Interactive 3D Architectural Modeling from Unordered Photo Collections

Sudipta N. Sinha Drew Steedly Richard Szeliski Maneesh Agarwala
UNC Chapel Hill Microsoft Live Labs Microsoft Research UC Berkeley
Marc Pollefeys

ETH Zurich and UNC Chapel Hill

(a) Input Photographs

(b) 2D Sketching Interface

(c) Geometric Model (d) Texture-mapped model

Figure 1: Our interactive image-based modeling system provides an intuitive sketch-based interface for reconstructing a photorealistic
textured piecewise planar 3D model of a building or architectural scene from an unordered collection of photographs.

Abstract

We present an interactive system for generating photorealistic, tex-
tured, piecewise-planar 3D models of architectural structures and
urban scenes from unordered sets of photographs. To reconstruct
3D geometry in our system, the user draws outlines overlaid on
2D photographs. The 3D structure is then automatically computed
by combining the 2D interaction with the multi-view geometric in-
formation recovered by performing structure from motion analysis
on the input photographs. We utilize vanishing point constraints at
multiple stages during the reconstruction, which is particularly use-
ful for architectural scenes where parallel lines are abundant. Our
approach enables us to accurately model polygonal faces from 2D
interactions in a single image. Our system also supports useful op-
erations such as edge snapping and extrusions.

Seamless texture maps are automatically generated by combining
multiple input photographs using graph cut optimization and Pois-
son blending. The user can add brush strokes as hints during the
texture generation stage to remove artifacts caused by unmodeled
geometric structures. We build models for a variety of architectural
scenes from collections of up to about a hundred photographs.

CR Categories: 1.3.7 [Computer Graphics]: Three-dimensional
graphics and realism, image-based modeling, texture mapping—
[1.2.10]: Artificial Intelligence—Vision and Scene Understanding

1 Introduction

In this paper, we develop a new interactive system for modeling ar-
chitectural scenes from an unordered collection of photographs. We
use computer vision techniques throughout to accelerate the model-
ing process. With our system, users can quickly generate a detailed
textured 3D model of a scene. For example, the textured model in

Figure 1 was generated in about five minutes.

Our interactive image-based modeling system uses an automatic
feature matching and structure from motion preprocessing stage
similar to [Snavely et al. 2006] to recover camera poses, a sparse
3D point cloud, and 2D feature correspondences between images.
In addition, lines are extracted and used to automatically estimate
vanishing points in the scene. The extracted 2D lines in each pho-
tograph are assigned vanishing directions that are consistent across
the entire collection. The system then uses this geometric informa-
tion at multiple stages of the interactive modeling process.

Once the automatic preprocessing is done, the user sketches 2D out-
lines of planar sections of the scene by drawing over photographs
(please see the video). Not only can the user easily align polygon
edges with vanishing point directions, but they can also directly
draw 3D rectangles in a 2D image, using strokes that align with
these directions (Figure 1b). The system estimates a 3D planar
polygon from the user’s 2D sketch using a robust estimation frame-
work. Vanishing directions and nearby points from the 3D point
cloud are used to estimate the plane normal and depth. A few such
steps can quickly produce a piecewise-planar model of the scene.

Our system allows the user to visualize, edit and refine the geometry
using an interactive 3D interface. As 3D geometry is created, the
photographs are projected onto its surface, providing visual feed-
back during geometric editing. This allows users to accelerate tasks
even for parts of the scene only observed by a single image, such
as when adjusting the boundary of a 3D plane by aligning it to the
appropriate image edge. By tightly integrating a 3D editing en-
vironment in our system, the user experience remains largely the
same for parts of the scene observed by many images as for parts
observed by only one or even zero images.

In order to texture the model, our system generates texture maps us-
ing graph cut optimization and Poisson blending to compute seam-
less texture composites by combining patches from multiple input
photographs. During this step, the user can optionally use a brush
interface to specify which pixels from a source image should be
favored and which ones should be avoided.

In our system, the tedious process of manually establishing corre-
spondences between images in order to estimate camera poses and
the difficult UI problem of specifying 3D geometry in a 2D inter-
face are eliminated. Instead, users are able to focus their energy

on problems that are hard for the computer, such as segmenting the
scene into planar polygons and choosing the desired level of detail.

