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We study collisions of moving nonlinear-Schrödinger solitons with a PT -symmetric dipole em-
bedded into the one-dimensional self-focusing or defocusing medium. Analytical approximations
are developed for both bright and dark solitons. In the former case, an essential aspect of the
approximation is that it must take into regard the intrinsic chirp of the soliton, thus going beyond
the bounds of the simplest quasi-particle description of the soliton’s dynamics. Critical velocities
separating reflection and transmission of the incident bright solitons are found by means of numeri-
cal simulations, and in the approximate semi-analytical form. An exact solution for the dark soliton
pinned by the complex PT -symmetric dipole is produced too.

I. INTRODUCTION

Losses are a ubiquitous feature appearing in all kinds
of optical systems. In most cases, losses are considered
as a detrimental feature, which must be compensated
by a properly introduced gain or feeding beam, in in-
ternally and externally driven systems, respectively [1].
However, losses may play a positive role too, helping to
stabilize modes which otherwise would not exist. An ex-
ample is a possibility to stabilize dissipative solitons in
models of laser cavities which are described by complex
Ginzburg-Landau (CGL) equations. The simplest ver-
sion of the CGL equation with the spatially uniform lin-
ear gain and cubic loss gives rise to exact solutions in the
form of chirped sech pulses [2], but they are unstable, as
the linear gain destabilizes the zero background around
the solitons. A possibility to stabilize the solitons was
proposed in Ref. [3], making use of dual-core couplers,
with the linear gain acting in one core, and linear loss –
in the other. In that system, the stable pulse exists, as an
attractor, along with an unstable counterpart of a smaller
amplitude, which plays the role of a separatrix between
attraction basins of the stable pulse and stable zero so-
lution. The use of similar settings for the generation of
stable plasmonic solitons [4], and for the creation of sta-
ble two-dimensional dissipative solitons and vortices in
laser systems with the feedback described by the linearly
coupled stabilizing equation [5], have been proposed too.

In this connection, it is relevant to stress a crucial dif-
ference between dissipative solitons, which are found, in
particular, in the linearly-coupled systems with the sep-
arated gain and loss [5, 6], and solitons in conservative
media. Stable dissipative solitons exist as isolated at-
tractors, selected as modes which provide for the balance

∗Electronic address: hsusanto@essex.ac.uk

between gain and loss in the system [7]. On the con-
trary, in conservative settings, including various models
of nonlinear optics [8], solitons exist in continuous fami-
lies, rather than as isolated solutions.

More recently, a special class of dissipative systems was
identified, with exactly balanced spatially separated (an-
tisymmetrically set) dissipative and amplifying elements.
Such systems realize the concept of the PT (parity-time)
symmetry. This concept was originally elaborated in
the quantum theory [9] for settings described by non-
Hermitian Hamiltonians, which contain spatially even
and odd real and imaginary potentials, respectively. A
distinctive feature of the Hamiltonians with complex PT -
symmetric potentials is the fact that, up to a certain
critical value of the strength of the imaginary (dissipa-
tive) part, their spectrum remains purely real. Actually,
such PT -symmetric non-Hermitian Hamiltonians (of lin-
ear systems) can be transformed into Hermitian ones [10].

In terms of the quantum theory, the PT -symmetry is a
theoretical possibility. To implement it in real settings, it
is natural to resort to the fact that the linear propagation
equation for optical beams in the paraxial approximation
has essentially the same form as the Schrödinger equation
in quantum mechanics, hence the evolution of the wave
function of a quantum particle may be emulated by the
transmission of an optical beam. This fact makes it pos-
sible to simulate many quantum-mechanical phenomena,
some of which are difficult to observe in direct experi-
ments, by means of relatively simple settings available in
classical optics [11].

The realization of the PT -symmetric settings in op-
tics, which combines spatially symmetric refractive-index
landscapes and mutually balanced spatially separated
gain and loss, was proposed in Ref. [12] and demon-
strated in Ref. [13]. These works had drawn a great deal
of attention to models of optical systems featuring the
PT symmetry, see recent review [14]. In the most basic
case, the models, which may naturally include the Kerr
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nonlinearity, amount to the nonlinear Schrödinger (NLS)
equation for the local amplitude of the electromagnetic
wave, ψ (x, z), with a complex potential, whose real and
imaginary parts, V (x) and W (x) are, as said above, spa-
tially even and odd, respectively:

i
∂ψ

∂z
+

1

2

∂2ψ

∂x2
+ g|ψ|2ψ = [V (x) + iW (x)]ψ. (1)

