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Abstract We calculate the cross sections of the processes
T+
ccπ, T+

ccρ → D(∗)D(∗) and of the corresponding inverse
reactions. We use effective Lagrangians to account for the
couplings between light and heavy mesons, and give special
attention to the form factors in the vertices. Using QCD sum
rules we calculate here for the first time the T+

cc − D − D∗
form factor. The T+

cc absorption cross sections are found to be
larger than the production ones. We compare our results with
the only other existing estimate of these quantities, presented
in a work by J. Hong, S. Cho, T. Song and S. H. Lee, in which
the authors employed the quasi-free approximation. We find
cross sections which are one order of magnitude smaller.

1 Introduction

Very recently the LHCb collaboration has reported the obser-
vation of a narrow peak in the D0D0π+-mass spectrum in
proton-proton (pp) collisions with statistical significance of
more than 10 σ [1,2]. By using an amplitude model based
on the Breit–Wigner formalism, this peak has been fitted to
one resonance with a mass of approximately 3875 MeV and
quantum numbers J P = 1+. Its minimum valence quark
content is ccūd̄ , giving it the unequivocal status of the first
observed unconventional hadron with two heavy quarks of
the same flavor. According to the data, its binding energy with
respect to the D∗+D0 mass threshold is 273±61±5+11

−14 keV

and the decay width is 410 ± 165 ± 43+18
−38 keV. These values

are consistent with the expected properties for a T+
cc isoscalar

tetraquark ground state with J P = 1+.
Even before the experimental discovery of this doubly

charmed tetraquark state, there was a debate concerning its
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fundamental aspects, such as its decay/formation mecha-
nisms and underlying structure [3–14]. Its discovery obvi-
ously stimulated the appearance of more studies employing
different theoretical approaches [15–27]. In particular, sev-
eral works have investigated the implications of the T+

cc struc-
ture (hadron molecule or compact tetraquark) for the observ-
ables. However, a compelling understanding of the nature of
the T+

cc is still lacking.
In order to determine the internal structure of the T+

cc state,
more detailed experimental data and theoretical studies are
necessary. In this context, heavy-ion collisions appear as a
promising environment, where charm quarks are copiously
produced. The search for exotic charm hadrons in heavy-
ion collisions has already started and the X (3872) has been
observed by the CMS and LHCb collaborations. In these col-
lisions there is a phase transition from nuclear matter to the
quark-gluon plasma (QGP), i.e. the locally thermalized state
of deconfined quarks and gluons. The QGP expands, cools
down and hadronizes, forming a gas of hadrons. When this
last transition takes place, heavy quarks coalesce to form mul-
tiquark bound states at the end of the QGP phase. Next, the
multiquark states interact with other hadrons in the course of
the hadronic phase. They can be destroyed in collisions with
the comoving light mesons, or produced through the inverse
processes [28–40]. The final yields depend on the hadronic
interactions which, in turn, depend on the spatial configura-
tion of the multiquark systems. Therefore, the evaluation of
the interaction cross sections of the Tcc with light mesons is a
crucial ingredient for the interpretation of the data. While the
hadronic interactions of the X (3872) have been addressed in
several papers, there is only one work [11], where the Tcc
– light meson cross section was calculated. In Ref. [11] the
authors treated the Tcc as a loosely bound state of a D and
a D∗. In this approach it seems natural to use the quasi-free
approximation, in which the charm mesons are taken to be
on-shell and their mutual interaction and binding energy are
neglected. In the quasi-free approximation theTcc is absorbed
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when a pion from hadron gas interacts with the D or with
the D∗. In each of these interactions the other heavy meson
is a spectator. The advantage of this approach is that the
only dynamical ingredient is the D∗ D π Lagrangian, which
is well-known. On the other hand, the role of the quantum
numbers of the D∗ D bound state is neglected. Moreover,
some possible final states are not included. Clearly the subject
deserves further investigation and this is the main purpose of
this work.