1.1 Related Work

The problem of 3D modeling from images and video has received
tremendous interest in the computer graphics and vision communi-
ties. Significant success has been recently reported with both fully
automated systems such as Pollefeys et. al. [2004; 2008], Goe-
sele et. al. [2007] as well as interactive systems such as Debevec
et. al. [1996], Cipolla et. al. [1999], Oh et. al. [2001], El-Hakim
et. al. [2005] and van den Hengel et. al. [2006; 2007]. Automated
systems based on structure from motion process image sequences to
first recover the camera poses and a sparse (point cloud) reconstruc-
tion of the scene. From the sparse reconstruction, dense multi-view
stereo algorithms can generate a dense mesh model. While systems
such as Pollefeys et. al. [2004; 2008] were geared toward process-
ing video, recently Snavely et. al. [2006] used improved feature
extraction and matching techniques to make structure from motion
work with unordered photo collections obtained from the internet.
This approach has led to an intuitive photo navigation system called
Photo Tourism and allowed Goesele et. al. [2007] to compute dense
mesh models using multi-view stereo. On the other hand, Dick
et. al. [2004] showed that a probabilistic model-based method with
appropriate priors could also be used to reconstruct buildings.

While these results are impressive, they require dense photo collec-
tions and their quality tends to suffer if either the camera motion is
degenerate or the scenes lack adequate textures. These limitations
can be overcome by having a user in the loop to interactively guide
the geometry creation. Facade [Debevec et al. 1996] was one of
the earliest image-based modeling systems designed for modeling
architectural scenes which later gave rise to a commercial product
called Canoma. It provides a set of parameterized 3D primitives
such as cuboids, prisms, and pyramids. The user selects the ap-
propriate primitive to model a part of the scene and then aligns it
by pinning its vertices or edges to specific locations in the differ-
ent photographs. These systems often require the user to manually
specify correspondences of geometric primitives in multiple pho-
tographs although single-view reconstruction is sometimes possi-
ble in special cases using symmetry or vanishing point constraints.
Adding many photographs can be quite laborious in these systems,
so only a few well-planned photographs are typically used.

Instead of using a set of pre-defined shapes [El-Hakim et al. 2005]
proposed a user guided method for creating and re-using build-
ing blocks for adding in geometric detail once a coarse model has
been generated. Single-view modeling techniques such as Criminisi
et. al. [2000], Oh et. al [2001] and other methods such as [Cipolla
and Robertson 1999; Wilczkowiak et al. 2005] have used vanish-
ing point constraints in modeling architecture. However all of
these previous techniques require more manual intervention than
our technique, are restricted to the use of solid primitives (e.g., par-
allelepipeds), and cannot easily exploit the large number of images
commonly available today for performing 3D reconstructions.

Recently, van den Hengel et. al. [2007] proposed a system called
VideoTrace to interactively model geometry from video; it has a
tracing interface and is capable of utilizing information recovered
by structure from motion. In their system, the user traces poly-
gons over the frames of video. The 2D user interaction is converted
into 3D reconstructions using geometric information obtained by
applying structure from motion to the video. Corrections to the re-
constructed surface can be made by moving a few frames forward
or backward in the video and modifying the vertex positions.

Like VideoTrace, our system takes advantage of the underlying
sparse reconstruction to infer the 3D geometry intended by the user

when sketching on an image. Our system, however, also extracts
and makes use of vanishing directions, which we have found to
be a powerful tool for 2D-to-3D modeling applications. This al-
lows us to accurately reconstruct polygonal faces by sketching in a
single image without needing refinement in other images to obtain
a globally consistent model. This makes our system more suited
for buildings and architectural scenes while Videotrace would be
better for free-form shapes. It also seems that the Videotrace in-
terface would be more effective when camera baselines are small
(as in video). In Videotrace, the user draws on a video frame but
subsequently needs to do more image-based interactions (e.g. con-
straining the polygon vertices) after moving to a nearby frame in
the sequence. The modeling time and effort in our system depends
on the level of detail in the desired model, not the number of photos.

Finally, once the scene geometry is created, our system performs
image-based texture map generation by building upon advances in
panoramic stitching and image blending [Pérez et al. 2003; Agar-
wala et al. 2004]. We use a graph cut based optimization framework
similar to that used by [Lempitsky and Ivanov 2007] — we have
also incorporated a stroke-based editing tool into the framework,
to allow users to edit the image-based texture maps for removing
artifacts due to unmodeled structures such as trees and foliage.

