited potential yield and actual yield of wheat. (a) Yield and seasonal evapotranspiration

compared with a boundary line representing the water-limited potential yield. Parameters of the line are x-intercept 60mm (Sadras

and Roget 2004) and slope 25 kg ha–1mm–1 accounting for the potential of the newest variety in the experiment (Sadras and Lawson

2013). (b) Average yield gap across varieties. (c) Average protein concentration in grain across varieties. (d) Yield gap as a function

of nitrogen uptake. (e) Yield gap as a function of nitrogen uptake per unit evapotranspiration. Data from experiments combining low

(187 kgNha–1) and high (284 kgNha–1) nitrogen availability (initial mineral nitrogen + fertiliser), 13 varieties and two locations

in South Australia. In b and c, error bars are 1 s.e. Source: Sadras and Lawson (2013).
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Box 2. Climatology of rainfall in Australia and crop yield

Nix (1975) drew attention to the relative importance of rainfall as a climatic constraint in Australian grain production compared
with cold temperatures in North America, Europe and Asia and high temperatures and high humidity in India. Australian grain
farmers thus face a higher production volatility thanmost other grain-exporting countries (Kimura andLeThi 2011).According to
Podbury et al. (1998), the coefficient of variationof de-trendedAustralianwheat yield from1960 to1997was19%,comparedwith
7% for theUSA. Themajor source of the year-to-year rainfall variation is the ElNiño SouthernOscillation (ENSO) (McBride and
Nicholls 1983;Manton et al. 2006;Risbey et al. 2009).Australian nationalwheat yieldsweremore strongly related to broad-scale
ENSO indices than any other major grain crop in the world (Garnett and Khandekar 1992).

AlthoughENSO isdominant, the IndianOcean, positionof the subtropical ridge and theSouthernAnnularMode are additional
sources of climate variation for the Australian grain belt (Fig. Box 2.1).

A recent manifestation of these multiple sources of variation is the Millennium Drought from late 1996 to mid-2010, which
had a measurable effect on the aggregated output of Australia’s agriculture (Fig. Box 2.2). Although 2002 and 2006 were
El Niño years and the Southern Oscillation Index was negative in spring of 2004, there were aspects of this drought that could
not be explained by ENSO alone (Timbal et al. 2010).

Climate change will present further challenges for the Australian grains industry. It will change the interaction between
water and nitrogen in complex ways, and is likely to increase pressure on agronomic and genetic improvement in the capture
of both resources. Confidence from climate science is highest for elevated CO2, followed by increased temperature and then

IOD

Long-Wave
trough

Long-Wave ridge

Blocking High
H

SE Trades

NW Monsoon

Jetstream

Cutoff Low
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SAM

Fig. Box 2.1. Main drivers of rainfall variation in Australia. The dominant features originate in the tropics

and include El Niño Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD) and the Madden Jullian

Oscillation (MJO). The Southern Annular Mode and blocking modify the impact of these tropical drivers.

Other important features include the subtropical jet and a cut-off low shown in a typical position to influence

south-eastern Australian rainfall. In this schematic, the long-wave pattern in the mid-troposphere consistent

with the blocking high is also indicated with a trough over Western Australia and a ridge in the Tasman Sea.

Dynamic climate models such as POAMA capture some climate drivers and interactions better than do

others. Improvements will come from better input data of the state of oceans and atmosphere, more accurate

representation of processes in the model and improved computing power. Source: Risbey et al. (2009).

(continued next page)
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based on target yield, with a substantial portion applied as a
separated band at seeding, and follow-up applications depending
on seasonal conditions. In the longer season, higher rainfall
districts of South Australia and Western Australia, a third
application is considered if the crop is growing well and is free
of weed and disease, and if water has accumulated in the soil.
Current best practice is largely strategic, based initially on testing
for nitrogen in the root-zone before seeding. Logistics and cost
means that not all paddocks are tested; therefore, untested
paddocks require extrapolation from tested paddocks based on
rotation history and soil type.

Rates of nitrogen fertiliser in high-rainfall environments, up
to 160 kgN ha–1, are based on rules-of-thumb relating to
nitrogen requirements and yield; for example, wheat at 11%
protein requires 40 kgN ha–1 t–1 grain yield. Yield is analysed
in terms of frequency distribution of alternative outcomes
depending on how the season evolves, for example by using
the decision-support tool Yield Prophet.

Timing of nitrogen application in high-rainfall districts relates
to managing crop vigour to ensure sufficient plant-available
water at anthesis, hence the importance of methods to model

or measure plant-available water. Work undertaken by the Mid-
North High Rainfall Group in South Australia has found that a
wheat crop of 4 t ha–1 requires 50mm plant-available water at
anthesis. Canopy-management techniques may include lower
seeding rates for early-sown crops, delaying nitrogen
application, grazing to delay biomass accumulation and the
use of plant growth regulators to prevent lodging.

Owing to the large uncertainties in matching nitrogen and
water supply, advice and rules have been mostly generic, but
there is an emergent interest in tailoring practices to varieties,
which might reflect the impact of breeding for yield on the
nitrogen economy of the crop (see later section A breeding

perspective). Further, tailoring nitrogen management to variety
might be important to reach malt specifications in barley
(Browne and Walters 2015).

Wheat and sorghum in summer-rainfall environments

In the northern region, where the shorter seasons are associated
with higher winter temperature, opportunities for in-crop
fertilisation in wheat are limited by the reliance on stored soil
water and scarce rainfall events in autumn (Fig. 1). Nitrogen

changes to rainfall (Howden et al. 2010; Karoly 2014). Over
the last 150 years, the amount of reactive nitrogen on Earth’s
land and in fresh water has more than doubled, primarily
from anthropogenic sources (Galloway et al. 2008). In
common with CO2, emissions of NO2 and NOx have global
implications, but other aspects of the altered nitrogen cycle
(e.g. atmospheric nitrogen deposition) are strongly local.
Elevated CO2 would contribute to higher wheat yield
and lower grain protein concentration (Bloom et al. 2014;
Fitzgerald et al. 2010). The decrease in protein is partially
associated with a dilution effect but complicated by reduced
nitrogen uptake (Bloom et al. 2014). Warming will have the
dual impact of hastening crop development and increasing
the frequency and intensity of hot days (Sadras and Dreccer
2015). The shifts in phenology may increase the risk of frost
at vulnerable crop stages (Zheng et al. 2015), and this can be
compounded by increased frost risk in parts of southern
Australia (Crimp et al. 2014).