This equation is written in terms of the spatial-domain
setting, with propagation distance z, the second term ac-
counting for the the paraxial diffraction in the transverse
direction, x. The nonlinear term in Eq. (1) represents
the self-focusing (g = +1) or defocusing (g = −1) non-
linearity. It was also proposed to realize the same model
as the Gross-Pitaevskii equation in Bose-Einstein con-
densates, with the linear gain provided by a matter-wave
laser [15].
The presence of the nonlinearity in Eq. (1) naturally

leads to PT -symmetric solitons [16]. A crucially impor-
tant issue is the stability of solitons in such systems. For
PT -symmetric couplers, and for models with periodic
complex potentials, an accurate stability analysis of soli-
tons solutions was reported, respectively, in Refs. [17]
and [18].
Another relevant problem is wave scattering on PT -

symmetric potentials. In particular, periodic structures
can act as unidirectionally transmitting media near the
PT -symmetry-breaking point, with reflection suppressed
at one end and enhanced at the other, as predicted theo-
retically in Ref. [19] and demonstrated experimentally
in a metamaterial [20]. The most natural setting for
the study of the scattering of broad linear and nonlinear
wave packets (including solitons) is offered by localized
PT -symmetric potentials (defects) [21]. Such defects can
be induced, for instance, by nonlinear PT -symmetric
oligomers embedded into a linear lattice [22]. In the lat-
ter context, stationary states in the form of plane waves,
their reflection and transmission coefficients, and the cor-
responding rectification factors, illustrating the asymme-
try between left and right propagation, were analyzed.
Reflection and transmission of solitons by PT -symmetric
scattering potentials was studied in Refs. [23], where it
was shown that, under special conditions, one can have a
unidirectional flow of single and multiple solitons. Unidi-
rectional tunneling of plane waves through epsilon-near-
zero PT -symmetric bilayers was also reported in Ref.
[24].
The subject of the present work is the interaction of

bright and dark NLS solitons with a strongly localized
PT -symmetric potential, which may be represented by
the PT dipole:

V (x) + iW (x) = ǫδ(x) + iγδ′(x), (2)

where δ denotes the Dirac-delta function, δ′ stands for
the derivative of the delta-function, ǫ and γ being real
constants (positive or negative). Static solutions for
bright solitons pinned by the PT dipole with ǫ < 0,

which corresponds to the attractive defect, while the host
medium may be either self-focusing and defocusing, were
recently found in an analytical form, and their stability
was investigated numerically, in Ref. [25].
Previously, several techniques have been developed for

analyzing interactions of bright [8, 26, 27] and dark
[8, 28, 29] solitons with inhomogeneities, such as those
represented by the complex potential in Eq. (1). In this
work, we use a perturbation method for the consideration
of interactions of moving solitons with PT -symmetric
dipole (2), and report results of systematic numerical
simulations of such interactions.
The paper is organized as follows. The analytical ap-

proximation for the bright and dark solitons are devel-
oped in Section II, which also includes a solution of the
scattering problem for plane waves in the linear medium
with the embedded PT dipole. In that section, exact
solutions are derived too for trapped dark solitons in the
model with the self-defocusing spatially uniform nonlin-
earity and the PT -symmetric defect (2). Numerical re-
sults and their comparison with the analytical predictions
are reported in Section III. Conclusions are presented in
Section IV.

II. ANALYTICAL CONSIDERATIONS

A. The scattering problem in the linear model

In the linearized version of Eq. (1) and (2),

i
∂ψ

∂z
= −1

2

∂2ψ

∂x2
+ [ǫδ(x) + iγδ′(x)]ψ, (3)

it is natural to consider the scattering problem for plane
wave solutions, in the form of ψ (x, z) = eikzU(x), with
k < 0 and U(x) satisfying the following stationary equa-
tion:

− kU = −1

2
U ′′ + [ǫδ(x) + iγδ′(x)]U. (4)

The general solution of the scattering problem should
be looked for as

U(x) =

{

eiqx + (R1 + iR2) e
−iqx,

(T1 + iT2) e
iqx,

(5)

where eiqx with q =
√
−2k represents the incident wave

with the amplitude normalized to 1, while (R1 + iR2)
and (T1 + iT2), with real T1,2 and R1,2, are complex re-
flection and transmission coefficients, respectively.
The boundary conditions following from Eq. (4) at

x = 0 are

∆ (U ′) = 2ǫU0, ∆(U) = 2iγU0, (6)

where ∆(...) stands for the jump, and

U0 ≡ 1

2
[U (x = +0) + U (x = −0)] (7)
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is the mean value of U around x = 0. The substitution of
the generic form of the solution to the scattering problem,
in the form of Eq. (5), into Eq. (6) yields, after doing
some linear algebra, the following final results:

T1 =
q (ǫγ + q)

ǫ2 + q2
, T2 = −q (ǫ− γq)

ǫ2 + q2
,

R1 = − ǫ (ǫ + γq)

ǫ2 + q2
, R2 = −q (ǫ+ γq)

