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Abstract: This study aimed to evaluate the interaction of environmental variables and Water Use
Efficiency (WUE) via multivariate analysis to understand the importance of each variable in the
carbon–water balance in MATOPIBA. Principal Component Analysis (PCA) was applied to reduce
spatial dimensionality and to identify patterns by using the following data: (i) LST (MOD11A2)
and WUE (ratio between GPP-MOD17A2 and ET-MOD16A2), based on MODIS orbital products;
(ii) Rainfall baesed on CHIRPS precipitation product; (iii) slope, roughness, and elevation from the
GMTED and SRTM version 4.1 products; and (iv) geographic data, Latitude, and Longitude. All
calculations were performed in R version 3.6.3 and Quantum GIS (QGIS) version 3.4.6. Eight variables
were initially used. After applying the PCA, only four were suitable: Elevation, LST, Rainfall, and
WUE, with values greater than 0.7. A positive correlation (≥0.78) between the variables (Elevation,
LST, and Rainfall) and vegetation was identified. According to the KMO test, a series-considered
medium was obtained (0.7 < KMO < 0.8), and it was explained by one PC (PC1). PC1 was explained
by four variables (Elevation, LST, Rainfall, and WUE), among which WUE (0.8 < KMO < 0.9) was
responsible for detailing 65.77% of the total explained variance. Positive scores were found in the states
of Maranhão and Tocantins and negative scores in Piauí and Bahia. The positive scores show areas
with greater Rainfall, GPP, and ET availability, while the negative scores show areas with greater water
demand and LST. It was concluded that variations in variables such as Rainfall, LST, GPP, and ET
can influence the local behavior of the carbon–water cycle of the vegetation, impacting the WUE in
MATOPIBA.

Keywords: MATOPIBA; water use efficiency; principal component analysis

1. Introduction

The need for areas with agricultural potential in the world has been growing over
the years due to population growth [1]. The Brazilian Cerrado has been essential in this
search for agricultural areas and has undergone significant transformations over decades
due to large-scale food production, whether for export or domestic supply [2–4]. Such
transformations associated with human activities influence the climate, causing changes
in land use and land cover (LULC) and, consequently, affecting the carbon (C) and water
(H2O) cycles of the local vegetation [5].
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Barros Santiago et al. [4] showed a brief approach to influences in an exploratory
way, spatially describing the behavior of vegetation associated with these changes and
those influenced by some environmental variables that altered the WUE in MATOPIBA.
However, it was not clear what the contribution rate of each environmental variable in the
WUE changes, which will be described and detailed in this study by using multivariate
analyses in order to identify the contributions in the C-H2O balance of the vegetation.

One method for identifying the C-H2O balance of the vegetation is to analyze the
water use efficiency (WUE), a method based on the relationship between the gross primary
productivity (GPP) of the crop or vegetation and evapotranspiration (ET) [6–8]. Gross
primary productivity represents the primary carbon inputs to the terrestrial system [9],
and ET is a measure of water loss from the ecosystem [10]. Therefore, water-use efficiency
provides fundamental information in assessing impacts related to climate change, irrigation
deficiency, and the management of ecosystem productivity [11].

Previous studies have shown that internal and external factors affect WUE [12,13].
For example, regarding internal factors, each species has singularities regarding stomatal
conductance and photosynthetic rates, which influence the assimilation of C and the
efficiency of using H2O and, thus, the C-H2O balance [14]. Furthermore, vegetation is one
of the basic components of terrestrial ecosystems and is responsible for the equilibrium of
the C-H2O balance [5,15]. In turn, external factors are related to climatic variables such as
air temperature, rainfall [16,17], and elevation [13], due to the fact that the distribution of
vegetation is determined by water availability and temperature [18,19].

Changes in the vegetation directly cause changes in the ecosystem. Plants play an
important role in greenhouse gas (GHG) absorption and contribute to climate stability [20].
The interaction between plants and their associated soil biota can lead to complex feedback,
regulating plant community dynamics and ecosystem processes [21].

In areas where agricultural expansion occurs, land use for agricultural purposes on
the vegetation and the environment includes reducing carbon storage and the degradation
of natural habitats with a consequent loss of biodiversity [22,23]. However, the most
significant impact is probably the reduction in climate services provided by carbon storage
in frontier soils, particularly in extensive high-latitude agricultural frontiers [24].

In Brazil, the new agricultural frontier is known as MATOPIBA. This region is located
in the Cerrado biome and is favorable for the development of agriculture, especially for the
production of grains [25]. Furthermore, the area within this delimitation is characterized
by expanding an agricultural frontier equipped with high-productivity technologies [26].