Thehigh variability of rainfall on annual anddecadal scales
makes detection and attribution of trends difficult, but recent
studies have attributed some of the decline of rain in southern
Australia to human-induced climate changes (Timbal et al.
2010; Delworth and Zeng 2014). The impact on grain crops
of changes to the water balance from rainfall and evaporative
demand are relatively well understood and modelled

(Potgieter et al. 2013; Yang et al. 2014). The impact and adaptation options arising from changes in seasonality of rainfall
and changes to rainfall intensity are an area for future research.Howgrain crops respond to the interaction ofCO2, temperature and
rainfall along with changes in ozone and radiation is an ongoing challenge for modelling (Asseng et al. 2015). Further, we have
little understanding of the effects of climate change on crop yield mediated by changes in pests, diseases and soil microorganisms
(Sadras and Dreccer 2015). Seasonal variability rather than climate-change signals dominate farmers’ decisions on fertiliser use.
However, climate change may add a level of uncertainty to a risky decision. For advisers, crop modellers and developers of
decision tools, climate change raises questions of appropriate historical timeframes to assess the analysis of risk.

millennium
drought

120

100

80

60

40

20

1960 1980

Year

A
g
ri

c
u
lt
u
re

 n
e
t 
p
ro

d
u
c
ti
o
n
 i
n
d
e
x

(2
0
0
4
–
0
6
 =

 1
0
0
)

2000 2020

Fig. Box 2.2. Time trend in FAO’s Net Production Index in
Australia, highlighting the sustained increase in productivity
and the disruption caused by theMillenniumDrought. Source:
Sadras et al. (2015).

Box 2. Continued

N Crop & Pasture Science V. O. Sadras et al.



fertiliser is usually incorporated up to 1 month before sowing.
Some farmers define fertiliser rates based on the initial
availability of nitrogen and water. There is an increasing
interest in the use of cover crops to reduce nitrogen costs,
control herbicide resistance and improve soils. Preliminary
trials in the Darling Downs showed that 60-day-old legumes
used as cover crops contributed ~30 kgN ha–1 for wheat and
sorghum crops, compared with a common fertilisation rate of
100 kgN ha–1. However, trade-offs with water use by the cover
crop can be significant, particularly in dry seasons. For example,
at Jimbour (268570S, 1518130E), summer legumes consumed
more than half of the available soil water compared with a
bare fallow after 46 days of growth, where dry matter
production was 3.7 t ha–1 for mungbean, 3.4 t ha–1 for lablab
and 2.7 t ha–1 for guar (D. Rodriguez, unpubl. data). At the
time that the cover crop was killed, there was a 59% chance
of obtaining a full profile before the winter sowing window
following mungbean, and a 68% chance in the case of lablab
and guar based on current soil-water content and historical
climate records.

Owing to variation in hybrids, environments and agronomic
options, there is an opportunity for the improvement of sorghum
yield by developing specific genotype� environment�
management (G�E�M) combinations (Hammer et al. 2014).
Hybrids vary in tillering (Kim et al. 2010), maturity (Ravi Kumar
et al. 2009), root angle (Singh et al. 2012) and stay-green (see
later section A breeding perspective). Management options
including plant population, row configuration (i.e. solid, single
or double skip row; Whish et al. 2005) and sowing date affect
the pattern of canopy development and water use during the
growing season. Modelling showed that single- and double-skip
arrangements and reduced plant densities reduced pre-anthesis
water use and helped to sustain HI and yield in years with below-
average rainfall (Whish et al. 2005).

In contrast to the local breeding effort in sorghum, Australia’s
maize hybrids derive mostly from lines developed in the USA,
where maize is usually grown in more favourable environments
and often at higher plant populations (Grassini et al. 2015). In
Australia, rainfed maize is sown at wide row spacing and low
densities (2.5–3.5 plants m�2) where current hybrids produce
fertile and infertile tillers but do not develop a secondary cob
in the main stem (J. Eyre, A. Ferrante, E. Ortelli, J. L. McLean,
D. Rodriguez, unpubl. data 2015). Unproductive tillering with
the current combination of hybrids, environments, crop
configuration and population density is likely to compromise
efficiency in the use of water and nitrogen. A comparative
analysis of sorghum and maize would improve understanding
of the differences in plant phenotype in relation to the water and
nitrogen economies of the crop and its responses to management.

An economic perspective: dealing with risk

Jobbágy and Sala (2014) quantified the inputs and outputs of
nutrients across cropping industries on a global scale. They found
that the difference between input and output increases with farm-
gate value of produce (Fig. 6a). This suggests that a declining
share of fertiliser on the production costs encourages higher
fertilisation rates, irrespective of their agronomic benefit and
despite their environmental consequences. The largest surplus

of both nitrogen and phosphorus corresponds to fruits and
vegetables. By comparison, economic return in the grains
industry is smaller and the associated nutrient balance is closer
to neutral.

The Australian grains industry is characterised by relatively
lowuse of fertiliser due to a combinationof (i) relatively lowgrain
yield; (ii) unsubsidised inputs and outputs; (iii) trends of
increased farm size and, hence, more extensive operations; and
(iv) erratic rainfall leading to uncertain return from fertiliser. Not
only is nitrogen a significant portion of variable costs, it is
an easily observed cost compared with other costs such as
machinery depreciation and maintenance (GRDC 2014). The
overriding influence of economic considerations thus sets the
scene for our analysis of nitrogen management in a context of
risk, largely driven by uncertain water availability.

Here, we outline some principles of production economics
and risk as background to the specific consideration of the
consequences of risk and risk aversion in handling the
interactions between water and nitrogen in grain production.
We briefly consider the role of seasonal climate forecasts
(SCF) in nitrogen decision making.