ǫ2 + q2
. (8)

In particular, for the case of γ = 0, these expressions go
over into the well-known solution for the real δ-functional
potential:

T1 =
q2

ǫ2 + q2
, T2 = R2 = − qǫ

ǫ2 + q2
, R1 = − ǫ2

ǫ2 + q2
,

(9)
which satisfies the unitarity condition:

T 2
1 + T 2

2 +R2
1 +R2

2 ≡ 1. (10)

On the other hand, in the particular case of ǫ = 0 ex-
pressions (8) reduce to a simple but, apparently, novel
result:

T1 = 1, T2 = −R2 = γ, R1 = 0. (11)

Note that the general expression (8) and the par-
ticular one (11) do not obey unitarity condition (10),
as additional power (norm) may be generated or ab-
sorbed by the term ∼ γ. Indeed, expression (11) yields
T 2
1 + T 2

2 + R2
1 + R2

2 = 1 + 2γ2 > 1. In the general case,
solution (8) produces the following result for the relative
change of the total power as the result of the scattering:

T 2
1 + T 2

2 +R2
1 +R2

2 − 1 =
2γq (ǫ+ γq)

ǫ2 + q2
. (12)

Thus, the result may be negative (the scattering-induced
loss of the total power) in the following cases (note that
we fix q > 0, while both γ and ǫ may have either sign):

ǫ > 0, 0 < −γ < ǫ/q;

γ > 0, ǫ < −γq. (13)

Otherwise, the scattering leads to the increase of the total
power.
The above analysis does not take into regard the pos-

sibility of the existence of a localized linear mode pinned
to the PT dipole, which can be found at ǫ < 0, in the
form of

U = U0e
ǫ|x| [1 + iγsgn(x)] , (14)

with arbitrary amplitude U0, and the single eigenvalue of
the propagation constant:

k = k0 ≡ ǫ2/2. (15)

Indeed, the above scattering solutions exist for k < 0,
while eigenvalue (15) is positive, hence the scattering and
trapped-mode states cannot coexist.
Finally, the result given by Eq. (8) should describe

approximately the scattering for broad pulses with ql ≫
1, where q is the central carrier wavenumber, and l is the
spatial width of the pulse.

B. Bright solitons

The free bright NLS soliton with amplitude η, velocity
v (in fact, it is the beam’s slope in the spatial-domain
setting), and coordinate ξ is taken in the usual form, as
the solution to Eq. (1) with the self-focusing sign of the
nonlinearity, and V =W = 0:

ψ (x, z) = η sech [η(x− ξ(z)] exp (ivx+ iφ(z)) , (16)

dφ

dz
=

1

2

(

η2 − v2
)

,

dξ

dz
= v. (17)

It is well known that the soliton may be considered as a
particle with effective mass

M =

∫ +∞

−∞

|ψ(x)|2 dx ≡ 2η (18)

and momentum

P = i

∫ +∞

−∞

ψ(x)
∂ψ∗

∂x
dx. (19)

The substitution of the unperturbed soliton’s wave
form (16) yields

P0 = 2ηv ≡Mv. (20)

In the presence of Hamiltonian perturbation (2), with
ǫ 6= 0 but γ = 0, the soliton may be treated, in the
adiabatic approximation [26], as a particle which keeps
the constant mass (dη/dz = 0) and moves under the
action of the effective potential, U(ξ) = ǫη2sech2 (ηξ) ,
according to Newton’s equation of motion,

d

dz

(

2η
dξ

dz

)

= −dU
dξ

= 2ǫη3
sinh (ηξ)

cosh3 (ηξ)
. (21)

In the presence of the dissipative potential ∼ γ, the
mass of the particle does not remain constant, because
the total power (norm) of the soliton evolves according
to the equation

d

dz

∫ +∞

−∞

|ψ(x)|2 dx = 2

∫ +∞

−∞

W (x) |ψ(x)|2 dx

= −2γ
∂

∂x

(

|ψ (x)|2
)

|x=0, (22)

or, after the substitution of ansatz (16),

dη

dz
= −2γη3

sinh (ηξ)

cosh3 (ηξ)
. (23)

Under the action of the same dissipative potential, the
total momentum of the wave field, defined as in Eq. (19),
suffers losses according to the equation

(

dP

dz

)

γ

=

∫ +∞

−∞

W (x)
∂

∂x

[

|ψ(x)|2
]

dx. (24)
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Substituting here expression (2) for W (x) and combin-
ing it with Newton’s equation (21), one arrives at the
following evolution equation:

d

dz

(

η
dξ

dz

)

= ǫη3
sinh (ηξ)

cosh3 (ηξ)
+γη4

[

3sech4 (ηξ)− 2sech2 (ηξ)
]

