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Interactions with Diagrams  
and the Making of Reasoned 
Conjectures in Geometry 
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Abstract: 
Four potential modes of interaction with diagrams in geometry 
are introduced. These are used to discuss how interaction with 
diagrams has supported the customary work of ‘doing proofs’ in 
American geometry classes and what interaction with diagrams 
might support the work of building reasoned conjectures. The 
extent to which the latter kind of interaction may induce 
tensions on the work of a teacher as she manages students’ 
mathematical work is illustrated. 

Kurzreferat: 
Vier mögliche Formen der Interaktion mit geometrischen 
Darstellungen werden aufgezeigt. Diese Formen werden 
thematisiert um deutlich zu machen, wie visuelle Darbietungen 
im amerikanischen Geometrieunterricht das alltägliche Geschäft 
des Beweisens‚  unterstützen. Dadurch soll auch gezeigt 
werden, welche Art der Interaktion mit geometrischen 
Darstellungen es erlaubt, das Herstellen begründeter 
Vermutungen zu unterstützen. Zugleich wird das Ausmaß 
illustriert, mit welchem die letztere Art von Interaktion 
Spannungen innerhalb der unterrichtlichen Arbeit‚ der 
Lehrerin hervorruft, die sich darum bemüht, die 
mathematischen Beiträge, d.h. die mathematische Arbeit‚ der 
Schülerinnen und Schüler zu organisieren. 

ZDM-Classification: C63, C73, D43, E 53, G43 

1 Introduction 
Conjecturing and proving are part of a natural, cognitive 
unity in mathematics, one that revolves around the 
activity of producing theorems, often in response to 
problems (Mariotti et al. 1997). Mathematical proof plays 
an essential role in bringing theorems into existence, in 
shaping reasonable conjectures and building a reasoned 
discourse. Lakatos’s (1976) analysis of the emergence of 
mathematical ideas through its historical production by 
the mathematical community (and in contrast to the 
impression created by the usual a-historical, 
decontextualized presentation of ideas in textbooks), 
shows how proof is intrinsically tied to the development 
(and not just the justification) of knowledge: Proving is a 
tool for shaping private intuitions into reasonable 
assertions about concepts as these are publicly developed. 
As Lakatos (1976) argues, the dialectic of informal proofs 
and refutations is key in improving a naïve conjecture and 
achieving a theorem. Proving is instrumental to 
conjecturing — not least because, to the extent that proofs 
and refutations also shape mathematical concepts (making 
them into abstractions), proving is the tool that best can 
handle them. The extent to which a proof needs to be 
formal to be also effective depends quite a bit on the 

extent to which concepts need to be detached from 
informal systems of representation for those who handle 
them to accept those concepts as being well defined. And 
inasmuch as the proofs that serve mathematical creation 
are, more often than not, informal proofs, one can also say 
that conjecturing is rarely like wild guessing. As Lakatos 
argues, the heuristic reasoning that leads to the production 
of mathematical knowledge can better accommodate 
conjecturing as “deductive guessing.”  

I refer to this aspect of authentic mathematical activity, 
that dynamic relationship between what is known and 
how it is known, as building reasoned conjectures. A 
question with which mathematics educators need to 
contend is whether the building of reasoned conjectures 
can be sustained in classrooms (see Chazan, 1995).  
Lakatos’ argument is very relevant as we seek to envision 
the place that reasoning and proving could have in 
mathematics classrooms. The notion that proving is an 
effective way of handling mathematical objects, adapted 
to the level of abstraction of those objects and to the 
resources and demands of the theoretical problematiques 
for which they are needed, seems like a useful, 
instrumental way of thinking about proof (although if 
anything it provides an unconventional answer to the 
more philosophical question of what a proof is).  

But the question of what can be done in classrooms is 
not only a question about the design of interventions or 
policies, but also one of “ecological” viability of ideas 
and practices in contexts that are institutional as much as 
they are interpersonal and disciplinary. Ideas and 
practices can exist only if they are viable within the 
conditions and constraints of a particular context. Is it 
feasible for teachers to engage students in building 
reasoned conjectures, and what does it take for a teacher 
to do that? The high school geometry class in the United 
States is an appropriate context for investigating such 
question. This class has historically made room for 
conjecture and proof, and in general has been billed as 
students’ first encounter with theoretical mathematics 
(Moise 1975; Usiskin 1980).  

This paper contributes to the goal of understanding 
what conditions enable students to engage in building 
reasoned conjectures by looking at the role of students’ 
interaction with geometric diagrams in classroom 
situations that involve students in conjecturing and in 
proving. Specifically, I propose a distinction between 
modes in which students’ interaction with diagrams 
might support the work of conjecturing, doing proofs, 
and building reasoned conjectures. Then I use those 
modes of interaction to describe the kinds of 
conjecturing and proving that ordinarily take place in the 
high school geometry class. I argue that those modes of 
interaction are part of larger accountability structures, or 
situations, that establish who-has-to-do-what-to-get-what 
in various classroom situations. And I then argue that 
situations that would aim at students’ making of 
reasonable conjectures in geometry require interactions 
with diagrams that breach those norms. 

2 Modes of interaction with diagrams 
The purpose of this section is to provide some language 
for thinking about the possible relationships between a 
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person, a diagram, and geometric objects. Through the 
article I suggest four possible modes in which students’ 
interaction with a diagram, and their discourse about the 
geometric objects at stake in the diagram, may relate. 
Each of the four modes of interaction (which I term 
empirical, representational, descriptive, and generative) 
instantiates a set of relationships between three elements: 
a subject or actor (A), a physical diagram or 
representation (D), and a theoretical, geometric object, at 
stake in that interaction (O). Another, compelling way of 
describing an individual’s relationship with figures has 
been proposed by Duval (1995), who speaks of different 
kinds of cognitive “apprehensions” of figures. Duval 
makes the important point that for a picture to act as a 
geometric diagram it needs to be apprehended 
perceptually (as a graphic object in contrast with its 
background) and at least in one other way—sequentially, 
discursively, or operatively. I comment on those other 
apprehensions as I relate Duval’s categories to the 
proposed ones. 
 