It is important to emphasize that in the long time limit,
the collisions mentioned above will drive the exotic charm
mesons to chemical equilibrium, at which point, the only
relevant parameters are the particle mass, the temperature
and the charm fugacity. In equilibrium, we can neglect the
microscopic dynamics and calculate the particle abundances
with the statistical hadronization model (SHM) [41,42]. This
model reproduces very well most of the hadron multiplicities.
For exotic particles there are no multiplicity measurements
yet. If they are produced by quark coalescence, their yields in
the beginning of the hadron gas phase can be very different
from the equilibrium values. Whether or not equilibrium will
be reached in the fireball lifetime, depends on the microscopic
cross sections. In [40], for example, it was shown that, in the
case of the K ∗, the equilibration time could change by a factor
2 for different choices of the cross sections. This motivates
us to study the microscopic dynamics of T+

cc production.
In what follows we will study the interactions of the T+

cc
state with light mesons. We will employ effective Lagrangian
methods, giving special attention to the form factors and cou-
pling constants.

The paper is organized as follows. In Sect. 2 we describe
the formalism. Section 3 is devoted to the theory of form
factors. In Sect. 4 we present and analyze the obtained results.
Finally, Sect. 5 is devoted to the concluding remarks.

2 Framework

In Fig. 1 we show the lowest-order Born diagrams contribut-
ing to the T+

ccπ and T+
ccρ scattering.

For the diagrams (a) − ( f ) we employ the effective
Lagrangians involving π , ρ, D and D∗ mesons given by [28–
36],

LπDD∗ = igπDD∗D∗
μ�τ · (

D̄∂μ �π − ∂μ D̄ �π) + h.c.,

LρDD = igρDD(D�τ∂μ D̄ − ∂μD�τ D̄) · �ρμ,

LρD∗D∗ = igρD∗D∗
[
(∂μD

∗ν �τ D̄∗
ν − D∗ν �τ∂μ D̄

∗
ν ) · �ρμ

+(D∗ν �τ · ∂μ �ρν − ∂μD
∗ν �τ · �ρν)D̄

∗μ

+ D∗μ(�τ · �ρν∂μ D̄
∗
ν − �τ · ∂μ �ρν D̄∗

ν )
]
, (1)

where �τ are the Pauli matrices in the isospin space; �π
and �ρ denote the pion and ρ-meson isospin triplets; and

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k)

Fig. 1 Diagrams contributing to the following process (without spec-
ification of the charges of the particles): Tccπ → DD (a and b),
Tccπ → D∗D∗ (c and d), Tccρ → D∗D (e and f), Tccπ → DD∗
(g), Tccρ → DD (h and i) and Tccρ → D∗D∗ (j and k). The particle
charges are not specified

D(∗) = (D(∗)0, D(∗)+) represents the isospin doublet for
the pseudoscalar (vector) D(∗) meson. The coupling con-
stants gπDD∗, gρDD and gρD∗D∗ are determined from the
decay width of D∗ and from the relevant symmetries, having
the following values [28–32]: gπDD∗ = 6.3 and gρDD =
gρD∗D∗ = 2.52.

In the case of the diagrams (g) − (k) in Fig. 1, the ver-
tices involving light and heavy-light mesons are anomalous,
and can be described in terms of a gauged Wess–Zumino

123



Eur. Phys. J. C (2022) 82 :296 Page 3 of 10 296

action [43–46]. Explicitly, they are

LπD∗D∗ = −gπD∗D∗εμναβ∂μD
∗
νπ∂α D̄

∗
β,

LρDD∗ = −gρDD∗εμναβ(D∂μρν∂α D̄
∗
β + ∂μD

∗
ν ∂αρβ D̄),

(2)

with ε0123 = +1. The coupling constants gπD∗D∗ and gρDD∗
have the following values [43–46]: gπD∗D∗ = 9.08 GeV−1

and gρDD∗ = 2.82 GeV−1.
In this study, we assume that the T+

cc is a bound state of
D∗D, with quantum numbers I (J P ) = 0(1+). Therefore,
the effective Lagrangian describing the interaction between
the Tcc and the DD∗ pair is given by [23],

LTcc = igTccDD∗Tμ
ccD

∗
μD. (3)

In the expression above, Tcc denotes the field associated to
T+
cc state; this notation will be used henceforth. Also, the
D∗

μD means the D∗+
μ D0 and D∗0

μ D+ components, although
we do not distinguish them here since we will use isospin-
averaged masses. The coupling constant gTccDD∗ will be dis-
cussed in the next section.