,

(25)
where c is substituted as per Eq. (17).
Thus, the motion of the soliton interacting with the

localized PT potential is described, in the simplest ap-
proximation, by the third-order system of coupled ODEs,
Eqs. (23) and (25). For the fast incident soliton, i.e.,
when dξ/dz (z → −∞) = c0 is large, Eqs. (23) and (25)
can be solved perturbatively, assuming, in the zero-order
approximation,

ξ(z) = c0z. (26)

However, the first-order collision-induced changes of the
soliton’s amplitude and momentum, ∆η and ∆ (2ηc), ex-
actly vanish in this limit. Indeed, substituting approxi-
mation (26) into the expressions following from Eqs. (23)
and (25),

∆η =

∫ +∞

−∞

dη

dz
dz, ∆(2ηc) = 2

∫ +∞

−∞

d

dz

(

η
dξ

dz

)

dz,

(27)
it is easy to check that both integrals are exactly equal
to zero. Thus, in the lowest-order approximation the
collision is completely elastic, which is a manifestation of
the PT symmetry of the model.
Numerical results displayed below [see Fig. 3(a)]

demonstrate that the full approximation, based on Eqs.
(23) and (25), is in agreement with simulations of the
underlying equation (1) with g = +1 for 0 < γ < ǫ, i.e.,
when the local defect is composed of the repulsive local
potential and the PT dipole which is weaker than the
potential. When ǫ < 0, i.e., the local potential is attrac-
tive, the disagreement is expected [see Fig. 3(c) below],
as the analysis does not take into regard the formation
of the trapped mode, which in the linear limit is given by
Eq. (14).
For vanishing ǫ, the acceleration or deceleration of the

soliton interacting with the defect can be accounted for if
the deviation of the phase of the perturbed soliton from
the adiabatic approximation, corresponding to Eq. (16),
is taken into regard. Indeed, a well-known fact is that
the perturbed soliton, whose inverse width (alias ampli-
tude), η, varies in the course of the evolution, η = η(z),
generates an additional chirp term in the phase, hence
ansatz (16) is replaced by

ψ (x, z) = η(z) sech [η(z)(x − ξ(z)]

× exp
[

ivx+ ib(z)(x− ξ(z)2) + iφ(z)
]

, (28)

where, as before, v = dξ/dz, and the expression for the
chirp coefficient is produced by the variational approxi-
mation [30]:

b(z) = − [2η(z)]−1 dη

dz
. (29)

Then, the substitution of the chirped ansatz (28) into Eq.
(24), and the subsequent substitution of the respective
correction to dP/dz into Eq. (21), yields, instead of (25),
a nonzero acceleration:

dv

dz
= 2bη

∫ +∞

−∞

W (x)
(x− ξ) dx

cosh2 [η(x − ξ)]

= 4γ2η3
tanh (ηξ)

cosh4(ηξ)
[2ηξ tanh (ηξ)− 1] , (30)

where we have inserted W (x) = 2γδ′(x), as per Eq. (2),
expression (29) for b, and Eq. (23) for dη/dz.
This approximation for the dynamics of bright solitons

is completely different from that derived in Ref. [23] for
another localized PT -potential. Comparison of predic-
tions based on Eqs. (23) and (25) or (30) with numerical
findings will be presented in Section III. In particular,
the post-adiabatic approximation, which makes use of Eq.
(30), is accurate enough for γ > 0 and negligibly small ǫ,
see Fig. 3(b,d) below.

C. Moving dark solitons

Dark solitons are produced by the following modifica-
tion of Eqs. (1) and (2):

i
∂ψ

∂z
= −1

2

∂2ψ

∂x2
+[ǫδ(x) + iγδ′(x)]ψ+

(

|ψ|2 − µ
)

ψ, (31)

where µ is the chemical potential (i.e., squared ampli-
tude) of the continuous wave background maintaining
the dark-soliton solution. Asymptotic theories for slowly
moving dark solitons have been developed previously [31–
36]. Here, we aim to present a perturbation theory for a
moving shallow (light-gray) dark soliton interacting with
the PT -symmetric dipole. Comparison of the analysis
with numerical results is not straightforward, as the sim-
ulations, reported in the following section, demonstrate
the generation of additional dark solitons, which is a
clearly nonperturbative effect. Nevertheless, some quali-
tative comparison will be possible, and, in any case, the
analysis may be of theoretical interest by itself.
We start by substituting into Eq. (31) the Madelung

form,

ψ (x, z) = ρ (x, z) exp (iφ (x, z)) , (32)

replacing Eq. (31) by a system of real equations for the
amplitude and phase:

∂ρ

∂z
= −1

2
ρ
∂2φ

∂x2
− ∂ρ

∂x

∂φ

∂x
+ ǫδ(x)ρ, (33)