Production economics

The relationship between the inputs and the resulting yield
output is a response or production function, which conforms to
the law of diminishing returns whereby an additional unit of
input results in a less-than-proportional increase in grain
production. This is illustrated in simulated yield response to
nitrogen in Fig. 6b.

When combined with price and cost data, a production
function results in a payoff or profit function. The additional
income generated by the addition of a unit of input is themarginal
return (MR) and the associated additional cost is the marginal
cost (MC). The economically optimum nitrogen rate (EONR)
occurs when MR=MC. For the 30 years in Fig. 6b and c, the
EONR is 100 kgN ha–1 and it varies from 140 kgN ha–1 in the
seasonswith above-median rainfall to 40 kgNha–1 in the seasons
with below-median rainfall.

The EONR varies with climate, soil nitrogen and the cost of
nitrogen relative to the price of grain. Between 1985 and 2015,
there has been a 5-fold variation in the nitrogen : wheat price ratio
(Fig. 6d). Nitrogen price depends on global supply and demand,
the price of energy and feedstock gas, the exchange rate and
shipping costs (Angus 2001; Prudhomme 2015). Decisions on
nitrogen rate thus need to consider the relative price of wheat
and cost of nitrogen (Abadi and Farre 2015), in addition to
agronomic information.

Although the concept of EONR is common in the literature,
a rate lower than the profit-maximising rate can be justified for
two reasons, seasonal uncertainty and opportunity costs, i.e.
better uses of scarce funds than maximising the profit from
nitrogen fertiliser. The benefit : cost ratio (BCR) is the benefit
in extra grain yield divided by the cost of applying nitrogen.
A BCR of, say, 2.0 has the straightforward understanding that
a farmer will get back $2 for each $1 invested in nitrogen. An
associated expression is return on investment (ROI), which is
the net return found by subtracting the cost of investment from
the benefit of the investment and dividing by the cost of
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investment (commonly expressed as a percentage). Both
expressions are valid, and they are related as ROI = 1 +BCR.
Both ROI (Asseng et al. 2012; McIntosh et al. 2015) and BCR
(Angus 1998; Hayman et al. 2015) have been used in economic
analysis of nitrogen management. The key point is to understand
what farmers mean when they refer to requiring a return of say 2
to 1 (Browne and Walters 2015); if the definition is not explicit,
this could be interpreted as an extra two (BCR) or three (ROI)
dollars income from grain per dollar invested in nitrogen.

Although the agricultural economics literature emphasises
inputs to maximise profit, large deviations from optimal
management often make little difference to the payoff because
flat payoff functions are common (Anderson 1975; Pannell
2006). For nitrogen, a flat payoff curve means that there is a
‘margin for error’, i.e. a set of alternative rates that are only
slightly less attractive than the maximum payoff for nitrogen
applications (say, within 5% of the maximum), thereby lowering
the risk of not selecting the best rate, or allowing for rate
adjustments when considering other factors such as the
environment. However, the flatness of the curve is reduced
with increasing price ratio of nitrogen to grain. Figure 6c
illustrates the relative flatness around the optimal rate of
~100 kgN ha–1, suggesting that farmers may be better off only
taking informed guesses (based on soil, seasonal and economic
indicators) instead of employing costly methods for identifying

the appropriate fertiliser rate (Robertson et al. 2008). Further,
the degree of flatness depends on soil properties, as discussed
for soils with low PAWC where a limited buffering capacity for
both water and nitrogen would lead to sharper payoff functions
(see earlier section Soil texture, soil water and soil nitrogen).
Overall, the degree of flatness in payoff functions has
implications for risk management, precision farming and the
value of research.

Risk and uncertainty

Yield variability, market volatility and financial debt are major
risks faced by dryland farmers in Australia (Hardaker et al.
2004). The inherent riskiness of grain production is often high
(Hayman et al. 2010) and the variance in wheat revenue has
increased between 1992 and 2009 (Kingwell 2011) in response
to both climate drivers and cropping intensification (Llewellyn
et al. 2012).

Farmers in low-rainfall regions are conservative in the use
of fertiliser, partially because the chance of downside risk is
perceived as far greater than that of upside gain. Nevertheless,
higher nitrogen rates may pay off by increasing yield and grain
quality, and by reducing the probability of missing out in the
better years (Asseng et al. 2001a; Sadras 2002; Anderson 2010;
Monjardino et al. 2013; Monjardino et al. 2015). Strategies and
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Fig. 6. Some economic factors with implications for nitrogen management. (a) Association between nutrient balance (fertilisation –

withdrawal) and farm-gate value across crops on a global scale. (b) Modelled yield and (c) gross margin of wheat in response to rate of

nitrogen fertiliser at Brinkworth, South Australia (338S, 1388E); curves are simulated averages for all years between 1981 and 2010
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lines). (d) Grain price (based on ASW wheat), fertiliser price (based on the cost of urea at 46% N) and nitrogen : wheat price ratio

between 1979 and 2009 in Australia. (e) Modelled mean (1957–2011) wheat yield with five nitrogen fertiliser rates: site practice,

yield maximising, profit maximising, utility maximising and multi-criteria in four Australian locations. Sources: a, Jobbágy and Sala

(2014); b–c, Hayman et al. (2015); d, ABARE (2010a); e, Monjardino et al. (2015).
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tools have been developed to manage the riskiness of nitrogen
fertiliser decisions, but investment in fertiliser remains a
challenge in variable environments (Hochman and Carberry
2011).