Sketch-based modeling interfaces are another inspiration for our
system [Zeleznik et al. 1996; Igarashi and Hughes 2001]. These
interfaces allow users to quickly create 3D models from simple
2D drawings and gestures. Recent commercial systems such as
SketchUp have been designed to support such sketch-based model-
ing. Yet, none of these systems incorporate techniques from image-
based modeling. As a result they cannot easily produce the kinds
of texture-mapped models our system is capable of. A new ver-
sion of SketchUp now includes a PhotoMatch feature, which allows
users to sketch over a photograph and model its geometry. This re-
quires the user to carefully specify a scene coordinate system (three
vanishing points) in each input photograph. Unfortunately, many
close-up photographs (not taken at corners of buildings) may not
have enough information to reliably indicate such triplets of van-
ishing points (converging parallel lines). In contrast to systems like
Facade [1996], Sketchup and Videotrace [2007] our system can pro-
cess large unordered photo collections and avoids the need for care-
fully taken photos. The extra redundancy in the set of input pho-
tographs allows our system to synthesize seamless high-resolution
texture maps without artifacts due to unmodeled occluders.

While some tools in our system such as sketching polygons and
snapping to vanishing directions have roots in sketch-based mod-
eling systems, we also provide a continuum of modeling modes,
from purely CAD based modeling to computer vision aided model-
ing and texturing. We demonstrate this flexibility by implementing
a few standard CAD utilities (extrusion, plane completion, mirror-
ing about axis aligned planes etc). The system is designed so that it
can fall back to traditional CAD-style modeling when parts of the
model or scene are observed by only few or even zero images.

2 Preprocessing

Although our system is interactive, it relies on accurate knowledge
of the camera orientation and sparse 3D geometry estimated from
the observed scene. Our system starts by pre-processing all the pho-
tographs using computer vision techniques for (a) reconstructing
sparse 3D structure from images and subsequently (b) for estimat-
ing vanishing points consistently across multiple views.

(b)

©) (@)

Figure 2: Screenshots of our system in use. (a) Photo browser with reprojected 3D points and vanishing line clusters displayed. The user
sketches over the photograph in this mode. (b) Photo browser with overlaid translucent partial 3D model. (c) The interactive 3D viewer, with
the side panel displaying automatically selected views for the chosen plane. (d) An orthogonal view of the chosen plane.

2.1 Structure from motion

We compute the camera positions and a sparse 3D point cloud
using an approach similar to the one proposed by Brown and
Lowe [2005]. Features are detected in all images, matched across
image pairs, then used to robustly estimate the camera poses and
the position of points in the sparse 3D point cloud in an incremen-
tal fashion [Brown and Lowe 2005; Snavely et al. 2006]. The op-
timal camera and point parameters are ones that minimize the er-
ror between the reprojected 3D points and the detected 2D interest
points. This minimization is accomplished by solving a sparse, it-
erative, non-linear least squares problem referred to as bundle ad-
Jjustment [Triggs et al. 2000]. In addition to the camera poses and
3D point positions, the list of cameras that observe each point is re-
tained and used by our system to propagate user interactions from
the reference view to other views.

2.2 Multi-view Vanishing Point Extraction

Parallel lines are common in architectural scenes containing man-
made structures. Under perspective projection, parallel lines appear
to meet at a point in the image called the vanishing point (VP). Van-
ishing points have been extensively studied along with the geometry
of image formation and have been found useful for camera calibra-
tion and 3D reconstruction from a single uncalibrated image [Cri-
minisi et al. 2000]. Although automatic methods for robust and
stable VP estimation in a single image such as [Rother 2002] are
well known, little work has been done on jointly estimating them in
multiple images of the same scene.

During the pre-processing stage, we automatically extract up to
three orthogonal VPs in each image, one of which always corre-
sponds to the vertical direction in the scene. VPs are first indepen-
dently extracted from each image, and then these are jointly op-
timized to align the vanishing directions and make them globally
consistent across all the images. Additional VPs can be selected in-
teractively from a set of candidate VPs or by drawing a pair of lines
in a single image which are known to be parallel in the 3D scene.

The details of the optimization approach for simultaneous vanish-
ing point estimation and camera pose refinement can be found in
Appendix A. While this is not the main focus of the paper, we have
not seen any previous work on structure from motion that performs
this additional optimization. In previous work, vanishing points
were mostly used within a single-view reconstruction framework.
Such systems recovered VPs automatically from single views and
often required strategic views such as the corner view of a building.
In our system, the multi-view VP estimation step is more accurate
as we jointly estimate the vanishing directions in the scene. Hav-
ing globally consistent VPs across multiple views allows the user
to sketch on any image of his choice in the photo collection.