∂φ

∂z
=

1

2
ρ−1 ∂

2ρ

∂x2
− 1

2

(

∂φ

∂x

)2

− γδ′(x)−
(

ρ2 − µ
)

. (34)

As in the case of Eq. (30), we focus on the case when
only the imaginary potential is present, i.e., ǫ = 0 (the
dynamics of dark solitons in the presence of various real
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potentials was studied in detail before [31–34]), while the
term γδ′(x) in Eq. (34) may be treated as a small pertur-
bation. Then, the standard approach to the description
of shallow dark solitons proceeds by setting [37]

ρ =
√
µ (1 + ερ1) , (35)

X ≡ 2
√
ε (x+

√
µz) , Z ≡ √

µε3/2z, (36)

where ε is a formal small parameter accounting for the
shallowness of the gray soliton.
The result of the analysis in the case of γ = 0 is the

relation between φ and ρ1, ∂φ/∂X = −ρ1/
(

2
√
µ
)

, and
the Korteweg-de Vries (KdV) equation for the evolution
of the amplitude perturbation:

∂ρ1
∂Z

− 6ρ1
∂ρ1
∂X

+
∂3ρ1
∂X3

= 0. (37)

At the next order, via transformations (36), the pertur-
bation term γδ′(x) in Eq. (33) gives rise to the corre-
sponding perturbation dipole term in Eq. (37):

∂ρ1
∂Z

− 6ρ1
∂ρ1
∂X

+
∂3ρ1
∂X3

=
4γ

ε3/2
δ′
(

X − 2

ε
Z

)

. (38)

Equation (38) is, in turn, tantamount to the perturbed
KdV equation studied in Ref. [38]. As shown in that
work, solutions to Eq. (38) in the form of the soliton
interacting with the moving dipole can be looked for as

ρ1 = − 2κ2

cosh2 (κ (X − 2Z/ε) + ζ(Z))
, (39)

where the soliton’s amplitude, κ(Z), and position shift,
ζ(Z), evolve according to the following equations:

dκ

dZ
=

2γ

ε3/2
κ sinh ζ

cosh3 ζ
, (40)

dζ

dZ
= κ

(

4κ2 − 2

ε

)

+
2γ

ε3/2
1

cosh2 ζ
. (41)

As shown in Ref. [38], dynamical system (40), (41) gives
rise to unbounded and trapped trajectories in the (ζ, κ)
plane, which, in terms of Eq. (31), correspond to solu-
tions for freely moving dark solitons, and those trapped
by the PT dipole. Comparison of these results with nu-
merical simulation is possible in a qualitative form, as
shown in Section III.

D. Exact solutions for pinned dark solitons

Stationary solutions to Eq. (31) for pinned dark soli-
tons can be looked for as

ψ (x) = a(x) + ib(x), (42)

with ψ(x) satisfying the stationary version of Eq. (31) at
x 6= 0,

− 1

2
ψ′′ +

(

|ψ|2 − µ
)

ψ = 0, (43)

where the prime stands for d/dx. Equation (43) is sup-
plemented by the following boundary conditions at x = 0:

∆b|x=0 = 2γa(x = 0), (44)

∆ (a′) |x=0 = 2ǫa(x = 0), (45)

where ∆ (...) stands for the jump of the respective func-
tion at x = 0. It is implied that functions a(x) and b(x)
in solution (42) are even and odd functions of x, respec-
tively, hence b(x = 0) = 0. The corresponding solutions
to Eq. (43) are found in two different forms, depending
on the sign of ǫ, viz.,

ψ(x) =
√
µ [cos θ + i sgn(x) sin θ] tanh [

√
µ (|x|+ ξ)] ,

(46)
for ǫ > 0 (the repulsive dipole), and

ψ(x) =
√
µ [cos θ + i sgn(x) sin θ] coth [

√
µ (|x|+ ξ)] ,

(47)
for ǫ < 0 (the attractive one). In fact, solution (47)
describes an antidark soliton pinned to the PT dipole.
The substitution of expressions (46) and (47) into Eqs.
(44) and (45) yields a result which is valid for either sign
of ǫ:

ξ =
1

2
√
µ
ln

(

√

4µ

ǫ2
+ 1 +

2
√
µ

|ǫ|

)

, θ = arctan γ. (48)

In the system with ǫ = 0, which is simulated below, Eq.
(48) yields ξ = ∞, and the corresponding solutions (46)
and (47) degenerate into a constant-amplitude continu-
ous wave (CW) with an embedded phase jump at x = 0,

∆φ = 2 arctanγ. (49)

The solutions given by Eqs. (46)-(48) are dark-soliton
counterparts of the exact stable solutions for pinned
bright solitons found in Ref. [25]), for ǫ < 0 (the at-
tractive dipole) and both the self-focusing and defocusing
signs of the nonlinearity in Eq. (1). In the limit of ǫ = 0,
the latter solution for the focusing nonlinearity amounts
to the usual bright soliton with the same embedded phase
jump (49).