The MATOPIBA was officially recognized as an agricultural frontier through Decree
number 8447 of 6 May 2015, which deals with the Agricultural Development Plan for
the region to promote and coordinate public policies aimed at sustainable economic de-
velopment based on agricultural activities and livestock [27]. In the last 20 years, the
considerable increase in soybean production resulting from the expansion of cultivated
areas and productivity significantly increased the Gross Domestic Product (GDP) of the
municipalities in the region [27,28]. Studies on the agricultural expansion taking place in
Cerrado areas, specifically in the MATOPIBA region, investigated in the present case, are
thus essential. However, due to the large territorial extension of the MATOPIBA region,
estimating the WUE locally by using punctual measurements (weather stations) becomes
unfeasible. One alternative is remote sensing [29,30], a method that facilitates large-scale
spatial assessments. Monitoring using this tool provides information about land surface
processes and helps evaluate the expansion of the agricultural land area [31].

The impacts of agricultural expansion on water resources are closely related to each
other and the regional climate due to the perceived increase in irritated areas in the Cerrado
over the past decades and mainly in Bahia [32]. The use of WUE contributes to under-
standing the consequences of land use and cover change, as these changes for agricultural
purposes occasioned greater water demand. Therefore, the objective of this study was to
evaluate the interactions between environmental factors and their effects on WUE dynamics
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in the MATOPIBA agricultural frontier between the years 2001 and 2019 via remote sensing
and multivariate analysis.

2. Materials and Methods
2.1. Study Area

The MATOPIBA region covers four Brazilian states: Maranhão, Tocantins, Piauí and
Bahia, with 73 million hectares (ha), consisting of 337 municipalities [26]—(Figure 1). Alti-
tudes vary between 1 and 1254 m above mean sea level (MSL), with the highest altitudes at
the extreme west (W) of Bahia and the lowest in the north (N) of Maranhão. MATOPIBA
encompasses portions of three biomes, Cerrado (90.94%), Amazon (7.27%), and Caatinga
(1.64%), corresponding to areas of 66,543,540.87 ha (665,435.41 km2), 5,319,628.40 ha
(53,196.29 km2) and 1,203,107.22 ha (12,031.08 km2), respectively [26].
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Figure 1. Geographic location of the MATOPIBA region in Brazil and South America (a) and elevation
of the MATOPIBA region (b). SRTM data source: Weber et al. [33].

The rainfall regime in MATOPIBA is seasonal, with the rainy season from Septem-
ber/October to April/May, with values above 900 mm, and the dry season from May to
September, with values below 600 mm [34,35]. Due to its territorial extension, MATOPIBA
presents a rainfall distribution according to the biomes, with the highest (smallest) records
near the border with the Amazon (Caatinga) [34]. According to the evaluation of the
variability of rainfall over the Brazilian Cerrado carried out by Correia Filho et al. [3]
on a multiscale, the largest accumulations occur in the west (W) (Mato Grosso-MT and
Goiás-GO), northwest (NW) (Tocantins), and north (N) (Maranhão) sectors of the biome,
with values > 1500 mm·year−1, mainly in the transition zone with the Amazon.

About the terrain, 47.9% of the areas are flat (slope up to 3◦) and 33.7% of areas
have gentle slopes (slope between 3◦ and 8◦); data from the agricultural aptitude of
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Matopiba reveal a significant proportion of land with high potential for intensive agricul-
ture development–approximately 26 million hectares (35% of the total) are classified as
possessing good and regular aptitude [36]. The predominance of large grain production
regions in the Plateaus and Depressions areas occurs due to the ease of the mechanization
of cultivation and the lower risk of erosion occurring, which is a cause of precautions due
to the predominance in the region of sandy and sandy mean texture soils [37].

In MATOPIBA, three river basins are inserted: Tocantins, Atlantic (between north
and northern transitions regions), and the San Francisco River. In these river basins, the
Tocantins, Araguaia, São Francisco River, and Parnaíba Rivers are inserted [26].

2.2. Acquisition of Remote Sensing Data

In this study, we used GPP (MOD17A2), ET (MOD16A2) [38], and land surface tem-
perature (LST, MOD11A2) [39] data at a spatial resolution of 1 km × 1 km, obtained from
the website (https://lpdaac.usgs.gov/products/, accessed on 10 May 2022).

Elevation, roughness, and slope data referring to the MATOPIBA region were obtained
from the EarthEnv website (https://www.earthenv.org/topography/, accessed on 11 May
2022), resulting from the products Global Multi-resolution Terrain Elevation Data 2010
(GMTED 2010) and 90 m Shuttle Radar Topographic Mission (SRTM) void-filled SRTM4.1
dev [40], which has a spatial resolution of 0.05◦ × 0.05◦.