The effective Lagrangians introduced above allow us to
determine the amplitudes of the processes shown in Fig. 1.
They are given by

MTccπ→DD = M(a)

T+
cc

+ M(b)
T+
cc

,

MTccπ→D∗D∗ = M(c)
T+
cc

+ M(d)

T+
cc

,

MTccρ→D∗D = M(e)
T+
cc

+ M( f )
T+
cc

,

MTccπ→DD∗ = M(g)
T+
cc

,

MTccρ→DD = M(h)

T+
cc

+ M(i)
T+
cc

,

MTccρ→D∗D∗ = M( j)
T+
cc

+ M(k)
T+
cc

, (4)

where the explicit expressions are

M(a)

T+
cc

≡ gTccDD∗gπDD∗εμ
1

1

t − −m2
D∗

×
(

−gμν + (p1 − −p3)μ(p1 − −p3)ν

m2
D∗

)

(p2 + p4)ν,

M(b)
T+
cc

≡ −gTccDD∗gπDD∗εμ
1

1

u − −m2
D∗

×
(

−gμν + (p1 − −p4)μ(p1 − −p4)ν

m2
D∗

)

(p2 + p3)ν,

M(c)
T+
cc

≡ −gTccDD∗gπDD∗εμ
1 εν

4 ε∗
3μ

1

t − −m2
D

(2p2 − p4)ν,

M(d)

T+
cc

≡ −gTccDD∗gπDD∗εμ
1 εν

3 ε∗
4μ

1

u − −m2
D

(2p2 − p3)ν,

M(e)
T+
cc

≡ −gTccDD∗gρDDε
μ
1 εν

2 ε∗
3μ

1

t − −m2
D

(2p4 − −p2)ν,

M( f )
T+
cc

≡ −gTccDD∗gρD∗D∗εμ
1 εα

2 ε
∗β
3

1

u − −m2
D∗

×
(

−gμν + (p1 − −p4)μ(p1 − −p4)ν

m2
D∗

)

×((2p3 − −p2)αg
ν
β − −(p3 + p2)νgαβ

+(2p2 − −p3)βg
ν
α),

M(g)
T+
cc

≡ gπD∗D∗gTccDD∗εμ
1 εα

4
1

t − −m2
D∗

εμναβ pν
2 p

β
4 ,

M(h)

T+
cc

≡ gρDD∗gTccDD∗εμ
1 ε∗

2α

1

t − −m2
D∗

×
(

−gμν + (p1− −p3)μ(p1− −p3)ν

m2
D∗

)

εναβγ p2β p4γ ,

M(i)
T+
cc

≡ −gρDD∗gTccDD∗εμ
1 ε∗

2α

1

u − −m2
D∗

×
(

−gμν + (p1− −p4)μ(p1 − −p4)ν

m2
D∗

)

εναβγ p2β p3γ ,

M( j)
T+
cc

≡ −gρDD∗gTccDD∗εμ
1 ε∗

3μεν
2 εα

4
1

t − −m2
D

εναβγ pβ
2 pγ

4 ,

M(k)
T+
cc

≡ gρDD∗gTccDD∗εμ
1 ε∗

4μεν
2 εα

3
1

u − −m2
D

εναβγ pβ
2 pγ

3 . (5)

In the above equations, p1 and p2 are the momenta of ini-
tial state particles, while p3 and p4 are those of final state
particles; ε

μ
i ≡ εμ(pi ) is the polarization vector related to

the respective vector particle i ; t and u are the Mandelstam
variables, which together with the s-variable they are defined
as: s = (p1 + p2)

2, t = (p1 − p3)
2, and u = (p1 − p4)

2.
We define the total isospin-spin-averaged cross section in

the center of mass (CM) frame for the processes in Eq. (4) as

σab→cd = 1

64π2s

| �pcd |
| �pab|

∫
d

∑

S,I

|Mab→cd |2, (6)

where ab → cd designates the reaction according to Eq. (4);√
s denotes the CM energy; | �pab| and | �pcd | are the three-

momenta of initial and final particles in the CM frame,
respectively; d = dφd(cos (θ)) is the solid angle mea-
sure; the symbol

∑
S,I stands for the sum over the spins and

isospins of the particles, weighted by the isospin and spin
degeneracy factors of the two particles forming the initial
state, i.e. [33,34]
∑

S,I

|Mab→cd |2 → 1

ga

1

gb

∑

S,I

|Mab→cd |2, (7)

with ga = (2Ia + 1)(2Sa + 1) and gb = (2Ib + 1)(2Sb + 1)

are the degeneracy factors of the particles in the initial state.
In the present analysis we do not consider isospin violation.