III. NUMERICAL RESULTS

To study the soliton scattering by the PT -symmetric
dipole, we implemented the fourth-order Runge-Kutta
method for integrating Eq. (1), with the Laplacian ap-
proximated by the three-point central discretization.
The simulations were carried out in spatial interval
(−L,L] with L ≥ 50, and discrete stepsizes ∆x = 0.1 and
∆z = 0.005 or smaller (it was checked that any decrease
of ∆x and/or ∆z did not produce any conspicuous effect).
Following Ref. [25], the delta-function and its derivative
were approximated by

δ(x) =
s

π (x2 + s2)
, δ′(x) = − 2 s x

π (x2 + s2)2
, (50)
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with s = 0.1. This choice secured the inner width of the
regularized delta-functions to be much smaller than the
width of the incident soliton.

A. Scattering of Gaussian wave packets

First, we consider the passage of dispersive Gaussian
wave packets of width A−1/2 and velocity (spatial tilt)
v0 through the localized defect in the linear system, with
g = 0 in Eq. (1). To this end, the initial condition is
taken as

ψ(x, 0) = Ae−A(x−x0)
2

eiv0(x−x0), (51)

where the amplitude A is fixed arbitrarily, as the model
is currently linear, and the initial position of the soliton
is x0 = −10. To provide a quantitative description of
the reflection and transmission, we compute the relative
powers of waves that remain before the defect (at x < 0),
and those which have been transmitted past the defect
(to x > 0), PR/PI and PT /PI , according to the following
definitions:

PR =

∫ 0

−L

|ψ(x, z)|2 dx,

PT =

∫ L

0

|ψ(x, z)|2 dx,

PI =

∫ L

−L

|ψ(x, 0)|2 dx.

(52)

It will be then natural to compare their asymptotic val-
ues at z → ∞ with the reflection and transmission co-
efficients for the plane waves, (R2

1 + R2
2) and (T 2

1 + T 2
2 ),

as given by Eq. (8), with wavenumber q replaced by
incident velocity v0.
In Fig. 1 we display the evolution of the incident Gaus-

sian wave packet impinging onto the defect with ǫ = 0,
γ = 0.3, at two different values of v0. Shown is the top
view of the absolute value of the field, |ψ(x, z)|. Insets to
the same figure present coefficients PR/PI and PT /PI , as
described above. One can observe that, naturally, larger
incoming velocity v0 makes the values of the coefficients
at z → ∞ closer to exact results for the plane waves given
by Eq. (8), as the parameter accounting for the difference

of the Gaussian pulse (51) from the plane wave is
√
A/v0.

The case of γ < 0 is not shown here separately, as the
respective results are quite similar to those presented in
Fig. 1.

B. Dynamics of bright solitons

In the model with the self-focusing nonlinearity, g =
+1 in Eq. (1), we simulated collisions of the incident
bright soliton with the PT dipole, setting ǫ = 0 in Eq.
(2). The initial conditions are taken as per expression
(16), i.e.,

ψ (x, 0) = η sech [η(x − x0] exp (iv0 (x− x0)) , (53)
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FIG. 1: (Color online) The interaction of the incident Gaus-
sian wave packets with the localized defect, for ǫ = 0 and
γ = 0.3. Shown is the distribution of |ψ (x, z) |. Solid blue
and red lines in the insets depict the evolution of the relative
powers defined as PR/PI and PT /PI , respectively, see Eq.
(52). Their asymptotic values at z → ∞ are compared to the
reflection and transmission coefficients for the plane waves,
(R2

1+R
2

2) and (T 2

1 +T 2

2 ), given by Eq. (8) (horizontal dashed
lines).

centered at x0 = −10, with initial velocity v0 > 0, and
η = 1 (once ǫ = 0 was set, η = 1 may be always fixed by
rescaling).

Shown in Fig. 2 are two pairs of examples of the in-
teraction of the soliton with the dipole. In panels (a,b),
the case of γ > 0 is considered, which, according to Eqs.
(1), (2) and (50), implies that the incident soliton im-
pinges on the dipole from the side where the amplifying
(rather than attenuating) element is located. In panel
(a) of Fig. 2, the soliton gets trapped by the defect and
blows up, which happens when the initial velocity is suf-
ficiently small. On the other hand, when the velocity is
sufficiently large, the incoming soliton, quite naturally,
passes the defect, as seen in panel (b). These two exam-
ples are typical for such outcomes of the collision.