 
Figure 1. Empirical mode of interaction 

 
I call empirical (see Figure 1) a mode of interaction 
between actor, diagram, and object whereby the actor 
allows him or herself to make a variety of operations on 
the diagram (measuring, looking at, drawing in), only 
constrained by the actual features of the physical drawing 
and the operational constraints of the physical 
instruments of interaction. The actor reads the results of 
those operations as properties ascribable to the object, 
thus converting their reading of the diagram into a 
discourse of the object. This mode of interaction takes the 
diagram as equivalent to the object, and hence as a 
referent of the discourse. The following example 
illustrates an empirical mode of interaction (the 
instructional experiment from which this episode was 
drawn is reported in Herbst 2003a).  

 
Didi2 and Gina have been comparing two cardstock triangles 

as regards to their area, and Didi has made the claim that since 
the base of one of them is twice as long as the base of the other 
one but the height of the former is half that of the latter, their 
areas should be equal. Gina adduces that the triangles can’t be 
equal since one has a larger base and the other one a larger 
height. The teacher, Earl Sontag, suggests, “this would probably 
be a reasonable time to try the formula and see if it confirms 
Didi’s conjecture.” When Earl comes back to see them, Didi and 
Gina have measured bases and heights and calculated their areas 
using the formula. They report that the triangles are not equal, 
since one is 46.1 (cm2) but the other one is 44.6 (cm2). 

 

 

 
Figure 2. Representational mode of interaction 

O D

A

 
I call representational (see Figure 2) a mode of 

interaction between actor, diagram, and object whereby 
the known theoretical features of the object constrain the 
actor to talk in certain ways about the object and to create 
a diagram that is claimed to signal what is said about the 
object. An example of this representational interaction is 
in the “sequential apprehension” that Duval uses to 
describe the work of constructing a figure or describing a 
construction: “the organization of the traces does not 
depend on perceptual laws and cues, but on technical 
constraints and on mathematical properties” (p. 146). 
This mode of interaction takes the diagram as a one-way 
representation (i.e., a depiction rather than a model) of 
the object—the diagram is a sign for the object, which is 
the referent. The following example illustrates this mode 
of interaction.  

O D

A Teacher Cecilia Marton is discussing with her students how to 
work a homework exercise that did not include a diagram. She 
asks, “is there anything that we can start with at all?  Read 
something that you know that you can draw.” Erie reads “RST is 
an obtuse angle with S as the obtuse [angle]... [Cecilia draws 
such triangle on the board. Other students continue reading 
information from the text and Cecilia draws it on the board.] At 
some point in between Cecilia says, “I can already tell my 
drawing is a little bit, little bit not to scale, but I'm not really 
going to worry too much about that.” Then after they have 
depicted what was given, Cecilia directs, “I want you to look at 
your drawing, because let me tell you a real common error, 
here, that people make, and it throws them off.  A lot of people 
draw this so R, S and U are collinear…. Now, is there anything 
in this problem that indicates R, S, and U should be collinear?” 
Students say “no” in chorus. Cecilia continues, “Nothing.  If 
you make them collinear, you might make some mistakes with 
supplements or vertical angles that you shouldn't be doing, 
because you don't know that they're collinear.” (Herbst 2003b) 

Those two modes of interaction, empirical and 
representational, can be considered polar opposites. The 
empirical mode of interaction supports the hands-on 
geometry that students have traditionally encountered 
before high school, and that sustains usual activities of 
conjecturing based on measurements of a diagram. The 
representational mode of interaction, on the other hand, 
supports the demonstrative geometry that students have 
allegedly come to study in high school geometry, where 
the objects of study are billed as mathematical concepts 
defined axiomatically and whose properties are said to be 
proved deductively. In this “official” geometry, the 
diagram is only acknowledged as a depiction or an 
illustration. Cecilia, like many other teachers, will warn 
students not to trust diagrams since “they” (the textbook 
authors) may want to “trick” students by giving diagrams 
that are not up to scale. The construction of diagrams that 
illustrate properties taught by the teacher often builds on 
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this representational mode of interaction. 
 

 
Figure 3. Descriptive mode of interaction 

Yet, none of those modes of interaction appropriately 
describes the actual role that diagrams have played in 
making possible students’ engagement in doing proofs in 
the United States geometry course. Our research in the 
history of the teaching of geometry in the US, as well as 
our ongoing work in geometry classrooms, suggest the 
need for defining a third mode of interaction. In our 
observations of the work that teachers do to engage 
students in proving we have noted how the construction 
of a task often involves a teacher in creating a diagram 
that is more than a representation of the figure alluded in 
the task (Herbst, 2002b). In Herbst & Brach (2004) we 
use students’ responses to problems presented to them as 
occasions to do a proof to show how students’ 
expectation of success in doing proofs hinges on their 
access to a diagram with which to interact in a way that is 
neither empirical nor representational. From the students’ 
perspective, this interaction involves two aspects: First, to 
be able to manage what to do with just what the diagram 
provides, without altering it; and, second, to manage to 
interpret all the features that are provided in the diagram, 
using them in writing the proof.  

I call descriptive (see Figure 3) a mode of interaction 
between actor, object, and diagram whereby a diagram 
consists of two overlapping systems: a system of 
referents and a system of signs.3 The diagram is a 
particular object, which not only represents the 
mathematical object. To the extent that the diagram is 
accepted as accurate in some regards (sometimes 
expected to be accurate be it not for the “trickery” 
mentioned by Cecilia to her students), the diagram 
actualizes the object, making it amenable to be the source 
of discourse about the object or a referent for discourse, 
as in the empirical mode. In Figure 4, for example, the 
referents include a circle that is tangent to the four sides 
of a quadrilateral as well as several segments (the latter, 
notably, are not needed at all as representations of the 
objects mentioned in the statement of the problem). The 
system of signs laid on top of the diagram (through 
labels, hash marks, dashed lines, lettering order, and 
through the inclusion of otherwise irrelevant features 
such as auxiliary segments) moderates the extent to 
which the diagram can be equated to the object of such 
discourse. These signs point to what are things to be 
taken as geometric objects and how they should be taken 
as objects. In Figure 4, for example, the box at point Q 
indicates that that angle is of interest and that it being a 
right angle is of interest. In customary situations of 
“doing proofs,” the actor’s role is to read those signs and 

to translate that reading into awareness of what needs to 
be taken as geometric object and how. The actor has to 
then search for properties and connections that can be 
ascribed to the object associated with that system of 
referents—at times adding more signs to record 
observations made. Discourse thus decodes the signs to 
decide which aspects of the representation can be taken 
as referents, describes those referents, and imputes this 
description to the object. The diagram in turn displays 
and confirms the statements produced in the discourse.  