The average wheat yield gap in Australia of ~2.0 t ha–1 in
the period 1996–2012 estimated by Hochman et al. (2012)
is partially attributable to intentional under-fertilisation with
nitrogen, due to risk, risk-aversion and trade-offs between
efficiency in the use of nitrogen and water, particularly in
low-rainfall regions (Monjardino et al. 2015). The role of risk
management in yield gaps is illustrated in Fig. 6e, which
highlights the difference in mean wheat yield response
between nitrogen rate according to site practice, a yield-
maximising rate, profit-maximising rate, utility-maximising
rate and multi-criteria rate in four sites. Here, utility-maximising
rate is the nitrogen rate that allows farmers to maximise their
utility (or certainty equivalents) for a given level of risk-aversion,
and multi-criteria rate is the result of a set of yield–risk–return
and risk-aversion criteria thatwould need to bemet for a nitrogen-
management practice to be selected as the most preferred
(Monjardino et al. 2015). In all cases, the preferred multi-
criteria management strategy was neither the yield-maximising
nor the profit-maximising strategy; it generated highermeanyield
than theutility-maximising strategy, and in threeof the four sites it
resulted in a similarmean yield to site practice. On average, yield-
maximising ratewas only 3%greater than profit-maximising rate,
with the biggest yield gap between these strategies at Wongan
Hills. Importantly, site practice and multi-criteria rate achieved
~20% less than potential yield, and in two sites, yield with site
practice was 8% less than with multi-criteria rate, all of which
emphasises the role of farmer risk-aversion in limiting the closure
of yield gaps in the management of fertilisation. Overall, site
practice, particularly at Hopetoun, Wongan Hills and Hart
appeared close to optimal when risk was considered.

A discussion of the economics of nitrogen for dryland grains
concentrates on the rate of nitrogen as the controlling variable
that comes with a cost, and often treats the supply of water as
zero cost and uncertain. The supply of water is closely linked to
the cost of purchasing or leasing land. Weed control over the
fallow is a cost with benefits in water and nitrogen available to
the subsequent wheat crop (Hunt et al. 2013). McMaster et al.
(2015) refer to the process of ‘buying a spring’ in central New
South Wales with a BCR of up to 8.0 for summer weed control.
This increased the BCR of nitrogen topdressing from 1 with no
weed control to 3 with complete weed control. Stored soil water
at sowing will increase the confidence farmers can have in
applying higher rates of nitrogen.

Seasonal climate forecasts

Given the risk and costs associated with uncertain seasonal
conditions, there is an interest in SCF, which are defined as
probabilistic statements about the climate of the coming season
(WMO 2006). SCF rely on the memory of the climate system
captured in the slower moving variable of ocean temperatures,
especially the Pacific and Indian Ocean (Box 2). SCF have been
available since the 1990s and many studies have shown their
potential benefit to agricultural decisions (Easterling 1999;
Hammer 2000; Mase and Prokopy 2014).

The requirements for a forecast to be beneficial include (i) a
climate-sensitive decision, (ii) a prediction that is skilful and
timely, (iii) the ability to adjust the decision in light of the
forecast, and (iv) the communication and support for the
forecast (Hansen 2002). The ongoing challenge is to have
acceptable accuracy or skill of the forecast, and in some cases,
the timing of the forecast. Closely linked to the skill of the
forecast is the effective communication of the forecast. A more
accurate forecast would solve many of the communication
problems (Hayman et al. 2007; Mase and Prokopy 2014).

Many studies have assessed the application of SCF for the
management of nitrogen on wheat in Australia (Hammer et al.
1996; Marshall et al. 1996; Moeller et al. 2008; Asseng et al.
2012; Hayman et al. 2015;McIntosh et al. 2015). The early focus
on the Southern Oscillation Index has shifted to POAMA
(Predictive Ocean Atmosphere Model for Australia) (Box 2).
By using ENSO phases, Marshall et al. (1996) found that a
Goondiwindi grain grower benefited from SCF about as much
from wheat breeding ($3–$4 ha–1 year–1). However, adopting a
new wheat variety is likely to provide a modest gain each year,
whereas the returns from adopting SCF are more variable. This
is because in some years (and for many locations, the majority
of years) the forecast will be no different from climatology, and
when the forecast is emphatic (say 70% chance of exceeding
median), a significant minority of years (up to 30%) when
acting on the forecast may lead to losses. McIntosh et al.
(2015) calculated that it takes on average 3–8 years for a
forecast to be of value in representative grain sites around
Australia. Hayman et al. (2015) compared two strategies in the
medium-rainfall zone of South Australia: topdressing a wheat
crop with the same amount of nitrogen every year, and tactically
changing the rates for topdressing by using information from
POAMA. Over the 30-year period from 1981 to 2010, POAMA
would have produced the correct guidance 19 times and incorrect
guidance 11 times. Under the assumptions of this modelling
study, depending on the amount of nitrogen used, following
POAMA increased the gross margin by $23 ha–1 or 9%.

A common assumption in these evaluations is that all the
benefit of nitrogen is realised in the season when it is applied;
however, residual nitrogen in the soil (e.g. in dry seasons) can be
of value to the next crop. In a long-term (1996–2004) trial on
a Vertosol in the medium-rainfall cropping zone of Victoria,
systems with a fertiliser input of 40 kgN ha–1 year–1 built up a
surplus of ~150 kgN ha–1 with the onset of the Millennium
Drought (Box 2). This surplus was drawn down in the
better years from 2009 (Norton et al. 2015). The soil, climate
and management conditions that favour the carryover of
nitrogen need to be identified. Economic assessments at the
whole-farm level need to account for the multiple benefits of
legumes in rotations, including their potential contribution to
the soil nitrogen budget (Preissel et al. 2015).

Most analyses of the value of SCF for nitrogen on wheat
assume that a farmer has to make the decision before the
uncertain season. However, in-crop application of nitrogen is
common in southern and Western Australia (see above An

agronomic perspective). By delaying the application of
nitrogen, farmers are applying the principles of ‘real options’,
sometimes referred to as purposeful procrastination. The idea
of making a decision and then waiting to see what happens
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compared with waiting to see what is starting to happen and then
decidingor adjusting is central to the intuitivevalueof real options
(Luehrman 1998). Real options have been applied to agriculture
and natural resource management (Hertzler 2007; Nelson et al.
2013; Sanderson et al. 2015).The essence of real options is to use
the analogy of financial options to consider the value of waiting
for better, but not complete, information.Almost all decisions can
be delayed, with costs and benefits changing as the delay
continues. The benefit of applying nitrogen later in the season
is extra information including the status of the crop and stored soil
water, improved information on the rest of the season because the
skill of climate forecasts in winter for spring is superior to the low
skill in autumn for the coming spring, and more information on
the price of grain. The costs of delaying fertilisation include
applicationcosts and the riskof low ratesof uptake in adry season.