The cross sections of the inverse processes, in which T+
cc

is produced, can be calculated using the detailed balance
relation, i.e.

gagb| �pab|2σab→cd(s) = gcgd | �pcd |2σcd→ab(s). (8)
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Finally, in the implementation of the numerical calcula-
tions another ingredient should be brought into play.To avoid
the artificial increase of the amplitudes with the CM energy,
we must include a form factor for each vertex present in a
given diagram. This is the subject of the next section.

3 Form factors and couplings

The theory of form factors is the theory of three-point (or
four-point) correlation functions associated with a generic
vertex of three mesons M1, M2 and M3. A three-point cor-
relation function, which depends on the external 4-momenta
p and p′ is given by:

�(p, p′) =
∫

d4x d4y eip
′.x e−i(p−p′).y

×〈0|T { j3(x) j†
2 (y) j†

1 (0)}|0〉 (9)

where the T is the time-ordered product and the current ji
represents states with the quantum numbers of the meson i .
This correlation function is evaluated in two ways. In the first
one, we consider that the currents are composed by quarks
and write them in terms of their flavor and color content with
the correct quantum numbers. This is the QCD description of
the correlator, also known as OPE (Operator Product Expan-
sion) description. In the second way, we write the correla-
tion function in terms of matrix elements of hadronic states
which can be extracted from experiment, or calculated with
lattice QCD or estimated with effective Lagrangians. In this
second approach we never talk about quarks and use all the
available experimental information concerning the masses
and decay properties of the relevant mesons. This is the
hadronic description of the correlator, also known as phe-
nomenological description. After performing the two eval-
uations of the correlation function separately, we identify
one description with the other, obtaining an equation. In this
equation the form factor, i.e. the function gM1 M2 M3(p, p

′),
is the unknown, which is determined in terms of the QCD
parameters (quark masses and couplings) and also in terms of
the meson masses and decay constants. This procedure can
be implemented in lattice QCD. In its analytic (and approxi-
mated) version it is called QCD sum rules (QCDSR) [47,48].
In Ref. [49] all the form factors required for the present calcu-
lation were computed in QCDSR, except for the Tcc−D−D∗
form factor, which will be calculated in the next subsection.

3.1 The Tcc − D − D∗ form factor

In this section we study the Tcc form factor in the ver-
tex T+

cc D
0D∗+, considering Tcc as a four-quark state. The

form factor in the vertex T+
cc D

+D∗0 is, of course, the same.
Assuming that the quantum numbers of the Tcc are J P = 1+,

the interpolating field for T+
cc is given by [6]:

jμ = i(cTa Cγμcb)(ūaγ5Cd̄Tb ) , (10)

where a, b are color indices, and C is the charge conjugation
matrix.

The QCDSR calculation of the vertex T+
cc D

0D∗+ is based
on the three-point function given by:

�αμ(p, p′, q) =
∫

d4x d4y eip
′.x eiq.y �αμ(x, y), (11)

with

�αμ(x, y) = 〈0|T [ j D∗
α (x) j D5 (y) j†

μ(0)]|0〉, (12)

where p = p′ + q and the interpolating fields for D0 and
D∗+ are given by:

j D5 = i ūaγ5ca, and j D
∗

α = d̄aγαca . (13)

In order to evaluate the phenomenological side of the sum
rule we insert intermediate states for Tcc, D and D∗ into
Eq. (11). We get:

�
(phen)
αμ (p, p′, q) = −iλTccmD∗ fD∗ fDm2

D gTccDD∗(q2)

mc(p2 − m2
Tcc

)(p′2 − m2
D∗)(q2 − m2

D)

×
(

−gαλ + p′
α p

′
λ

m2
D∗

)(

−gλ
μ + pμ pλ

m2
Tcc

)

+ · · · , (14)

where the dots stand for the contribution of all possible
excited states. The form factor, gTccDD∗(q2), is defined
as the generalization of the on-mass-shell matrix element,
〈D∗ D | Tcc〉, for an off-shell D meson:

〈D∗(p′)D(q)|Tcc(p)〉 = gTccDD∗(q2)ε∗
λ(p

′)ελ(p), (15)

where εμ(p), εα(p′) are the polarization vectors for Tcc and
D∗ mesons respectively. In deriving Eq. (14) we have used
the definitions:

〈0| j D∗
α |D∗(p′)〉 = mD∗ fD∗εα(p′),

〈0| j D5 |D(q)〉 = fDm2
D

mc
,

〈Tcc(p)| jμ|0〉 = λTccε
∗
μ(p). (16)

The definition of the above matrix elements is a matter of
convention. The definition in the second line is the usual
one, adopted for example, in Eq. (5) of Ref. [50]. However,
it is also possible to include the quark mass in the definition
of the current, as it was done in Eq. (2.4) of the recent paper
[51].