O D

A

In a set of interviews where geometry students (age 14-15) were 
asked to comment on the likelihood of various proof problems 
to be assigned in their geometry class, and after having seen 
Figure 4 (apropos of the problem of proving that if the circle 
was inscribed in the quadrilateral, then AB + CD = AC + BD), 
Karen reacted against the possibility that the problem be given 
with a diagram seen previously, that did not include but the 
circle and the quadrilateral, criticizing the diagram: “The picture 
doesn’t have diagonals, I mean not diagonals, radii, and those 
auxiliary lines drawn in, … I wouldn’t really know what to do 
with it unless all these lines [the ones included in the third 
figure] were drawn in.” Commenting on Figure 4, Yuri noted: 
"You don't put the 90 degrees [referring to the square box 
marking the angle] in there unless you want people to use 
them…." Likewise responding to a question of which diagram 
would go along with a request to prove the medial line 
theorem,4 Hamid said: “If it was possible to solve it with either 
of these, I’d prefer this one because it doesn’t have too much 
information, so it doesn’t seem like we’d have to do too many 
steps or over complicated.” (Herbst & Brach 2004) 

O

M
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A

B

C

D  

Figure 4: Third diagram used with the inscribed circle problem 
(in Herbst & Brach 2004). 

 
Such descriptive mode of interaction thus makes it 

possible to enhance (even ensure) students’ success 
producing proofs.  At the same time it also takes away 
from students some important aspects of the activity of 
proving, especially those connected with the reasoned 
building of a conjecture, or the use of argument to find 
out what could be true.  

3 The descriptive mode of interaction, its history, and 
a hypothesis about its role 
The descriptive mode of interaction is an instruction-
native hybrid that combines some of the characteristics 
noted apropos of the empirical and representational 
modes. The representational mode has the geometric 
object known by virtue of its formal characterization as 
object of discourse, hence requiring the actor to reject the 
diagram as source of knowledge of the object and only 
keep it as sign. The representational mode intends to 
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capture the acknowledged use of diagrams in axiomatic-
deductive geometric discourse (Hilbert, 1899). This 
representational mode points to a norm from which usage 
of diagrams in the proofs done in school have been 
departing since the geometry class took charge of 
teaching students the ‘art of demonstration’ (and later on, 
‘how to do proofs’—see Herbst 2002a). 

A formal proof derives new truths as discourse unfolds, 
from a moment where only the premises are taken as 
known, to a moment when also the conclusion is known. 
Yet, diagrams have the capacity to display at least some 
of those truths to be derived, in synchrony with 
knowledge previously sanctioned. The descriptive mode 
of interaction points to a particular way in which use of 
diagrams may depart from the representational mode. The 
descriptive mode of interaction points to how some of 
those features of a diagram, which are available to 
perception along with the premises of an argument (and 
whatever is known), can actually feed the argument being 
produced. Perception of a diagram thus supports and at 
times even replaces the logical machinery of discourse as 
a source of statements about the object; the system of 
signs not only points to what can be taken as referent, but 
also makes some other things invisible. The development 
of the descriptive mode of interaction in the US high 
school geometry class has followed closely the evolution 
of proof as an object of study.  

In Herbst (2002a) I narrate how the activity of 
engaging students in proving acquired a stable place 
within the high school geometry course. I do that by 
tracking the evolution of students’ proving from the time 
geometry first became a part of the high school 
curriculum. I describe this evolution as unfolding in three 
periods. A baseline period, the Era of Text, is 
characterized by students’ reproduction of the proofs of 
theorems in the Euclidean canon. A transitional period, 
the Era of Originals, is characterized by students’ 
engagement in proving as way to answer original 
questions and problems where students acquired 
knowledge beyond that offered by the text. A third period, 
the Era of Exercise, is characterized by students 
completion of proof-exercises that provided practice on 
concepts previously studied, rather than opportunities to 
explore new ideas. The emergence of the so-called two-
column proof format as a standard for proof-writing is 
associated with this last period, in which “doing proofs” 
became an object of study for students. The transition 
along the three eras is punctuated by many other changes, 
both in regard to the discourse that justified the teaching 
of a geometry course in high school, and in regard to the 
mathematical activities in which students would be 
involved. One notable locus of those changes is the 
geometric diagram. 

There are no records of how students produced 
diagrams while proving theorems during the Era of Text. 
But there are indications that students tended to learn the 
text from memory, and that such memorization was at 
some point during the 19th century deemed sufficiently 
endemic and mathematically undesirable to trigger the 
inclusion of the so-called originals (Quast 1968). One 
can speculate that students who reproduced a diagram in 
its entirety before engaging in the re-production of the 

proof would be more likely than others (e.g., more likely 
than those who re-produced the diagram in synchrony 
with their re-production of the proof) to make mistakes in 
proof production or diagram construction that evidenced 
that they were not reasoning their way through the 
argument.  

The originals were problems included in the geometry 
textbooks of early in the second half of the 19th century 
that came to remedy the ills of memoristic learning. 
These were problems whose solution was not provided, 
and that gave students the opportunity to investigate on 
their own geometric properties that were new to them. 
The originals were not always accompanied by diagrams; 
and in the cases that they were, these diagrams contained 
only those objects used in the formulation of the problem, 
and not other objects that might be needed in the 
production of the proof. It was a later development in the 
era of originals to include so-called auxiliary 
constructions in the diagrams provided along with the 
problems.  Those constructions had the purpose of 
suggesting what students could use in furnishing a proof. 
These changes in the diagram set up a different mode of 
interaction with the diagram, by signaling students 
attention to a system of referents usually more complex 
than that evoked in the statement of the problem, and 
whose existence could be taken as given, without 
argument (which, as mathematician Eugene Richards, 
1892, p. 94, complained at the time, “may all be good 
classification, but it is not geometry. Neither is it good 
logic.”) Note an example of a diagram containing one 
such auxiliary line (PE) in Figure 5. 
 