A breeding perspective: the water and nitrogen
economies of high-yielding varieties

The pioneering experiments of Austin et al. (1980) compared
the phenotypes of wheats released in the UK between 1908 and
1978. This approach returns a rate of yield gain and identifies
the traits driving yield improvement. Worldwide comparison
of similar studies reinforces the early conclusion that genetic
gain in wheat yield is proportional to the potential of the
environment (Fig. 7). Although breeders primarily select for
yield, grain quality and disease resistance (Richards et al.
2014), this selective pressure can lead to extraordinary changes
in phenotype. By using this information, we ask: what are the
changes in traits related to the water and nitrogen economy of
crops in response to selection for yield? Our primary focus is
wheat, and rates of change are calculated as percentage of the

newest varieties for comparison of traits (Fischer et al. 2014).
We briefly discuss other crops, including sorghum and maize,
where current understanding of stay-green illuminates some
of the connections between nitrogen and water, and soybean,
where the role of nitrogen fixation under drought has been
evaluated in detail.

Water- and nitrogen-related traits of wheat

Two studies have quantified the changes in the wheat phenotype
in the winter-rainfall regions of Australia from early breeding
until the mid1980s (Siddique et al. 1989, 1990a, 1990b) and for
the period 1958–2007 (Sadras and Lawson 2011, 2013; Sadras
et al. 2012d). Yield improvement in Australia over these periods
aligns with a global benchmark accounting for the potential of
the environment (Fig. 7). Richards et al. (2014) provide further
insight in an extended assessment of agronomic and breeding
contributions to wheat-yield improvement in Australia, where
they highlight the higher rates of yield gain under more
favourable, wetter conditions.

Early selection returned shorter season varieties with better
adaptation to local conditions and reduced seasonal
evapotranspiration in parallel with shorter cycles (Fig. 8a);
mean daily evapotranspiration did not vary among varieties
(P= 0.91) and averaged 1.3mm day–1. Soil evaporation
accounted for 40% of the seasonal evapotranspiration
irrespective of cultivar (P= 0.50). Seasonal evapotranspiration
remained unchanged for the varieties released between 1958
and 2007 (Fig. 8b). Because of the increase in yield and
largely unchanged water use after accounting for phenology,
yield per unit water use of Australian wheats increased linearly
over a century to 2007 (Fig. 8c). The 20 kg ha–1mm–1 benchmark
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of French and Schultz (1984a) was largely based on Halberd or
earlier cultivars (red point in Fig. 8c), hence the need to update
this benchmark to account for contemporary varieties, which
are close to 25 kg ha–1mm–1.

Selection for yield between 1958 and 2007 increased
wheat stomatal conductance but did not increase the rate of
photosynthesis per unit leaf area (Sadras and Lawson 2011;
Sadras et al. 2012d). Higher stomatal conductance is a
conspicuous response to selection for yield reported for spring
and winter bread wheat, durum wheat, rice, cotton and soybean
in diverse breeding settings worldwide (Roche 2015). Often, the
increase in stomata conductance has been associated with small
(or no) change in photosynthesis, thus the apparent decline in
intrinsic water-use efficiency (assimilation : conductance ratio).
Roche (2015) analysed the possible causes for these responses,
and Sadras et al. (2012e) advanced the hypothesis that where
heat stress is prevalent, evaporative cooling, requiring
maintenance of stomatal conductance at high vapour pressure,
overrides water-use efficiency, which requires stomatal closure.
In common to cereals, cotton and grapevine, important
physiological and behavioural traits in birds and mammals can
be explained in terms of the trade-off between water economy
and thermal regulation mediated by evaporative cooling
(Piersma and van Gils 2011).

Early selection for yield of wheat in Australia reduced root
biomass with no effect on root depth or water uptake (Siddique
et al. 1990a). In field-grown crops, root dry matter at anthesis
decreased from 397 gm–2 in the old variety Purple Straw to
280 gm–2 in the 1986 variety Kulin, and the root : shoot ratio
declined from 0.64 to 0.55. Under controlled conditions, root
biomass seemed to decline further in response to selection for
yield between 1958 and 2007 (Aziz et al. 2016). Both studies
focused on varieties adapted to the winter-rainfall environments
of the west and south-east of Australia where crops rely
primarily on in-season rainfall and stored soil water is minor
(see earlier section Climate). Selective pressure for yield in
northern environments where crops rely on soil-stored water
might have modified wheat phenotype differently, favouring
deeper roots (Manschadi et al. 2006). Experiments comparing
historic sets of wheat varieties adapted to the northern region
would be of interest as a cost-effective means to unravel
adaptive traits.