3 Geometric Reconstruction

In this section, we describe the front end of our system and the
details of the user interaction. There are two basic modes of oper-
ation: a 2D photo browser with a sketch-based drawing interface
(Figures 2a-b and 3) and a 3D editor with a set of interaction tools
for reconstruction and texture map generation (Figure 2c—d).

3.1 2D Photo Browser and Sketching Interface

The 2D photo browser allows the user to navigate through the photo
collection and select appropriate images to sketch over. As shown
in Figure 2a, the user can view both the 2D interest points cor-
responding to the reconstructed 3D points on the image (recon-
structed interest points) and the family of lines corresponding to
different vanishing points. Each family of parallel lines is drawn
using the same color in all the images. As a 3D model is built up, it
can be rendered from the camera viewpoints and translucently dis-
played over the corresponding photographs with a separate color
for each planar facet (Figure 2b). This helps the user determine
which parts of the reconstructed scene are still incomplete.

The sketching interface in this mode includes a polygon tool, which
allows the user to trace out closed 2D polygonal outlines over the
photograph (Figure 3a), as well as a rectangle tool, which lets the
user directly draw a 3D rectangle aligned with vanishing point di-
rections (Figure 3b).

By tracing outlines on the image, the user is identifying a planar
facet in the scene. Once the polygon or rectangle has been drawn,
the system estimates the parameters of the plane (normal direction
and depth) that best fit the 3D points enclosed by the polygon. The
polygon is then simply projected from the image onto the estimated
plane to produce the 3D planar segment. While sketching on the
image is often a natural and intuitive way to sketch, it also circum-
vents the need for the system to try to estimate the boundary curve
automatically, which is often a challenge for fully automated ap-
proaches. In order to make the drawing process easier and the 2D-
to-3D inference more robust, our user interface provides two forms
of snapping: (a) snapping to VP directions and (b) snapping to pre-
existing geometry.

VP snapping. If any of the line segments drawn by the user almost
passes through a VP, that line segment is snapped to exactly pass
through it. Snapped line segments are constrained by the system to
be parallel to one of the detected vanishing directions (Figure 3b).
The VP snapping feature is enabled by default, but can be easily
disabled when necessary.

By snapping edges to one or more vanishing points, the user pro-
vides powerful constraints to the system for estimating the plane pa-

Figure 3: (a-b) Screenshots showing the user traced polygonal
outlines with snapping to previous geometry and vanishing points.
(c¢) VP Ambiguity: The user drawn edge such as e can get associ-
ated with multiple VPs during snapping i.e. Va or V3 in this case.
The system remembers both possibilities and chooses the correct
one during the RANSAC-based plane fit step.

rameters. Without any vanishing point constraints, the system must
estimate all three parameters of the plane, two for the normal direc-
tion and one for its depth. A single vanishing point constrains the
normal direction of the plane, reducing the plane estimation prob-
lem to a two parameter estimation problem. If the user specifies
two vanishing points, the plane normal is completely constrained,
and the system only needs to estimate one parameter—the depth of
the plane.

While using VP snapping, ambiguities arise when the line segment
drawn by the user is collinear with two or more vanishing points
in the image (Figure 3c). In this case, during the robust plane re-
construction step described in Section 3.2, the system automatically
chooses the VP that produces a plane which fits the point cloud bet-
ter.

Edge snapping. The second form of snapping is useful when the
user desires to reconstruct multiple planar facets that share edges,
e.g., two adjoining fagades of a building, as shown in Figure 3a.
While drawing the polygonal chain, if a new line segment is close
to being collinear and also overlaps with the reprojection of a pre-
viously drawn 3D edge, we force the user-drawn line segment to be
exactly collinear (in 3D) with the previous edge. This also ensures
that the new planar polygon that gets created will be welded to the
previously generated plane. However the plane equations of the two
planar facets involved are not affected; only their polygonal bound-
aries are transformed appropriately. Edge snapping is disabled by
default, but when a candidate edge is available for snapping the cor-
responding polygon changes color indicating to the user the possi-
bility to perform snapping.

3.2 Constrained Plane Fitting

To reconstruct a planar segment, the user draws its polygonal out-
line P in a selected image I. Its backprojection from the camera
center C' is a cone in 3D, and any planar cross-section of this cone
is a potential plane candidate. A robust RANSAC [Fischler and
Bolles 1981] based plane fit on the 3D point cloud is then performed
to find the best plane that satisfies the user’s input.