 
 

Figure 5. An “original” drawn according to an exercise from 
Chauvenet (1898, p.50) 

During the era of exercise, the diagrams provided along 
with proof exercises became more and more developed, 
eventually including auxiliary constructions as well as 
conventional signs, marks on the diagram such as hash 
marks, arcs, numbers, and arrows (see Schultze 1912). 
The effect (and sometimes the explicit purpose) of those 
signs was to narrow down which objects, among all those 
made available by the diagram, was meant to be used in 
the proof, and how so. This practice has continued 
through the 20th century. A good example of this is in the 
diagram provided in Figure 6, which accompanies an 
exercise that requires students to decide whether or not 
one could legitimately conclude that the triangles shown 
are congruent. Note that the double hash mark, used in 
each of the two configurations, is normally used to point 
to the indicated segment as being congruent to another, 
similarly-marked segment. But since no other segment in 
the configuration has two hash marks, the marking must 
serve another purpose.  Indeed, it appears that the marks 
are included in the diagram to alert the student that the 
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“reflexive property” (the fact that the segment is 
congruent to itself) will be relevant for the proof the 
student is to produce.5  

 
Figure 6. Two triangle congruence exercises  

(drawn according to Jacobs 1974, p. 157) 

The history of proving in geometry classrooms thus 
includes an important development in relation to students’ 
interaction with diagrams: The emergence of a new mode 
of interaction with diagrams—the descriptive mode—that 
came to support students’ accountability for “doing 
proofs” as well as teacher’s accountability to teach them 
“how to do proofs.”  That is, the transposition of proof 
from being a tool of mathematical work to being an 
object of school learning has included making a diverse 
set of activities (the many proofs of many theorems) into 
mere instances of a generic object (proof). In the course 
of the 20th century this instructional object, proof, has 
even received explicit definitions that attested exclusively 
to its formal (as opposed to substantial) characteristics. 
As I argue in Herbst (2002b), in order for students’ 
productions to be reliably interpreted on behalf of such 
generic, formal skill, it has become necessary for 
instruction to create the means to convey to the student 
(obviously in a surreptitious way) the substance of the 
specific argument they need to produce. Communication 
of substance was needed lest the incidental unawareness 
of such ‘ancillary’ substance compromise the observation 
of what is ‘really’ at stake—deductive reasoning and 
clear communication. The descriptive mode of interaction 
explained in here has been a tool for instruction to make 
possible that communication of substance, hence it has 
come to support the expectation that students will “do 
proofs” (no matter what is being proved) and that such 
actions will attest of their learning of “proof.” Partly as a 
result of the development of this descriptive mode of 
interaction, students’ accountability for doing proofs, 
from the beginning of the era of exercise in the early 20th 
century up to the present, has had a stable place in high 
school geometry.  

I want to put forward the hypothesis that students’ 
proving activity implicates a normative, “default” mode 
of interaction between student and diagram. This default 
is the descriptive mode. This mode of interaction has 
been historically constituted as a way to maintain ‘doing 
proofs’ as a situation for which students can have some 
responsibility, but at the expense of keeping a separation 
between tasks that involve deductive reasoning and tasks 
that involve the making of conjectures. Thus, diagrams 
are used to scaffold students’ work when doing proof in a 
way that simultaneously supports students responsibility 
for completing a proof but also reduces students’ 
responsibility for the argument that makes a conjecture 
reasonable.   

This hypothesis means neither to say that all 

interactions between student and diagram are in fact 
descriptive, nor that other possible modes of interactions 
are in principle interdicted. Rather, the hypothesis 
suggests that descriptive interactions are normal, in the 
sense that proving tasks that build on those interactions 
are launched by teachers and taken on by students 
without any need to negotiate the didactical contract 
(Brousseau 1997). Conversely, the hypothesis suggests 
that when a task that aims at proving presumes 
interactions with diagrams that deviate from the 
descriptive norm, they do require negotiation of the 
didactical contract.  

4 Building reasoned conjectures: Could students take 
on more responsibility in proving? 
Our interview study with high school geometry students, 
(Herbst & Brach 2004) complements observations of 
instruction in that it provides evidence that students’ 
perceived fair share of responsibility as regards to 
proving occupies a rather narrow domain. Specifically, 
students do not expect to be responsible for producing a 
proof unless the conclusion to be proved, and the 
conditions under which that conclusion is true, are stated 
for them. Furthermore, the production of the diagram, 
which plays a key role in activating the concepts to be 
used in producing a proof, is, according to students, under 
the responsibility of the teacher (or the textbook authors). 
Students’ responsibility when doing a proof is mainly 
limited to writing down steps composed of “statements” 
and “reasons” that connect a “given” premise to a known 
conclusion “to prove.” Normally the statements are 
particular statements about a figure given; the student has 
to lift those statements from the diagram by appropriately 
interpreting the signs included. The main job of the 
student is to demonstrate that those statements can be 
connected logically to previous statements by way of 
reasons. Those reasons must be previously studied 
theorems, postulates, definitions, or the premises of the 
proof. The student’s job is to communicate those 
connections clearly. Elsewhere (Herbst 2002b) I have 
described this as the logical ordering of a list of 
descriptive assertions about a figure, noting in particular 
how some geometric assertions—those involving 
incidence and separation—are often invisible; and hence 
very rarely will students be held accountable for proving 
such assertions.  

The development of a descriptive mode of interaction 
between student and diagram has collaborated in making 
it possible to hold students accountable for doing those 
proofs. But possibly it has also collaborated in narrowing 
the mathematical phenomena that can be the object of 
students’ proving activity, the role that proof plays in 
mathematical activity (see also Schoenfeld 1987), and the 
meaning of the activity of doing proofs (what doing any 
proof counts toward is the learning of logic and of good 
communication, rather than the discovery of a particular, 
new piece of mathematical knowledge). Such a state of 
affairs seems to recommend widening students’ 
mathematical experiences, involving them in experiences 
in which (for example) they could use mathematical 
reasoning to find out new things, or in which they had to 
propose conditions under which something could be true. 
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The possibility of creating these alternative experiences, 
ones that would integrate conjecturing with proving in 
geometry, seems to call for a different mode of 
interaction with diagrams. 