Selection for yield increased shootwater-soluble carbohydrates
at anthesis in both stressful Australian conditions and high-
yielding UK environments (Shearman et al. 2005; Sadras and
Lawson 2011). Our understanding of the role of carbohydrate
reserves is fragmented, particularly in relation to the interaction
between genotype, water and nitrogen (Hoogmoed and Sadras
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2016). It is often assumed that reserve carbohydrates contribute
to the maintenance of grain size under water stress during grain
filling; intra-specific variation for this trait is large, narrow-sense
heritability is moderate to high, and complex genetic control
across up to 10 quantitative trait loci has been reported (Fischer
2011). Direct selection for water-soluble carbohydrates can thus
be achieved with genetic tools, high-throughput phenotyping
(Dreccer et al. 2014), or a combination of these. The main
impediment to selection for this trait is, however, not technical
but conceptual, because its adaptive value remains uncertain
in relation to both environmental influences and trade-offs.
The role of labile carbohydrate in grain filling under stress
needs to be reconciled with the enhancement of this trait
in response to selection for yield in wet, high-yielding
(>10 t ha–1) environments. Storage of labile carbohydrates
involves apparent trade-offs with tillering, grain number, root
growth and nitrogen uptake (vanHerwaarden et al. 1998;Dreccer
et al. 2009, 2013; Lopes and Reynolds 2010). Yield response to
the interaction between water and nitrogen supply is partially
mediated by responses in partitioning of carbon and nitrogen
between yield components and reserves (van Herwaarden et al.
1998; Dreccer et al. 2009). Dreccer et al. (2009) showed
that resource-based models are insufficient to capture these
interactions. This conclusion arises mostly from studies with
lines with different combinations of tillering and patterns of
resource allocation, and the recognition that the allocation of
resources is bounded by the fate of meristems in the plant.
Whether a meristem is inactive, grows a new shoot or
transitions to reproduction depends on genetic and environmental
influences, and to some extent, the fate of meristems precedes
and drives the allocation of resources (Bonser and Aarssen 1996,
2001; Zhang et al. 2008). Understanding the controls of
meristem fate and crop morphology, coupled with resource-
based models, is thus necessary to untangle these important
interactions (Dingkuhn et al. 2006; Dreccer et al. 2009, 2013;
Luquet et al. 2012).

During the last five decades, the rate of increase in nitrogen
uptake of Australian wheats matched the rate of increase in
grain yield with breeding; yield per unit nitrogen uptake thus
remained stable (Fig. 9). In the absence of changes in nitrogen
harvest index, protein concentration in grain remained stable

(Fig. 9). The increase in nitrogen uptake was accompanied by
shifts in the profile of foliar nitrogen, whereby newer varieties
were greener at flowering, particularly at the bottom of the
canopy. The increase in uptake and the shift in the distribution
of nitrogen contributed to higher radiation-use efficiency,
biomass and yield of newer varieties (Sadras et al. 2012d).

The large increase in nitrogen uptake in this historic set of
Australian varieties is unique. Comparison with bread wheat in
UK and Argentina, and durum wheat in Italy, shows that
nitrogen uptake did not increase in response to selection for
yield, or where it did, that increase did not match the rate of
yield gain (Figs 10–12). Hence, yield per unit nitrogen increased
in all of those breeding settings. With little or no increase
in nitrogen harvest index, grain protein declined. Figure 13
summarises the four datasets; the condition for the increase
in yield per unit nitrogen is that yield increases faster than
nitrogen uptake, and this is reflected in a reduction in grain
protein content. Reduced grain protein content in response to
breeding for yield was reported for other crops, e.g. maize in the
USA (Egli 2015).

In conclusion, selection for yield in the dry, nitrogen-scarce
environments of Australia had, arguably, a larger impact on the
nitrogen economy of the crop than on traits with putative value
for adaptation to water deficit. If anything, some of the more
consistent trends in water-related traits have been contrary to
expectations; stomatal conductance increased with an apparent
decline in assimilation : conductance ratio, and root biomass
decreased. The enhanced capacity for nitrogen uptake, despite
the putative reduction in root biomass, in newer varieties is
of particular interest in the light of the findings of Liu et al.
(2015). Those authors compared two wheat lines, XY107 and
XY6, under low and high nitrogen supply in a glasshouse
experiment. Despite its lower root biomass, particularly in
the low nitrogen treatment, XY107 absorbed more nitrogen
than XY6 and this was associated with the differential
expression of nitrate and ammonium transporter genes, especially
TaNRT2.1.

Water- and nitrogen-related traits of other crops
Stay-green in sorghum and nitrogen fixation in legumes
involve links between the water and nitrogen economy of
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the crop that have been summarised by Sadras and Richards
(2014). Stay-green in sorghum integrates several lower level
traits and is mostly expressed where water stress during
grainfill increases the rate of nitrogen remobilisation and
leaf senescence; hence, its expression strongly depends on
how the trait interacts with other traits, and with environmental
and management factors (Jordan et al. 2012). Five
combinations of traits and environments would contribute to
stay-green in sorghum: (i) traits that contribute to water saving
and less severe stress during grainfill, such as early maturity,
small leaves and few tillers, high stomatal sensitivity to drying
soil and high vapour-pressure deficit; (ii) traits that contribute
to enhanced water uptake, such as deep roots in the right
combination of soil and rainfall; (iii) life-history (i.e. high
perenniality) or metabolic traits (e.g. higher carbon and
nitrogen allocation to roots during grain filling); (iv) traits
that favour high source : sink ratio (e.g. few grains); and
(v) developmental traits that change the seasonal pattern of
water use for the same maturity type. For plant breeding,
(i) and (ii), and maybe (iii), are of interest, but usually not

(iv) or (v) because these may involve trade-offs with HI
and yield.

Selection for yield in the USA has often favoured stay-
green traits in maize (Duvick 2005). In a comparison of
single-cross hybrids released between 1967 and 2006, the
rate of yield increase was 56 kg ha–1 year–1 in unfertilised
crops, 79 kg ha–1 year–1 in crops fertilised with 67 kgN ha–1,
and 86 kg ha–1 year–1 in crops with 252 kgN ha–1 (Haegele
et al. 2013). The relative increase in nitrogen uptake matched
the relative increase in yield at the low fertiliser rate but not at
the higher rate, and this was reflected in a reduction in protein
content with year of release (Haegele et al. 2013), in a process
similar to that described above for wheat in Europe and
Argentina. Modern hybrids require higher fertiliser rates to
express their enhanced yield capacity, and this is partially
related to more subtle changes in the kinetics of nutrient
uptake in response to selection for yield. Saccomani et al.
(1984) evaluated the two kinetic parameters of sulfate uptake
in maize seedlings spanning the period 1930–75 and found
that Vmax increased 1.37% year–1 and Km 3.24% year–1 in
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relation to the oldest varieties. Thus, the gain in uptake
efficiency associated with higher Vmax was counteracted by
the loss of affinity of the transport system for sulfate, thus
explaining why recent hybrids are handicapped with respect
to older ones at lower nutrient concentration.