Land Use and Land Cover data were obtained from the MAPBIOMAS website
(https://mapbiomas.org/, accessed on 15 May 2022), which has a spatial resolution of
30 m × 30 m and annual time resolution. The data are separated by biomes; thus, it was
necessary to produce a mosaic referring to the study area.

The Rainfall product was taken from Climate Hazard Group InfraRed Precipita-
tion with Station (CHIRPS) data [3,38,41], with a spatial resolution of 0.05◦ × 0.05◦

(https://data.chc.ucsb.edu/products/CHIRPS-2.0/, accessed on 11 May 2022). Annual
rainfall accumulated data between 2001 and 2019 were used in this study. CHIRPS data
are consistent and validated when compared to regions with a high density of stations
and meteorological data, as noted by Funk et al. [41]., Duan et al. [42], and Oliveira-Júnior
et al. [38], which are helpful in studies of remote regions or regions with poor or absent
rain gauge coverage [43]. Extraction, manipulation, and calculation were performed using
R version 3.6.3 [44] and Quantum GIS (QGIS) version 3.4.6 [45].

2.3. Estimate of Water Use Efficiency (WUE)

Water use efficiency was calculated as the ratio between GPP (MOD17A2) and ET
(MOD16A2)—(Equation (1)) [38,46–48]. Both products have a spatial resolution of
1 km × 1 km and weekly temporal resolution, which were later reprocessed to a spa-
tial resolution of 0.05◦ × 0.05◦ and monthly temporal resolution.

WUE =
GPP
ET

(1)

WUE is provided in gC/mm.m2, GPP is provided in grams of carbon per square meter
(gC/m2), and ET is provided in millimeters (mm).

2.4. Methods
Principal Component Analysis (PCA) Applied to Environmental and Meteorological Data

A PCA was applied to evaluate and understand the changes in WUE in the MATOPIBA
region. For this, the mean compositions (from 2001 to 2019) of the following variables
were used:

1. LST and WUE (ratio between GPP and ET), based on MODIS orbital products;
2. Rainfall, based on CHIRPS precipitation product;
3. Elevation, Roughness, and Slope of the GMTED and SRTM version 4.1 products;
4. Geographic data, based on Latitude and Longitude.

https://lpdaac.usgs.gov/products/
https://www.earthenv.org/topography/
https://mapbiomas.org/
https://data.chc.ucsb.edu/products/CHIRPS-2.0/
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The purpose of the PCA is to reduce the number of variables in a dataset to preserve
the total variance and identify patterns and/or processes associated with the observed
variables [49,50]. However, before submitting the database to the PCA, it is essential to ap-
ply the Kaiser–Meyer–Olkin (KMO) and Measure Sampling Adequacy (MSA) tests [51,52].
These tests aim to identify the ideal number of principal components (PC). Kaiser’s method,
which selects eigenvalues greater than 1 (λ > 1) [51], was used in this case for this purpose.
In addition, the degree of influence of each PC was also verified from their respective factor
loading (scores). The KMO and MSA tests are used as indicators of database quality indi-
vidually and collectively, respectively [49,50]. They are obtained by Equations (2) and (3).

KMO =

(
∑j ∑k 6=j r2

jk

)
(

∑j ∑k 6=j r2
jk + ∑j ∑k 6=j p2

jk

) (2)

MSA =

(
∑k 6=j r2

jk

)
(

∑k 6=j r2
jk + ∑k 6=j p2

jk

) (3)

r is the standard correlation coefficient, and p is the standard partial correlation coefficient.
According to Fávero et al. [53], the KMO and MSA tests range from 0 to 1. The values

are interpreted as follows: value of the variable or matrix < 0.5—discarded; between 0.5
and 0.6—bad; between 0.6 and 0.7—reasonable; between 0.7 and 0.8—medium; between
0.8 and 0.9—good; and above 0.9—excellent.

3. Results
3.1. Principal Component Analysis

The results obtained correspond to the correlation analysis via PCA, which is initially
run with eight variables. Only four variables presented KMO values > 0.7 and were suitable:
Elevation, LST, Rainfall, and WUE (medium adequacy, 0.7 < KMO < 0.8). The variable
WUE (0.8 < KMO < 0.9) was classified as good, followed by Elevation, LST, and Rainfall
classified as medium (0.7 < KMO < 0.8), as shown in Table 1.

Table 1. Correlation analysis (CA) and contribution (%) of the variables analyzed for the PC1 and
KMO and MSA test results. The results of the KMO and MSA tests vary from 0.50 to 1. The results of
the CA vary from −1 to 1. The explained variance and percentage of contribution vary from 0 to 100.