Various studies on geometry instruction (Arzarello et 
al. 1998; Mariotti et al. 1997) suggest that students’ 
meaningful construction of knowledge — and in 
particular their investment of mathematical reasoning and 
proving in such construction — is possible in the context 
of tasks that enable learners to act on (thus modifying) 
their environments. Fregona (1995) has argued that 
diagrams can constitute a milieu for the construction of 
geometric ideas.6 The notion that authentic mathematical 
activity involves more than merely the clear 
communication and logical sorting of obvious statements 
has prompted efforts to involve geometry students in 
conjecturing and problem solving—some of them in the 
context of using the measurement capabilities of dynamic 
geometry software (Hadas, Herschkovitz, and Schwartz 
2000). Activities building on an empirical mode of 
interaction between students and diagrams have brought 
students closer to being able to make conjectures, yet not 
necessarily to having authentic experiences with the 
production of knowledge. Chazan (1995) has provided a 
critique of the traditional separation of situations for 
conjecturing from situations for proving. Chazan argues 
that to expect conjectures to emerge inductively from 
students’ experiences, without also allowing students 
access to the reasons that establish a conjecture as 
actually true, leaves the eventual decisions on the 
correctness or incorrectness of the conjecture to the 
authority of the teacher (Christiansen, 1997, makes a 
related point in connection to modeling with real world 
data). I would like to argue that if students are to 
experience the production of mathematical knowledge 
with some agency over the means of that production, they 
need to be involved not just in situations of conjecturing 
empirically first and of proving deductively later, but on 
situations of making reasoned conjectures. More research 
needs to be done to explore what kinds of tasks can put 
students in contact not only with interesting phenomena, 
but also with the connected rationales that make those 
phenomena plausible. My hunch is that those tasks need 
to be built on neither empirical, nor representational, nor 
descriptive modes of interaction with diagrams, but rather 
on what I would like to call the generative mode of 
interaction.   

5 The generative mode of interaction 
The fourth mode of interaction is inspired by 

observations made by Netz (1998, 1999) apropos of the 
use of diagrams in Greek geometry, by Simon’s (1996) 
argument for the need to go beyond the distinction 
between inductive and deductive reasoning, and also by 
what Duval (1995, p. 147) calls the “operative 
apprehension” of diagrams. Netz’s (1999) study of the 
practices of lettering diagrams in Greek geometry allows 
the observation that Greek geometers would produce 
their diagrams at the same time that they would conceive 
their proofs.  In other words, the diagram would not be 
drawn at the end to merely illustrate the written proof; 
nor would the diagram be drawn in its entirety before the 

production of the argument. Rather, the Greeks would use 
the argument to complexify a diagram by adding new 
constructions, or at least complexify the reading of a 
diagram by adding new signs to focus attention on 
previously ignored features of a diagram. In describing 
what he means by “operative apprehension,” Duval 
(1995) suggests that for diagrams to work heuristically in 
problem solving, an individual must apprehend the 
diagram in an “operative” way—that is, the actor must be 
able to modify the diagram mentally or physically. 
Though it is unclear whether Duval would include what I 
have called above “empirical interactions” in this 
operative apprehension, he suggests three kinds of 
modifications that exemplify what I intend in generative 
interactions: mereologic, which includes drawing new 
features into the given diagram; optic, which includes 
applying transformations of its size or shape; and place, 
which includes changing location or orientation.  

 
Figure 7. Generative mode of interaction 

O D

A

 
I call generative (or prescriptive;7 see Figure 6) a mode 

of interaction between actor, object, and diagram 
whereby an initial, hypothetical identification between 
object and diagram affords conditions and constraints for 
the actor to anticipate operations on the diagram and their 
results, and whereby the actualization of those operations 
on the diagram constrains the interpretation of the results 
of those operations in ascribing properties to the object, 
further differentiating the object from the diagram (which 
is illustrated with the lightning bolt in Figure 6). Those 
actions may involve creating referents (e.g., drawing in 
something that was not drawn originally but that is called 
forth in the argument the actor is making; or making an 
assumption or hypothesis about what something drawn is 
— “seeing-as”, as in Jaworski 1988). Those actions may 
also include creating signs (e.g., new labels, new 
characterizations) to designate objects that were already 
drawn, but for which the pursuit of an argument can use a 
(different) way to refer to. In addition, those actions may 
include prescribing a way of reading a diagram so as to 
bypass the particularities of the diagram—thus the label 
prescriptive that we’ve used for this mode of interaction 
elsewhere (see Herbst 2003c). The possibility of 
establishing a generative mode of interaction between 
students and diagrams seems to be part of what is 
required to support students’ making of reasoned 
conjectures — at least as it can be seen in classroom 
episodes in which students do use reasoning to find out 
what could be true, or to anticipate what has to be true, 
such as the following:  

In Megan Keating’s 10th grade geometry class students had been 
working on the problem of finding a point O inside a triangle so 
that when one connects that point with the three vertices, all 
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three triangles are equal in area. Their knowledge of area at the 
time included how to apply formulas for area for triangles with 
specific dimensions, but not any of the postulates of area, which 
were to be introduced through this problem.8 Megan had 
suggested they look at how to divide a triangle into two 
triangles of equal area, and then try to put in a third triangle.  
Vito drew a triangle and the median for one of its sides (see 
Figure 8a) and claimed that those two triangles were equal in 
area. He then justified that claim, arguing that the two triangles 
had the same base and the same height.  To make a third triangle 
inside the original, Vito later picked a point on the median and 
connected it to the two other vertices, indicating that “as long as 
the point O was on the median, [the triangles AOB and COB] 
would be equal in area but not necessarily [the triangle AOC]” 
(see Figure 8b). To justify that statement, Brent said “If you 
divide the whole thing in half like we do with the other one and 
then you subtract the same thing from each half then you know 
that whatever's remaining has to be equal and so you get AOB is 
equal to BOC.”9 