A genotype-driven link between the maintenance of N2

fixation under stress and drought adaptation has been proposed
for soybean (Sinclair et al. 2007; Sinclair 2011). Selected lines
with enhanced maintenance of N2 fixation were compared with
high-yielding commercial cultivars under broad environmental
conditions. Two lines were identified that outperformed
commercial checks under water deficit, but trade-offs were
apparent under high-yielding conditions. In a glasshouse
experiment comparing the normalised acetylene reduction
activity of 10 cowpea lines in response to soil drying, the
fraction of transpirable soil water at which N2 fixation rate
began to decline was 0.33 in the most sensitive line, whereas
in another line there was no decline in N2 fixation rate (Sinclair
et al. 2015). Whereas the sensitivity to water deficit in legume
N2 fixation is recognised, intra-specific variation is significant
and has putatively adaptive value. Similar studies are lacking for
temperate legumes.

A modelling perspective

Diverse modelling approaches aim to match model complexity,
error and applications (Passioura 1996). Here, we outline aspects
of the water and nitrogen economy of crops from a modelling
perspective with a primary focus on APSIM (Probert et al. 1998;
Holzworth et al. 2014).

The typical approach for modelling crop growth is to simulate
the potential growth first, followed by its reduction due to water
andnitrogen limitations andother stresses.Net biomass growthor
carbon assimilation at whole-crop level is modelled by using
species-specific parameters (e.g. radiation-use efficiency or
maximum photosynthesis rate, extinction coefficient) together
with canopy size, CO2 concentration, radiation and temperature.
Potential growth of individual organs (leaf, root, or grain) is
mostly temperature-driven and defines the demand for
carbohydrates. It can be limited by the partition of available
biomass or assimilates (supply), which is controlled by
progression of phenological stages driven by temperature and
photoperiod.

Impact of water deficit on growth is simulated by comparing
the water demand of the crop and the water supply from the
root–soil system. Demand is the amount of water required to
maintain potential growth and is determined by crop type, canopy
size and weather. APSIM converts the potential biomass growth
rate to water demand by using the vapour-pressure-deficit-
corrected transpiration efficiency. Water supply is limited by
the amount of plant-available water in soil and further reduced by
the size of root system. APSIM simulates water supply as a
fraction of plant-available water in the rooted soil layers,
considering this fraction and the maximum rooting depth as
both crop- and soil-dependent. Other models link water supply
to root-length density and plant-available water. Soil water
content at saturation, drained upper limit, crop lower limit, and
parameters related towater conductivity control watermovement
in soil and availability to crops. If water supply cannot meet
water demand, biomass growth rate is scaled down from
potential by the supply : demand ratio. Impact on processes
that are more-or-less sensitive to water stress is simulated by
using higher or lower thresholds of the supply : demand ratio.

Crop nitrogen relations are simulated by using a similar
supply–demand approach. In APSIM, maximum (Ncx), critical
(Ncc) and minimum (Ncm) nitrogen concentrations are defined
as species-specific attributes dependent on phenological stages.
Crop nitrogen demand is the sum of the demand from the pre-
existing biomass to reach Ncc plus the nitrogen required by
the new growth to maintain Ncc. The nitrogen supply (root N
uptake) is the total of N transported into roots via mass flow
(passive uptake) and by diffusion (active uptake), with the
former linked to transpiration and the latter affected by the
fraction of available water in soil, both limited by available
mineral nitrogen in rooted soil layers. Actual nitrogen uptake
is the smaller of demand and supply, and it is partitioned
to different organs proportional to their nitrogen demand.
Re-translocation of nitrogen from leaf and stem to grain occurs
during grain filling, which can lower the nitrogen concentrations
in leaves and stems to their minima (Ncm). Nitrogen stress
is calculated as the relative difference between actual leaf N
concentration (Nca) and leaf Ncc as:
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f n ¼ aðNca � NcmÞ=ðNcc � NcmÞ ð3Þ

An fn with a= 1.5 is used to scale down biomass growth, and
a= 1.0 is used for leaf expansion because of its higher sensitivity
to nitrogen stress. Available mineral nitrogen in soil is updated
daily by the soil nitrogen module, which simulates soil nitrogen
processes including mineralisation, immobilisation, nitrification,
denitrification, movement in soil and leaching (Probert et al.
1998).

APSIM and similar process-based models capture several
aspects of the interactions between water and nitrogen. Water
and nitrogen are primarily linked by applying theminimumof the
water and nitrogen stress to reduce the rate of different
processes (tissue expansion, biomass growth). Further, in
crops where water limits growth, reduced biomass would
reduce nitrogen demand. Reciprocally, nitrogen limitation
during crop expansion would reduce leaf area index and
evaporative demand. The modulation of canopy size by
nitrogen also affects the partitioning of water use between
transpiration and soil evaporation. Water and nitrogen
interactions are also captured in the water-driven uptake of
nitrogen by mass flow and diffusion and in the water-driven
fate of nitrogen in soil (e.g. leaching, mineralisation).

In general, the precision and accuracy of current models is
superior for the components of the water budget than for the
components of the nitrogen budget of soils and crops (Asseng
et al. 1998; Mohanty et al. 2010; Sharp et al. 2011a, 2011b; do
Nascimento et al. 2012). To support research on the effect of
water–nitrogen interactions on crop yield and grain protein,
models need to have improved capacity to simulate nitrogen-
related processes. The model SiriusQuality2 is improving
simulation of the protein content of the wheat grain, and
incorporating allometric relations accounting for the
proportions of structural nitrogen, gliadins and glutenins in
grain, and their responses to source : sink ratio, temperature,
radiation, ambient CO2 concentration, water and nitrogen
(Aguirrezábal et al. 2015; Martre et al. 2015). An alternative
modelling framework is being developed to improve capture of
genotype-dependent traits in APSIM (Hammer et al. 2010),
including the demand for structural, non-structural and
metabolic nitrogen pools of different organs. An example is
the calculation of leaf nitrogen demand based on a critical
specific leaf nitrogen (van Oosterom et al. 2010). This,
together with a canopy photosynthesis model, can help to
capture the genotypic differences in nitrogen demand and
uptake and their impact on radiation-use efficiency and
potential growth rate (Fig. 9). Better understanding of
genotype-dependent root water and nitrogen uptake in
different soils is needed. Modelling nitrogen mineralisation
requires methods to quantify better the composition and
decomposition of soil organic matter (e.g. more or less labile
fractions) in response to soil conditions (Luo et al. 2014) and crop
residues and their management (Mohanty et al. 2010; do
Nascimento et al. 2012). The characteristically large error in
the measurement of soil organic carbon and nitrogen
mineralisation challenges the parameterisation and validation
of soil carbon and nitrogen mineralisation models (Sadras and
Baldock 2003). Improved modelling of denitrification losses

during wets period can improve soil and crop nitrogen budgets
(Huth et al. 2010).