As discussed in Ref. [52], large partial decay widths
are expected when the coupling constant is obtained from
QCDSR in the case of multiquark states which contain the
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same number of valence quarks as the number of valence
quarks in the final state. This happens because, although the
initial current, Eq. (10), has a non-trivial color structure, it can
be rewritten as a sum of molecular type currents with trivial
color configuration through a Fierz transformation. To avoid
this problem we follow Ref. [52], and consider in the OPE
side of the sum rule only the diagrams with non-trivial color
structure, which are called color-connected (CC) diagrams.
Isolating the p′

μ p
′
α structure in Eq. (14) we have [52]:

�(OPE) = −imc〈q̄gσ.Gq〉
48

√
2π2

[
1

m2
c − q2

∫ 1

0
dα

α(2 + α)

m2
c − (1 − α)p′2

− 1

m2
c − p′2

∫ 1

0
dα

α(2 + α)

m2
c − (1 − α)q2

]

. (17)

where 〈q̄gσ.Gq〉 is the mixed quark-gluon condensate.
Equating �

(phen)
αμ (p, p′, q) to �(OPE)(p, p′, q), using the

Euclidean four-momenta (P2 = −p2, P ′2 = −p′2) and
performing a single Borel transformation on both momenta
P2 = P ′2 → M2, we get the sum rule:

1

Q2 + m2
D

[
A

(
e−m2

D∗/M2 − e−m2
Tcc

/M2
)

+ B e−s0/M2
]

= mc〈q̄gσ.Gq〉
48

√
2π2

[
1

m2
c + Q2

∫ 1

0
dα

α(2 + α)

1 − α
e

−m2
c

α(1−α)M2

]

− e−m2
c/M

2
∫ 1

0
dα

α(2 + α)

m2
c + (1 − α)Q2

]
, (18)

where Q2 = −q2 is the Euclidean four momentum of the
off-shell D meson, s0 is the continuum threshold parameter
for Tcc,

A = gTccDD∗(Q2) λTcc fD∗ fDm2
D

mc mD∗ (m2
Tcc

− m2
D∗)

, (19)

and B is a parameter introduced to take into account sin-
gle pole contributions associated with pole-continuum tran-
sitions, which are not suppressed when only a single Borel
transformation is done in a three-point function sum rule
[53]. In the numerical analysis we use the following values
for quark masses and QCD condensates [49]:

mc(mc) = (1.23 ± 0.05) GeV,

〈q̄q〉 = −(0.23 ± 0.03)3 GeV3,

〈q̄gσ.Gq〉 = m2
0〈q̄q〉,

m2
0 = 0.8 GeV2. (20)

We use the experimental values for mD and mD∗ [54] and
we take fD and fD∗ from Ref. [49]:

mD = 1.869 GeV, fD = (0.18 ± 0.02) GeV,

mD∗ = 2.01 GeV, fD∗ = (0.24 ± 0.02) GeV. (21)

The meson-current coupling, λTcc , defined in Eq. (16), can
be determined from the two-point sum rule [6]: λTcc =

(2.2 ± 0.3) × 10−2 GeV5, and we take the mass of the
Tcc from [2]: mTcc = (3874.817 ± 0.061) MeV. For the
continuum threshold we use s0 = (mTcc + �s0)

2, with
�s0 = (0.5±0.1) GeV. One can use Eq. (18) and its deriva-
tive with respect to M2 to eliminate B from Eq. (18) and to
isolate gTccDD∗(Q2). A good Borel window is determined
when the parameter to be extracted from the sum rule is as
much independent of the Borel mass as possible. Analysing
gTccDD∗(Q2), as a function of both M2 and Q2, we find a very
good Borel stability in the region 2.2 ≤ M2 ≤ 2.8 GeV2.
Fixing M2 = 2.6 GeV2 we can extract the Q2 dependence
of the gTccDD∗(Q2) form factor. Since the coupling constant
is defined as the value of the form factor at the meson pole:
Q2 = −m2