In panels (c,d) of Fig. 2, we display the evolution of
the soliton for γ = −0.5, when the the incident soliton
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approaches the dipole from the side of the attenuating
element. On the contrary to panel (a), where the blowup
was observed, in the present case the incident soliton is
reflected if its velocity is small enough. Naturally, the re-
flected soliton has a smaller amplitude than the incident
one, due to the action of the attenuation. On the other
hand, it is shown in panel (d) the the soliton passes the
defect if the velocity is large enough, similar to what was
observed for γ > 0 in panel (b). In all the panels, the
insets show the reflected and transmitted powers, PR/PI

and PT /PI , defined according to Eq. (52), as above.
Their asymptotic values at z → ∞ are compared with
the exact results, (R2

1 +R2
2) and (T 2

1 +T 2
2 ), for the plane

waves, as given by Eq. (5).

Obviously, an important characteristic of the interac-
tion of the soliton with the PT dipole, which also in-
cludes the attractive or repulsive local potential, as per
Eq. (2), is the minimum (threshold) velocity necessary
for the soliton to pass this defect. We aim to identify the
threshold velocity produced by the direct simulations of
Eq. (1), and compare it to predictions of the (semi-) an-
alytical approximation based on quasi-particle equations
(23), (25), and (30). Because not the entire power is
reflected or transmitted as a result of the collision, we
define the soliton as being transmitted past the defect
when, at least, half of its total power is transmitted, i.e.,
in terms of the insets of Fig. 2, the transmission thresh-
old corresponds to the point where the solid blue and red
lines cross.

The threshold velocities produced by the direct simu-
lations are displayed in Fig. 3, as functions of the PT -
dipole’s strength, γ, by crosses. Predictions produced by
a numerical solution of Eqs. (23) and (25) are presented
too in this figure, by means of dashed lines. In addition
to the approximation based on Eqs. (23) and (25), for
the case of small ǫ, such as in panels (b) and (d), we also
plot, by dashed-dotted lines, the prediction generated by
the numerical solution of Eqs. (23) and (30), which was
derived for ǫ = 0.

It is seen from Fig. 3(a) that, as mentioned in Section
II.B, the quasi-particle adiabatic approximation, based
on Eqs. (23) and (25), is in good agreement with the di-
rect simulations for 0 < γ < ǫ. On the other hand, panels
(b) and (d) demonstrate that the post-adiabatic approx-
imation, represented by Eqs. (23) and (30), which takes
into regard the the generation of the intrinsic chirp in the
soliton [see Eq. (29)], is relevant for |ǫ| ≪ γ . 0.2 (which
implies that γ is positive). The same approximation pro-
vides for a qualitative prediction of the threshold veloc-
ity for γ < 0 and |ǫ| ≪ |γ| too, even though in that case
the prediction is quantitatively inaccurate. The reason is
that, as can be seen from numerical data (not shown here
in detail), the deformation of the soliton around x = 0 is
not small in the latter case, which cannot be taken into
account by the perturbative treatment. In this sense, a
better agreement with the perturbation theory may be
expected for a smoother shape of the PT dipole [see Eq.
(50)], but in that case the analytical results take a more

cumbersome form, due to the complexity of the respec-
tive integrals in Eqs. (22), (24), and (30). Generally, the
fact that the discrepancy between the numerical and ana-
lytical results in Fig. 3 is smaller for γ > 0 is explained by
the fact that the larger amplitude of the pumped, rather
than attenuated, soliton in this case (see above) makes
the local perturbation weaker in comparison with other
terms in Eq. (1).

C. Dark solitons

To consider the interaction of dark solitons with the
PT dipole, we fix the CW-background amplitude in Eq.
(31) as µ = 1. In the absence of dark solitons, the CW
background, ψCW, is deformed by the potential [40, 41].
As shown above, in the limit of ǫ = 0 and ideal δ′ function
in Eq. (31), the deformation amounts to the phase jump
(49) at x = 0.
In Fig. 4(a), we plot the shape of the background ob-

tained in the numerical form, with the δ′ function in Eq.
(31) replaced by regularization (50)], for γ = 0.3 and
ǫ = 0. Similarly to the previous works, we find that
this ground state, produced by the stationary solution of
Eq. (31), exists at γ < 0.49 (at γ exceeding this critical
value, the system starts spontaneous generation of dark
solitons [40, 41]). The difference of the background from
the above-mentioned analytical solution, which amounts
to the phase jump (6) embedded into the constant back-
ground, is explained by the difference of approximation
(50) from the ideal δ′ function. Additionally, we also plot
in the same figure in panel (b) and (c) the profile of the
plane waves in the presence of nonzero ǫ.
Due to the presence of the non-uniform CW back-

ground (ψCW), we simulated the dynamics of a dark soli-
ton in the framework of Eq. (1) with initial conditions

ψ(x, 0) = ψCW

[

√

1− v20 tanh

(

√

1− v20(x− x0)

)

+ iv0

]