Variables KMO Correlation PC1 Contribution PC1 (%)

Elevation 0.79 0.82 25.95
LST 0.79 0.83 25.64

Rainfall 0.79 0.78 25.55
WUE 0.81 −0.82 22.86

Variance Explained (%) - - 65.77

Overall MSA = 0.79

The overall MSA value was 0.79, with a similar classification relative to the KMO
test. According to Kaiser’s criterion (λ > 1), one single component (PC1) explained a good
part of the total variance of the relational pattern between the variables and WUE [52,54].
Table 1 and Figure 2 show the correlation analysis and the percentage of contribution of
each variable relative to each PC, indicating a positive correlation (≥0.78) between the
variables and the WUE of the MATOPIBA region. In addition, the PC1 indicated that
the four variables—Elevation, LST, Rainfall, and WUE—explained 65.77% of the total
variance. Regarding the degree of contribution of the variables to the PC1, there was
a slight difference (<4%) between the variables with the highest and lowest percentage;
the contributions were distributed as follows: Elevation (25.95%), LST (25.64%), Rainfall
(25.55%), and WUE (22.86%).
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from the first two main components.

Figure 3 shows the factor loadings related to PC1, indicating a different behavior with
positive/negative patterns. Negative scores were observed in the western portion of the
states of Bahia and Piauí, possibly resulting from agricultural practices in these regions [55,56].
Proper management in agriculture, necessary for enhancing the development of crops, leads
to greater WUE and water demand [57,58]. In addition, the portions where negative scores
were observed were coincidently located in areas with higher elevations, higher LST values,
and lower rainfall rates, which corroborates the results of Barros Santiago et al. [4].
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Positive scores were observed in the south of the state of Maranhão and over a large
part of the state of Tocantins, possibly related to the variables Rainfall, GPP, and ET, since
these areas have a dense vegetation cover (forests in the northern portion of the Maranhão)
and watercourses of the main rivers existing in the Brazilian Cerrado. For example, Correia
Filho et al. [3] evaluated the behavior of precipitation in the Brazilian Cerrado and identified
the highest rainfall rates (>1500 mm·year−1) in the northern part of Maranhão.

3.2. Spatio-Temporal Variation of LULC

The change in LULC influences the WUE; in this manner, the changes for agricultural
purposes change the values of the WUE’s in the MATOPIBA region. Over the course of
19 years (2001–2019), an addition was found in the areas of agricultural production. In
the year 2001, agriculture occupied 0.52% (7393 km2) and soybean plantings occupied
0.53% (7581 km2) of the MATOPIBA area. In the year 2019, the agricultural area increased
by 1.08% (15,369 km2) and soybeans increased by 3% (42,539 km2). Between the years
analyzed, there was an addition in agriculture of 0.56% (7976 km2) and soybeans by 2.47%
(34,958 km2). When we observe Figure 4a,b, which is a clipping inserted south of the
MATOPIBA region, the expansion of agricultural and soybean planting areas is noted.
Figure 4c,d related to WUE show that soybean planting areas obtained the highest values
of WUE (>2.8 gC/mm.m2), and the relationship between the larger WUEs and agricultural
areas shows that the anthropic influence due to cultural treatment and agricultural manning
induced higher agricultural productivity and, consequently, an increased economic return.
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4. Discussion

The composition of the analyzed variables (Elevation, LST, Rainfall, and WUE) directly
influenced the PC1, and they can be explained by the fact that WUE has a high sensitivity
to climate change and by geographical aspects of the environment, for which its modifi-
cations affect the behavior of the vegetation, altering the WUE. Recently, Chen et al. [59]
and Collados-Lara et al. [60] identified an opposite relationship between elevation and air
temperature. This is due to the thermal contrast between soil and atmosphere and also due to
the effect of variations in air mass and humidity, which is in line with Kattel et al. [61], who ob-
served the highest values of air temperatures at higher altitudes and the lower values at lower
altitudes. In the regions with high elevations, climate change affects several environmental



Sustainability 2022, 14, 8758 8 of 13

factors (temperature, humidity, and light, among others) [62] and, consequently, the WUE. In
this study, WUE significantly increased with elevation in the function of the agricultural areas
present in these portions of the MATOPIBA (west of the state of Bahia).

LST and Rainfall are used as indicators of the relationship between vegetation and
climate change because they directly impact vegetation growth [63,64]. Land-surface
temperature exerts a strong influence on vegetation development. Huang et al. (2019)
found that the ideal temperature for global productivity for all vegetation types is 23 ± 6 ◦C.
In tropical forests, the ideal temperature must be close to the mean temperature during the
growth season [65].