D , we need to extrapolate the form factor for a
region of Q2 where the QCDSR are not valid. This extrapo-
lation can be done by parametrizing the QCDSR results for
gTccDD∗(Q2) with the help of an exponential form:

gTccDD∗(Q2) = gTccDD∗ e−g(Q2+m2
D), (22)

with g = 0.076 GeV−2. For other values of the Borel mass, in
the range 2.2 ≤ M2 ≤ 2.8 GeV2, the results are equivalent.
We get for the coupling constant:

gTccDD∗ = gTccDD∗(−m2
D) = (1.7 ± 0.2) GeV. (23)

The uncertainty in the coupling constant comes from vari-
ations in s0, λTcc , fD, fD∗ , 〈q̄gσ.Gq〉 and mc.

In order to evaluate the diagrams shown in Fig. 1 we
need the form factors in the vertices DπD∗, DρD, D∗ρD∗,
D∗πD∗ and DρD∗. These form factors have been calculated
in [49] and could be parametrized with the following forms:

(I ) gM1M2M3 = A

Q2 + B
(24)

and

(I I ) gM1M2M3 = A e−(Q2/B) (25)

where M1 is the off-shell meson in the vertex and Q2 is
its Euclidean four momentum. The parameters A and B are
given in Table 1.

3.2 Empirical formulas

The QCDSR method used in the previous section has an
important limitation. It is restricted to multiquark systems in
a compact configuration. As it can be seen in (9) and (10) all
the quark fields in the current are defined at the same space-
time point. This is a good approximation for tetraquarks. If
the multiquark system was in a meson-meson molecular con-
figuration, the distance between the quarks would have to be
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Table 1 Parameters for the form factors in the M1 M2 M3 vertex. The
meson M1 is off-shell

M1 M2 M3 Form A B

DπD∗ I 126 11.9

DρD I 37.5 12.1

D∗ρD∗ II 4.9 13.3

D∗πD∗ II 4.8 6.8

DρD∗ I 234 44

included explicitly (through a path-ordered gauge connec-
tion). This would increase considerably the difficulty of the
calculation and, so far, has not yet been incorporated in the
QCDSR method. For this reason (and also for simplicity)
several authors have used empirical form factors with simple
monopole, dipole, exponential or gaussian forms. Some of
these form factors rely on a molecular picture of the multi-
quark system. Along this line, the best we can do is to esti-
mate the systematic uncertainty related to the form factors. To
this end we have tried several functional forms, which were
already used in the literature, and varied the corresponding
cutoff parameters. After several tests, we have decided to
consider two extreme cases. The first is the “softest” form
factor given by the Gaussian form [39]:

F = exp

(
− (q2 − m2

ex )
2

�4

)
, (26)

where q is the four-momentum of the exchanged particle of
mass mex for a vertex involving a t- or u-channel meson
exchange. As discussed in [39], this form factor corresponds
to the limit of the form [n�4/(n�4 + (p2 −m2

ex ))
2]n when

n → ∞. The cutoff � is chosen to be in the range mmin <

� < mmax , where mmin (mmax ) is the mass of the lightest
(heaviest) particle entering or exiting the vertices. The second
is the “hardest” form factor given by the monopole-like [11]
expression:

F = �2

�2 + �q2 , (27)

where �q is the momentum of the exchanged particle in a t- or
u-channel in the center of mass frame. In Ref. [11] the authors
make use of a monopole form factor with� = 1.0 GeV, while
in Refs. [31,32] the same form factor with � = 2.0 GeV
is employed in the analysis of the X (3872) state. In what
follows we will also use this functional form and vary the
cut-off in this range.

Having specified the form factors we need to fix the cou-
pling constants. The vertices shown in Fig. 1 involve ordinary
mesons, except for the TccDD∗ vertex, in which the coupling
strength is sensitive to the structure of the Tcc, being thus dif-
ferent for tetraquarks and molecules. In the last subsection
we have seen how to obtain gTccDD∗ for tetraquarks. For

molecules, it was estimated in Ref. [23] and it was found to
be gTccDD∗ = 6.17−6.40 GeV.