MMA C

B B

CA

O

 
Figure 8a. Two triangles of 

equal area 
Figure 8b. Making room for a 
third triangles—keeping two 

of equal area 
That particular example illustrates various aspects of 

the use of a diagram that make the interaction generative; 
and generative not just of an argument, but also of a 
different conception of equal area (Herbst, forthcoming 
a). For example, Vito picks a point O on what he pretends 
to be (or he sees-as) the median, and draws in segments 
with which he makes a claim. The truth of his claim 
hinges on how he has generated the diagram as he works 
on the problem, not on the actual areas—the area-equality 
of two triangles hinges on picking a point on the median 
but does not submit to empirical verification. In Brent’s 
case we see him strategically choosing which triangles 
are relevant for the argument, in spite of the fact that 
some of those triangles (notably AOM and COM) are not 
relevant for the statement of the problem. Brent also 
anticipates what the result of subtracting quantities 
should be even though it is irrelevant for him to actually 
compute those quantities. In drawing the diagram 
students don’t just represent the objects involved in the 
argument here—their interactions with the diagram 
actually help them generate the argument, including the 
notion that AOB and BOC are equal in area in spite of not 
having a visible equal height. The diagram is not merely 
being described, since the students create the objects that 
they will talk about, and also develop ways of talking 
about those objects (outlining triangles, writing in 
numbers, using deictics) as part of a makeshift sign 
system. And in spite of the fact that students act on the 
diagram, drawing in, they don’t surrender to the physical 
properties of the diagram—areas are equal by intellectual 
construction even if that intellectual construction needs 

physical actions to become thinkable. All of this is 
supported by a use of language that does not describe 
(e.g., verbs are not in the present tense, “is”) but rather 
prescribe (e.g., verbs indicate necessity, “have to”).  

The generative mode shares with the empirical mode 
the capacity to feed discourse about geometric objects 
contingent on actions on a diagram—yet it handles those 
actions conceptually, bracketing the empirical reading of 
those actions. Discourse prescribes a reading of those 
actions in such a way as to generate a geometric object 
that is not an aggregate of experiences as much as it is an 
instrument to filter those experiences. On the other hand, 
the descriptive and generative modes of interaction with 
diagrams are similar in terms of what a finished diagram 
includes—neither just signs (as in the representational 
mode) nor just referents (as in the empirical mode) but a 
juxtaposition of both signs and referents. The generative 
and the descriptive mode are different, however, in terms 
of what actions they allow as the diagram is being 
modified. The descriptive mode of interaction involves 
very little alteration of a given diagram. These alterations 
include predominantly the recording on the diagram of 
conclusions already proved (through adding hash marks, 
for example) but rarely they include the drawing of 
auxiliary lines or the labeling of new points. Interactions 
that are generative of new knowledge need to allow the 
creation of new (or the redefinition of old) objects as they 
are needed to solve problems. Which brings the issue 
back to interaction—to the norms that regulate the 
situations in which students interact with diagrams, more 
than to the specific diagrams that are involved in those 
interactions.  

Generative interaction points, on the one hand, to the 
capacity to use a representation (pictorial in this case) not 
just to express what one thinks, but rather as a partner to 
think with. On the other hand, this kind of interaction 
points to the capacity to use that thought to verbally 
repair or edit that representation, placing against the 
representation that exists, the geometric object that 
should exist instead. To interact with a diagram 
generatively as opposed to empirically means in 
particular constraining the range of things one can say 
about an object by way of holding oneself accountable 
for a conceptual reading of the actions one can take on 
those diagrams—or in Bachelard’s words, to hold oneself 
accountable for showing that “the real is not what one 
could believe but what one should have thought” 
(Bachelard 1938, p. 13, my translation). To interact with a 
diagram generatively as opposed to descriptively also 
means to allow oneself to use the diagram as a model of 
the object—not merely as a depiction but fundamentally 
as a locus for the operation and source of feedback from 
the operations that one should expect to be able to carry 
out on the object itself. This is one particular feature that 
dynamic geometry software makes available, to varying 
degrees (Laborde 2000; Yerushalmy & Chazan 1993).  

However, the issue is not just to identify what sort of 
interaction with diagrams supports authentic intellectual 
activity, but also to identify the conditions that could 
make such activity viable in a classroom—in particular, 
for it to be manageable by a teacher. To this point I would 
like to argue that establishing and managing generative 
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interactions between student, diagram and geometric 
object is often difficult. In the following section I provide 
one example of the kind of difficulties that these 
interactions can create for a teacher.  

6 The Circle Problem  
The following episode exemplifies what it could take to 
set up a generative interaction between students and 
diagrams, and also offers a view onto the opportunities 
and challenges that such an interaction presents to a 
teacher. One theorem about circles that teachers are 
expected to teach in the high school geometry course 
states that a circle tangent to two intersecting lines has its 
center on the bisector of the angle formed by the two 
lines, and has its points of tangency equidistant from the 
intersection of the two lines. What would it take to 
engage students in the conjecturing and proving of that 
theorem? In an interview with Cecilia Marton, a teacher 
with more than 30 years of experience teaching geometry, 
she indicated that for her to be able to entrust the proof of 
that theorem to her students, she would need to provide a 
diagram with all relevant elements marked, like the one 
on Figure 9, and state the “given” and the conclusion “to 
prove” explicitly. That diagram appears to be ready to 
engage students in interactions of the kind that I have 
called descriptive.  

 
Figure 9. A diagram similar to what would be  

customarily used to prove the tangents theorem 

In the context of the study of geometry instruction 
being carried out by project GRIP (Geometry, Reasoning, 
and Instructional Practices) we have begun to explore the 
question of whether the development of the tangent 
theorem could be shared with students by way of having 
them work on a problem that demanded a generative 
interaction between students and diagram, and what such 
a development would demand from a teacher. In 
collaboration with teacher Megan Keating we designed a 
lesson that was meant to engage students in formulating 
that tangent theorem as a way of finding out the 
conditions in which a problem could be solved. Students 
were to be given the problem stated in Figure 10, and 
provided with a calculator-based dynamic geometry 
sketch like the one in the figure, and asked to draw a 
circle centered on point P and tangent to both lines. The 
lesson was taught twice in Megan’s classes: first by 
herself, and, later in the day by a prospective teacher 
(James Canning) who was at the time working under 
Megan’s supervision. A week later the problem would be 
used in the room of another geometry teacher, Lucille 
Vance.  