Conclusions: further research

From the previous discussion, the following lines of research are
suggested.

(1) Nitrogen dilution curves for water-stressed crops. Plant-
based diagnostic of crop nitrogen status must capture the
allometry between shoot nitrogen concentration and
biomass. With few exceptions, these curves have been
developed for well-watered crops. Thus, we propose to
develop nitrogen-dilution curves for major crops
accounting for the effects of water deficit. In wheat,
these curves also need to include explicitly a
compartment of water-soluble carbohydrates. These
dilution curves will allow for unequivocal assessment of
the nitrogen status of crops, which is in turn necessary
for calibration of diagnostic tools in crop management,
high-throughput methods in breeding and model
parameterisation.

(2) Tailoring fertiliser to variety. Fertiliser recommendations
are generic, but there is an increasing interest in variety-
specific differences in response to nitrogen. Thus, we
propose to assess the nitrogen demand and
responsiveness to fertiliser, in terms of yield and protein,
of newwheat varieties, and explore the benefits of tailoring
fertiliser management to specific varieties.

(3) Nitrogen uptake v. evapotranspiration relationship. The
French and Schultz model has been instrumental for
benchmarking and management of rainfed wheat in
Australia and has recently been expanded to other crops
and regions. By analogy to the yield–evapotranspiration
relationship, we propose to investigate the nitrogen uptake
v. evapotranspiration relationship; the nitrogen : water
ratio required to close the yield gap, at a certain grain
protein, has potential benchmarking applications.

(4) Plant-available nitrogen. Growers are familiar with the
concept of plant-available water but there is no
equivalent for nitrogen; estimates of fertiliser requirements
assume that all mineral nitrogen in the soil root-zone is
available for the crop. We thus propose to develop the
concept of plant-available nitrogen and field methods to
measure it. Practical aspects of soil sampling need some
attention, e.g. transport from the farm to the laboratory,
timeliness of laboratory results to support decisions.

(5) Influence of nitrogen supply onwater uptake. There is large
variation in the impact of nitrogen supply on water uptake.
We suggest that there is a need to establish the combination
of crops, soils and growing conditions where additional
nitrogen can enhance soil-water uptake. This is more likely
to be relevant in the northern region,where stored soilwater
is important.

(6) Water–nitrogen trade-offs associated with cover crops and
pastures. Some components of cropping systems contribute
nitrogen but may reduce the water available to subsequent
crops.We therefore need to quantify the trade-offs between
nitrogen supply and water consumption by pastures and
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greenmanures indifferent combinations of soil, climate and
rotations in both winter- and summer-rainfall regions.

(7) Carryover of nitrogen and risk analysis. Risk analysis of
fertiliser decisions generally assumes that all of the benefit
of nitrogen application is limited to a single season. Given
emerging experimental evidence, we need to determine the
size of the carryover effect for different combinations of
crop, soil, climate andmanagement andupdate risk analysis
to account for carryover of nitrogen beyond the application
season.

(8) Genotype-dependent nitrogen uptake in wheat. Breeding
for yield in Australian wheat adapted to winter-rainfall
regions has increased crop nitrogen uptake. Following on
from this finding, it is of interest to determine the
physiological and genetic basis of nitrogen uptake in old
and newwheat varietieswith proven differences in nitrogen
uptake.

(9) Nitrogen fixation in water-stressed temperate pulses.
Superior soybean lines have been selected for
maintenance of N2 fixation under drought. Research in
temperate legumes lags behind soybean and other
subtropical species. Hence, there is a need to screen
temperate pulses for N2 fixation in soil dry-down
experiments, and establish the adaptive value (in terms
of yield) of this trait.

(10) G�E�M in sorghum and maize. Sorghum is the more
important summer cereal in Australia and is supported by
local breeding, whereas growers rely on putatively less
adapted maize hybrids developed overseas. We propose to
compare sorghum and maize to understand the relevant
phenotypic differences (e.g. tillering, stomatal sensitivity,
response to sowing density) and to determine the
profitability and risk of different G�E�M
combinations (hybrids, plant density, row configuration,
sowing time, soil type and nitrogen fertilisation).

(11) Probabilistic patterns of supply and demand of water and
nitrogen.Modelling is a cost-effective approach to generate
agronomically interesting information across regions and
climates. We propose to model and map the nationwide,
probabilistic patterns of supply and demand of water
and nitrogen for major crops as background for
agronomic (e.g. timing of fertilisation) and breeding (e.g.
root patterns) studies. Nationwide patterns of water stress
have been produced for wheat, maize, sorghum, field pea
and chickpea; remaining crops to be modelled are barley,
canola, lentil, lupin and faba bean. The patterns of demand
and supply for nitrogen need to be developed for all crops.
To support this, we need improved modelling of genotype-
dependent nitrogen processes.

(12) The role of stomatal conductance in the adaptation to
drought and heat. Increasing stomatal conductance is a
conspicuous response to selection for yield. This is in
conflict with the view that stomatal closure at high
vapour-pressure deficit favours transpiration efficiency
and growth under drought. Thus, there is need to explore
the role of stomatal conductance in view of the trade-off
between evaporative cooling and water-use efficiency
against the backdrop of the probabilistic patterns of
thermal and water regimes in the cropping regions.
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