4 Results and discussion

The evaluation of the doubly-charmed state absorption and
production cross sections will be performed in this sec-
tion with the isospin-averaged masses for the light and
heavy mesons reported in Ref. [54]: mπ = 137.28 MeV,

mρ = 775.38 MeV, mD̄ = 1867.24 MeV and mD̄∗ =
2008.56 MeV; for the T+

cc we use mTcc = 3874.75 MeV
[1,2].

4.1 Empirical formulas

Here we employ the empirical form factors introduced in pre-
ceding section. The cut-off � of these functional forms is
chosen to be in the range 2.5−3.5 GeV and 1.0−2.0 GeV in
the case of the Gaussian and monopole form factors, respec-
tively. In this kind of calculation the cut-off is the most impor-
tant source of uncertainty. Because we use a range of values
(instead of a single number) for �, our results will be given
with uncertainty bands. We note that the uncertainty associ-
ated with the cut-off is much larger than the one related to the
coupling constant, which is not shown in the plots. In spite
of these uncertainties we can still draw conclusions from our
calculations.

Plots of the cross sections as functions of the CM energy√
s for the T+

cc -absorption by pion or ρ mesons are shown
in Fig. 2, using monopole and Gaussian form factors defined
respectively in Eqs. (26) and (27). Upper and lower limits of
the bands are obtained taking the upper and lower limits of
the cutoff for each form factor.

Since all these absorption cross sections are exothermic
(except the one for Tccπ → D∗D∗), they become very
large at the threshold. We note that in the region close to
the threshold the corresponding curves obtained with and
without form factors are almost indistinguishable (we do not
display another figure proving this for the sake of concise-
ness).

The results suggest that, within the range 4.05 ≤ √
s ≤

4.5 GeV, the cross sections σTccπ→X (X = DD, DD∗,
D∗D∗) have different magnitudes, being of order of ∼
10−3−1 mb. Close to the threshold, σTccπ→DD is suppressed
with respect to the other processes, at least by one order of
magnitude. However, at higher CM energies (5 ≤ √

s ≤
5.5 GeV), all the processes have closer magnitudes.

Looking now at the absorption processes by a ρ meson,
which occur at higher thresholds, the σTccρ→D∗D,D∗D∗ are
the biggest at moderate energies, while the cross section for
DD final states is the smallest. When we compare the differ-
ent dissociation processes at a given CM energy, for instance
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Fig. 2 Cross sections for the absorption processes T+
ccπ → D(∗)D(∗)

(top panels) and T+
ccρ → D(∗)D(∗) (bottom panels), as functions of

the CM energy
√
s. Plots in left and right panels: obtained by using

monopole and Gaussian form factors, Eqs. (27) and (26) respectively.

Upper and lower limits of the band are obtained taking the upper and
lower limits of the cutoff for each corresponding form factor (1–2 GeV
and 2.5–3.5 GeV for the monopole and Gaussian form factors, respec-
tively)

Fig. 3 Cross sections as functions of the CM energy
√
s for the respec-

tive inverse (production) processes displayed in Fig. 2, i.e. D(∗)D(∗) →
T+
ccπ (top panels) and D(∗)D(∗) → T+

ccρ (bottom panels), obtained via
the detailed balance relation. Plots in left and right panels: obtained by
using monopole and Gaussian form factors, Eqs. (26) and (26) respec-

tively. Upper and lower limits of the band are obtained taking the upper
and lower limits of the cutoff for each corresponding form factor (1–
2 GeV and 2.5–3.5 GeV for the monopole and Gaussian form factors,
respectively)
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Fig. 4 Cross sections for the absorption processes T+
ccπ → D(∗)D(∗)

(top panel) and T+
ccρ → D(∗)D(∗) (bottom panel), as functions of the

CM energy
√
s, taking the form factors obtained within the QCDSR

approach

√
s = 5 GeV, we observe that σTccπ→X are greater than the

respective σTccρ→X by about one order of magnitude. These
findings allow to quantitatively estimate how big is the con-
tribution coming from the doubly-charmed state absorption
by a pion with respect to the other reactions.

Now let us move on to the T+
cc -production cross sec-

tions, which are shown in Fig. 3 as functions of the CM
energy, again using both monopole and Gaussian form fac-
tors. Except for σD∗D∗→Tccπ , they are endothermic, with
magnitudes of the order ∼ 10−3−10−1 mb in the case of
Gaussian form factor, within the range of CM energies con-
sidered. For the monopole, the magnitudes are even smaller.
In general, the comparison with the outputs reported in Fig. 2
reveals that both Tccπ and Tccρ absorption cross sections are
greater than the respective production ones.