In some instances, the increase in WUE is conditioned to high temperatures [66,67]
as long as it is within a certain threshold. It is noteworthy that the ideal temperature
for photosynthesis is between 20 ◦C and 30 ◦C [68], and temperatures beyond this range
contribute to decreasing the WUE of the crop, resulting in increased transpiration and
soil evaporation [69]. In this manner, high temperatures (>30 ◦C) force plants to adapt to
greater carbon dioxide (CO2) absorption along with a smaller loss of H2O by evaporation,
thus impacting the carbon–water cycle of the vegetation [70].

The effects of the rainfall are variable and depend on the species present in the
ecosystem [71]. The rainfall aids in the biophysical processes of the vegetation [72,73]. It
is noteworthy that the association of lower rainfall with high evapotranspiration rates
contributes to increased stress in plants [74]. Thus, plant growth depends on the rainfall
regime; if rainfall is insufficient, then growth will depend exclusively on the groundwater
availability [75], forcing the plants to adapt to minimizing the loss of H2O by transpiration.
In turn, excess rainfall associated with cloud cover reduces the incidence of solar radiation
on the ground and, thus, impairs the photosynthetic processes [76].

Water use efficiency, the most prominent variable in PC1, can be explained by its input
variables in Equation (1) (GPP and ET), which are measures related to the exchange of
C and H2O between plants and the atmosphere (photosynthesis) [77,78] and, therefore,
dependent on the environment. The highest GPP values were observed along with areas
where ET values were high (N of Maranhão), associated with greater rainfall availability in
this region [2,3]. Frankenberg et al. [79] and Ma et al. [80] found the highest total annual
GPP values in areas of dense vegetation and evergreen broadleaf forests. Zhang et al. [81]
highlighted the areas with high vegetation density that presented higher ET values than
croplands. Giacomoni and Mendes [82] evaluated the behavior of ET over the state of Rio
Grande do Sul and identified that the regions with the highest ET values were those with
less anthropic influence (dense forests and lakes).

In recent years, the MATOPIBA consortium has stood out for its growing grains
production, such as corn, beans, cotton [83], and especially soybean [28]. Such rapid
agricultural development resulted from investments in agribusiness [84]. These activities in
MATOPIBA associated with changes in environmental factors (LST, Rainfall, and ET) affect the
carbon–water cycle of terrestrial ecosystems and, ultimately, the behavior of GPP and ET. Thus,
significant changes in WUE were observed in agricultural areas that show a better response to
these changes, obtaining higher productivity [48]. Pereira and Castro [85] corroborated data
from the National Supply Company [86] in that the mean grain yield in Brazil increased from
1496 kg/ha in 1990 to 3588 kg/ha in 2015, corresponding to a growth of 140%. Furthermore,
the total area under soybean crops harvested in the MATOPIBA consortium increased from
0.8 Mha in 1999 to 4.1 Mha in 2018 [87], representing about 11% of the national production of
soybean, corresponding to 13.3 million tons in the crop year 2018/19 [86].

5. Conclusions

The multivariate analysis of the environmental variables and WUE in the MATOPIBA
region showed that only four variables were suitable for analysis, namely, Elevation, LST,
Rainfall, and WUE, with KMO and MSA values > 0.75, and 0.79, respectively. In the
PCA, it was found that one PC was sufficient for the evaluation, as the PC1 corresponded
to 65.77% of the explained variance. Elevation was the highest contribution in the PC1
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(25.95%) variable and influenced the other variables due to the altitude gradient existing in
MATOPIBA. This behavior alters the carbon–water cycle of the vegetation and consequently
affects the WUE.

In the spatial aspect, positive (negative) scores were observed in regions of the states
of Maranhão and Tocantins (west of the states of Bahia and Piauí). Negative scores were
related to higher WUE values, prompted by the expansion of agricultural practices in the
region. When associated with higher LST values, these practices increase the water demand
in croplands existing in MATOPIBA. On the other hand, positive scores were related to
greater water availability associated with areas of dense vegetation and ecoregions of the
Cerrado biome existing in the MATOPIBA region, contributing to the increase in GPP and ET.

The results obtained indicate that agricultural expansion in the MATOPIBA region is
directly affected by changes in environmental factors (Elevation, LST, Rainfall, GPP, and ET).
Such factors are directly linked to the way the vegetation, whether in natural or agricultural
lands, behaves with the carbon–water cycle and its spatio-temporal distribution, which
impacts the efficiency of water use in MATOPIBA.
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