Our analysis a priori of this task included the 

expectation that students would arrive at the theorem 
through establishing conditions for the problem to be 
solved. The work of finding ways to state those 
conditions would put them in contact with the various 
ideas that they would need to draw on and connect in 
proving the theorem. To be clear, we did not expect this 
would happen automatically, but that the kind of diagram 
and problem provided would afford the teacher a register 
from which to participate in a discussion that would 
provide context for students’ making of a reasoned 
conjecture: A communication from the student to the 
teacher as to what the construction problem would be that 
students could be fairly expected to solve. 

P

 
Figure 10. To draw a circle tangent  

to two intersecting lines 

To arrive at that situation from the given problem we 
expected, for example, that students might try and fit a 
circle in the angle and realize that it could not be done for 
the point given, identifying as a difficulty the fact that the 
purported center was not equidistant from the two legs of 
the angle. We expected that this would allow the teacher 
to engage students in rewriting the task, asking, for 
example, “what would you have to say about P to ensure 
that it would be equidistant from the two legs?” or in 
providing directions for a diagram that would permit the 
construction. Students might produce responses of two 
kinds. Some might impose conditions that limited where 
to choose P, for example by saying that P should be on 
the angle bisector. Others might provide specific 
procedures to choose one point P, for example by 
suggesting that one drew a segment joining the two legs 
and then found the midpoint of that segment (see Figure 
11). The teacher could follow up on each of those with 
demands of an argument. To the first group the teacher 
could ask how they could make sure a point on the angle 
bisector is equidistant from the legs, and then what would 
they have to do to find out the radius of the tangent circle. 
To the second group the teacher could ask whether such 
procedure could be done with any segment whose 
endpoints were on the two legs of the angle. We thus 
expected that the discourse could foreground the 
connections between on the one hand the need for the 
center of the circle to be equidistant from the legs, made 
apparent by the choice of an initial point that did not have 
such property, and on the other hand the characteristics of 
a figure for which such point was equidistant from the 
legs.  

That analysis a priori only anticipates the mathematical 
features of an interaction that, by virtue of taking place in 
a school classroom, contained other elements that had to 
be taken into consideration. These have to do with the 
customary ways in which construction problems based on 
a given diagram find a place in Megan’s and Lucille’s 
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classes—customs that we presume are not particular to 
their classrooms as much as they are typical of high 
school geometry in the US (Balacheff 1999). To 
understand how they matter, let’s see how the problem 
was addressed by one group of students in the first class 
where Megan posed the problem. 

P

 
Figure 11. A possible conjecture  

of a better center for the tangent circle 
After about 10 minutes working on the problem, the group 
composed of Heidi, Jessica, Mitchell, and Neil has not yet made 
any conjecture. This frustrates the girls. Heidi says to Megan 
that they are delaying because Mitchell “is getting it exactly 
right.” Mitchell complains, “It won't give me the distance to the 
ray.” And after trying he says, “Okay, I can't do it, man …  I just 
measured it, and it's definitely not working.” The stakes for this 
group get higher when Megan asks the class who has a 
conjecture and all other groups bid for sharing. Megan calls 
Jacob, from another group to show what he has done and asks 
of this group “you have nothing?” Neil, who has been 
peripheral to the work thus far asks his group mates, “What do 
we have to do?” and Heidi restates the task as to “make a circle 
with center P so that it touches those [rays].” Visibly nervous 
Mitchell tries repeatedly to get Megan’s attention and finally 
asks his question “Do we have to use the point P they gave us, 
or.…” Megan answers that they “can move it.” Evidently 
relieved Mitchell says, “Okay, we can, okay, because it didn't 
work where I had it.”  

Mitchell’s reaction shows that the task brought him to 
the realization that what is important for the problem to 
be solvable is equidistance. We are interested in his 
reaction not just as an adaptation to the task but also as a 
perturbation to the work of his teacher. In expressing 
relief at the possibility to move the point, Mitchell made 
the point to his teacher that something was odd in the 
way the task itself had been posed. Mitchell’s initial 
difficulty with the problem conveyed the sense that the 
diagram was in some way an unfair way of engaging 
students in a problem. Evidence that this was a 
perturbation was visible later that day, immediately after 
James Canning presented the problem to the students in 
7th period. Before students started working on the 
problem, Megan made a preemptive clarification that 
substantially altered the mathematical nature of the task 
and that evidently responded to Mitchell’s reaction earlier 
that day. 

Megan: “Okay, I'm gonna say something because second hour 
when we did this there were a few questions.  People said and 
uh if you’re in CE1 [the name of the sketch they were to use], 
you see that point now that’s sort of floating around between the 
angle…? Um, they said well, can I move that point, or do I have 
to leave it there?  You can move anything, that you, well, some 
stuff you can't move on there.  But you can definitely move P.  
So if you need to move P to satisfy this, fine, but then the 
reason you moved it and where you moved it to should be part 
of your conjecture.  So, I don't have a problem with you moving 

P around to get what your trying to do, is in that angle, get a 
circle that's tangent to both sides.  You need to move P around 
to do that, that's fine, but that better end up being part of your 
conjecture.” 

Megan’s transformation of the task in this second time 
around is more than just a personal matter—it speaks of 
the extent to which it is normal in geometry classrooms to 
expect that students will add conditions to elements given 
in a diagram. The way in which Lucille Vance assigned 
this same task is a symptom of that constraint. When 
Lucille planned to teach the lesson in her class, using 
dynamic geometry software available on laptops, she 
preferred not to provide students with any pre-drawn 
sketch where to construct but rather to assign them the 
job of constructing intersecting lines and then plotting the 
point and constructing the tangent circle. It was far easier 
for her students to plot a point in a place where it looked 
like the construction would be possible even though they 
would only describe that location as “in the middle.” 
Lucille was able to funnel that description into a 
reference to the angle bisector, even though the key idea 
that the angle bisector is important because it is the locus 
of points equidistant to the sides remained untouched.  

There is more than students’ mathematical thinking and 
teacher support to that thinking at play in those 
episodes—or perhaps, there is that, but framed in the 
context of student and teacher perceptions of the 
instructional situations in which such thinking is taking 
place. When students are given a task they are given it in 
the context of an instructional situation that makes room 
for the task and also points to how the doing of that task 
will “trade” toward the fulfillment of the didactical 
contract (Herbst, forthcoming b; Herbst & Brach 2004). 
“Doing proofs” is one such instructional situation; doing 
constructions problems on given diagrams is another one; 
making conjectures based on empirical interactions, yet 
another. Whereas all of those rely on students’ 
interactions with diagrams, none of them customarily 
engages students in the kind of generative interaction 
called forth by this circle problem, in which students had 
to make the choice of imposing conditions on the given 
point to make the problem solvable at the expense of 
admitting that the given problem could not be solved in 
general.     