,

(54)
where v0 and x0 determine the initial velocity and posi-
tion of the dark soliton.
In Fig. 5, we plot simulated pictures of the interaction

of the dark soliton with the PT dipole for parameter
values indicated in the caption to the figure. Similar to
bright solitons considered above, the dark soliton is either
transmitted or reflected. In panel (b) of Fig. 5, an addi-
tional weaker reflected dark soliton emerges, as a result
of the interaction, in addition to the main passing soli-
ton. Another particular result is seen in panel (d), where
the reflected feature, observed at x < 0, is not a soliton
but a shelf, propagating with the speed determined by
the background amplitude (the generation of shelves by
dark solitons was considered in Ref. [42]).
The analytical approximation for the dark-soliton dy-

namics, based on equations (40)-(41) for variables κ(Z)
and ζ(Z), was derived in the framework of the adia-
batic approach, which does not take into regard the
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FIG. 2: (Color online) Examples of the trapping and blowup (a), and transmission (b), of the incident bright soliton by the
PT -symmetric dipole with γ = 0.3 and ǫ = 0. In panels (c) and (d), the incident soliton bounces back from the dipole, or
passes it, respectively, for γ = −0.5 and ǫ = 0. Shown is the distribution of |ψ (x, z) |. Similar to Fig. 1, the insets present the
evolution of the scaled transmission and reflection powers, and compare their asymptotic values to the respective coefficients
for the plane waves.

generation of the additional dark soliton or non-soliton
shelf, hence this approximation cannot describe the ob-
served phenomenology well enough. Nevertheless, pre-
dictions of the analysis may qualitatively explain some
features of the dynamics revealed by numerical simula-
tions. For the sake of the comparison, obtaining coor-
dinate ζ from simulation results of Eq. (1) is straight-
forward, while amplitude κ can be identified as κ(z) =

sign(x0)
√

(1− |ψ(x = ζ, z)|2) /2. Note also that our an-
alytical approximation is derived under the assumption
|v0| ∼ 1. In that regard, our approximation should only
be compared with dynamics in panels (b) and (d). In
particular, in the case shown in Fig. 5(b), the approxi-
mation correctly predicts that the incident dark soliton
would pass through the PT dipole, although there is a
discrepancy in approximating the phase shift of the soli-
ton after interaction – most plausibly, caused by the fact
that the adiabatic approximation cannot take into ac-
count the generation of the additional reflected soliton,
in this case. Nevertheless, the approximation correctly
predicts that the soliton accelerates in the vicinity of the

dipole.

IV. CONCLUSION

We have studied the dynamics of bright and dark soli-
tons in the model based on the focusing and defocusing
NLS equations with an embedded defect in the form of
the PT -symmetric dipole, combined with a local repul-
sive or attractive potential. The scattering problem for
plane waves and broad incident packets was considered
too in the framework of the linear version of the model.
The numerical study for the focusing nonlinearity has
produced threshold values of the velocity of the incident
bright soliton above which it passes the local defect.
For the defocusing nonlinearity, the interaction of dark
solitons with the defect is studied in the numerical form
too. Parallel to the simulations, we have developed
analytical approximations for both cases. For the bright
solitons, the adiabatic quasi-particle approximation
yields accurate results in the case when the repulsive



9

−0.4 −0.2 0 0.2
0

0.2

0.4

0.6

0.8

1

γ

v
m

in

(a) ǫ = 0.2

−0.4 −0.2 0 0.2
0

0.2

0.4

0.6

0.8

1

γ

v
m

in

(b) ǫ = 0.02

−0.4 −0.2 0 0.2
0

0.2

0.4

0.6

0.8

1

γ

v
m

in

(c) ǫ = −0.2

−0.4 −0.2 0 0.2
0

0.2

0.4

0.6

0.8

1

γ

v
m

in

(d) ǫ = −0.02

FIG. 3: (Color online) The minimum velocity necessary for the transmission of the soliton past the PT dipole, which includes
the local potential, as per Eq. (2). The crosses and dashed lines represent, respectively, results of the direct simulations of
Eq. (1), and the approximation produced by a numerical solution of Eqs. (23) and (25). For small ǫ in panels (b) and (d), the
approximation corresponding to Eqs. (23) and (30) is additionally plotted by the dashed-dotted line.

potential is stronger than the gain-and-loss component
of the defect. For the negligibly weak local potential,
the analytical consideration goes beyond the limit of the
adiabatic approximation, taking into regard the intrinsic
chirp of the soliton. The respective semi-analytical
results predict the threshold velocity in a reasonably
accurate form too. For the dark solitons, the approxima-
tion qualitatively explains the transmission, acceleration
and deceleration of the incident soliton. In addition,

the exact solution for the dark soliton pinned by the
PT -symmetric defect was found too.
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