4.2 Form factors from QCDSR

Now we employ the form factors given by Eqs. (22), (24)
and (25), obtained within the QCDSR approach. The bands
in the figures express the uncertainty in the coupling constant
gTccDD∗ shown in Eq. (23).

Figures 4 and 5 show the plots of the cross sections as
functions of the CM energy

√
s for the T+

cc -absorption and

Fig. 5 Cross sections as functions of the CM energy
√
s for the produc-

tion processes D(∗)D(∗) → T+
ccπ (top panel) and D(∗)D(∗) → T+

ccρ

(bottom panel), taking the form factors obtained within the QCDSR
approach

production by pion or ρ mesons. Some qualitative features
found in the preceding subsection (with the empirical form
factors) are reproduced. Close to the threshold, cross sec-
tion σTccπ→D∗D∗ is greater than the cross sections for other
processes. Also, at

√
s = 5 GeV, most of cross sections

σTccπ→X are greater than the respective σTccρ→X , although
this difference is less pronounced in the present case. Most
importantly, both Tccπ and Tccρ absorption cross sections
are greater than the respective production ones.

There are some differences between the empirical and the
QCDSR approach. For example, some reactions in Figs. 4
and 5 have greater magnitudes while others have smaller
magnitudes when compared to the corresponding ones in
Figs. 2 and 3. This is mainly due to the fact that in the QCDSR
approach each vertex in a given diagram has a distinct form
factor with a specific parametrization according to Eqs. (22)–
(25) and Table 1.

Finally, in Fig. 6 we compare our results with those
obtained in Ref. [11]. As it can be seen from the figure,
our cross sections are significantly smaller than those found
in [11]. In comparison to the effective Lagrangian adopted
here, in the quasi-free approximation the T+

cc is “too easy to
destroy”. Part of this difference can be attributed to the cou-
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Fig. 6 Sum of the cross sections for the processes obtained in this work
(Tccπ → DD+DD∗+D∗D∗) and in Ref. [11] (Tccπ → Dπ +D∗π ),
as a function of the CM energy

√
s above the threshold energy

√
s0 of

each process. The legend denotes the respective functional form of form
factors used to calculate the cross sections

plings and uncertainties associated to the form factors used
in each work.

In Fig. 6 we can observe that the results obtained with the
empirical and the QCDSR form factors are not so different.
This is not unexpected, since the form factors are calibrated
with coupling constants, which, in some vertices, were the
same and derived from QCDSR. So, in fact, most of the
difference in the cross sections comes from how the form
factor decreases with increasing Q2.

In the end, the final results contain large uncertainties, but
they still carry valuable information. Despite all uncertain-
ties, it remains true that Tcc absorption is stronger than its
creation. This result is not surprising and a similar domi-
nance of absorption over production was found in the case
of J/ψ , ϒ , and other multiquark states such as the X (3872)

and Zb.
Once the vacuum cross sections are known, the next step

is to compute the thermal cross sections, which are convolu-
tions of the vacuum cross sections with thermal momentum
distributions of the colliding particles. In this approach, the
temperature of the hadron gas (which is in the range 100 - 200
MeV) determines the collision energy. When we perform this
thermal average, the kinematical configurations close to the
thresholds are highly suppressed. Hence the strong thresh-
old enhancement (or suppression) observed in all the figures
above have little significance for applications to heavy ion
collisions.

5 Concluding remarks

The purpose of this work was to study, from an effec-
tive Lagrangian framework, the interactions of the doubly
charmed tetraquark state T+

cc with light mesons in the hadron

gas phase. Their absorption and production processes were
computed with special attention given to the form factor of
the Tcc − D − D∗ vertex, obtained from QCD sum rules.

The results suggest sizeable cross sections for the con-
sidered processes. Moreover, the T+

cc absorption in a hadron
gas appears to be more important than its production. On
the other hand, when compared with the other existing esti-
mate, our approach suggests much smaller T+

cc absorption
cross sections than those of Ref. [11], based on the quasi-
free approximation.

The obtained T+
cc production and absorption cross sections

will be crucial for a comprehensive analysis of the evolution
of the T+

cc abundance in heavy ion collisions. This is another
observable useful to shed light on the T+

cc internal structure.
This study is in progress and we expect to publish it soon.
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