Reactions like that of Mitchell seem to be a normal 
response to the expectation that students should work 
with the diagram provided, rather than reject it and 
generate a different one that fits the problem that they 
could solve. One can see how doing the latter involves 
the student in building a reasoned conjecture: 
Specifically, that for a circle tangent to two intersecting 
lines to be constructible, its center must be equidistant 
from the two lines. But in order for the student to bring 
that issue on his or her own, to make that a deliberate 
move against an antagonist milieu, the task should not be 
one that presumes the existence of a locus for the center 
but one that makes no such assumption. This in turn puts 
the teacher in a difficult position. First of all, the teacher 
has to expect the students to work with the given 
diagram, not to discard it completely. (For example, in a 
later interview with Megan, she expressed dissatisfaction 
at the thought that students might comply with the task by 
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dragging the legs of the angle so that the point P would 
appear to be closer to the center or so that a circle would 
appear to be tangent.) Second, the teacher has to expect 
students will modify the diagram. The feedback from the 
given diagram to Mitchell’s failed attempts is indeed 
ambiguous: It says to him that the actual construction is 
not possible and it also says where a good center should 
be. Students’ capacity to see the second piece of 
information as relevant to what they are asked to do is at 
risk of being invisible because they are being asked to do 
something with that diagram not with another one. 
Students’ chances to be involved in building a reasoned 
conjecture about where the center of the circle should be 
seem boosted by this version of the task—with the point 
plotted away from the angle bisector. Yet the customary 
situations in which students make constructions are not 
those where students interact generatively with diagrams 
(as needed in this task). Pulling off this kind of work in 
the class seems to require not only posing a problem and 
managing a discussion about how students solved the 
problem, but also actually negotiating the shares of 
accountability for the instructional situation in which they 
think they are. This helps understand why Megan in her 
later class and Lucille in her own class modified the 
problem in the way they did—defaulting to an empirical 
mode of interaction. Lucille’s radical changes to the task 
enabled her not to have to negotiate who is accountable 
for doing what in the instructional situation that made 
room for the problem. Students thus made the conjecture 
that the center should be “in the middle”, but specifying 
what “in the middle” actually means came not so much as 
an operative apprehension as it came as the designation 
of a perceptual feature of the diagram.   

7 Conclusion 
The work of “deductive guessing” — building reasoned 

conjectures or using deductive reasoning to find out what 
could or should be true — can be aided by tasks that 
engage students in generative interactions with diagrams. 
However, these interactions are not customary in 
geometry classes. Students’ following of procedures for 
the construction of figures tend to engage them in a mode 
of interaction that I have called representational. The 
making of conjectures has found its way into the 
geometry course through engaging students in 
interactions with diagrams that fit the mode I have called 
empirical. And students’ accountability for doing proofs 
has rested on the development of a mode of interaction 
that I call descriptive. Engaging students in generative 
interactions with diagrams thus requires a teacher to do 
more than design tasks and manage students’ thinking in 
those tasks. It requires negotiating the norms of the 
instructional situation in which those tasks are posed. As 
this negotiation concerns the role of diagrams, a teacher 
faces the need to confront an apparent paradox that is 
illustrated with the circle problem—the diagram that she 

gives along with a problem is not necessarily the one that 
she expects students will use to solve the problem. 
Rather, that diagram is a counterpart that students will 
interact with in the process of exploring the conditions 
under which a version of the problem can be solved. 
Whereas the example discussed shows that students can 
engage in such intellectual work of thinking about a 
problem while interacting generatively with a diagram, it 
also demonstrates that in the effort to sustain a continuous 
engagement and avoid breaches of the didactical contract 
a teacher may shape that interaction with diagrams 
toward more customary modes. 

 
 

1 Research reported in this article has been done with the 
support of the National Science Foundation, Grant REC 
0133619 to the author. Opinions expressed are the sole 
responsibility of the author and do not reflect the views of the 
Foundation. Discussions with Maria Hamlin and other 
members of project GRIP (Geometry, Reasoning, and 
Instructional Practices) at the University of Michigan have 
been vital in developing these ideas.  A preliminary version 
of this article was presented as a short oral communication at 
the 27th Annual Meeting of the International Group for the 
Psychology of Mathematics Education, Honolulu, July 2003.  
I acknowledge comments from Michael Weiss and Vilma 
Mesa to a previous draft. 

2 All names used to designate students and teachers are 
pseudonyms. 

3 I use sign as the pointer to something else, referent as what the 
sign points to. In the empirical mode the diagram is 
fundamentally a referent. If anything, the role of signs is only 
to name: If two segments had an equal number of hash marks 
but were actually of different length when measured, the 
marks would be deemed wrongly placed. In the 
representational mode the diagram is a sign for a referent that 
exists as an abstract object manifested in discourse. In the 
descriptive mode at times the same graphic object can be sign 
and referent—two segments of actually different length can 
stand as referents for incidence issues (e.g., they can be taken 
as having a common endpoint even if that is not said) but 
only as signs for congruence issues (e.g., to the extent that 
they have the same number of hash marks they are to 
represent congruent segments).    

4 I designate by “the medial line theorem” the proposition that 
asserts that a segment whose endpoints are the midpoints of 
two sides of a triangle is parallel to the third side, and half as 
long. 

5 I thank Michael Weiss for pointing to this particular case of 
how diagrams are used to suggest the argument and Wendy 
Aaron for locating this specific example.  

6 By milieu it is meant a system antagonistic to the cognitive 
subject, in a game in which moves by the subject become 
more and more mathematically intelligent as they incorporate 
the feedback provided by the milieu (Brousseau, 1997). 

7 The words heuristic (Duval, 1995), transformational (Simon, 
1996), and scriptive (Mason, personal communication) might 
also fit this mode of interaction. 

8 See Herbst (forthcoming a, forthcoming b). 
9 I thank Maria Hamlin for locating and providing a preliminary 

analysis of these examples. 
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