First we find X, the subset of reconstructed 2D interest points
originally detected in image I that lie within the boundary of the
polygon P drawn by the user in that image (see Figure 4). Each 3D
point in X is linked to reconstructed 2D interest points in other
views as well. We compute the set union of such views for all
points in X5 and denote the set of corresponding cameras by {J; }.
Next, we find the set of 3D points that project within the boundary
of P in image I and are also linked to reconstructed 2D interest
points in at least two views included in {J; }. Let us denote this set
by X2. (Note that X; C X5.) RANSAC is now performed using

Figure 4: Plane fitting: A 2D slice of the 3D scene is shown. Poly-
gon P is shown by a dark line in the selected image I. Planar cross
sections of the cone (shown in gray) defined by the camera center C
and the user drawn polygon P in image I are evaluated as potential
candidates for the plane fit using a RANSAC based approach.

- - -

-~ -
. -

- - . -
-~ _-® ~_ - - -
Pl 15t - ® L

- -~ 0 -~ - -

- -
- ~ -

(b) 1 VP, 2 points

AN

(a) 3 points (c) 2 VPs, 1 point
Figure 5: Multiple models for oriented planes used in RANSAC
based plane-fitting. Solid lines depict vanishing point constraints.

the set X; for generating hypotheses and X» for evaluating them.
This ensures that the plane fit is not overly sensitive to the choice
of the selected image.

To robustly estimate the plane parameters, a RANSAC [Fischler
and Bolles 1981] framework is used. Many random samples of
points are drawn from the selected subset. These samples are used
to generate plane hypotheses, which are then scored against all the
points in the selected subset. If no vanishing point constraints are
available, three non-degenerate points, i.e. not collinear or coin-
cident are needed in each sample to compute a plane hypothesis
(Figure 5a). With one vanishing point constraint, only two points
need to be sampled (Figure 5b). Finally, with two vanishing point
constraints only one point is needed (Figure 5c). Each plane hy-
pothesis is evaluated by computing the (robust) re-projection er-
ror of each 3D point with respect to its closest point on the plane.
The best hypothesis is then polished using (robustified) constrained
least-squares.

3.3 3D Viewer and Editor

Our interactive 3D viewer supports different rendering modes and
standard viewpoint controls, acts as a geometric editor with specific
capabilities, and also provides a front end for the image-based tex-
ture mapping engine. The viewer allows the user to interactively
select a particular planar segment either to edit its geometry or tex-
ture map. The 3D model being built can be rendered either (a)
with projective textures or (b) with the texture maps created by the
system. Blended projective texturing provides a way to visualize
out-of-plane parallax and gives the user visual feedback at interac-
tive rates to guide the geometric editing. Whenever the 3D model
is well aligned with the photographs, the projected textures are ge-
ometrically well aligned on the planar facets of the model, and their
blended (average) value therefore looks sharp.

(a) Weld Planes (b) Fillet Planes (c) Extrude Plane

Figure 6: 3D editing operations: (a) welding (extending) two
planes up to their intersection edge; (b) creating a fillet plane from
two existing line segments; (c) using extrusions to create recessed
windows and doors.

The user can switch the viewpoint in the 3D viewer to specific con-
figurations, such as a camera viewpoint or an orthographic view
of the selected plane. A side panel in the viewer displays thumb-
nails of a subset of photos in which the selected plane is observed.
These are referred to as the selected views for the currently active
plane. (Section 3.4 describes how these are computed.) The se-
lected plane is also rendered from these viewpoints and displayed
over the thumbnails as a translucent color overlay (Figure 2c—d).

The following forms of user interaction can be performed from any
suitable viewpoint in the interactive viewer.

Welding planes involves choosing a pair of disconnected planes
and joining them along a weld line — the 3D line along which the
two underlying planes intersect. Once the two planes are chosen,
other planes are temporarily hidden to avoid clutter and the 3D weld
line is displayed (Figure 6a). Individual polygon edges can then be
selected and snapped to the weld line. Since each edge is indi-
vidually snapped, partial welds are possible. This is useful where
one of the two planes protrudes beyond the weld line, e.g., when
a roof overhangs a wall. Both the fillet plane and extrusion tools
(described below) generate planes that are automatically welded to
adjoining geometry.

We treat each new weld as an additional constraint on the vertices
involved in the weld, forcing them to belong to multiple planes (up
to 3, since only 3 planes in general position intersect at a unique
point). Thus, once planar patches are welded together, future trans-
formations on the vertices involved are allowed only in a 0, 1 or 2
dimensional subspace. Vertex positions that respect the weld con-
straints are computed using Lagrange multipliers (Appendix B).

Editing plane parameters involves transforming the underlying
plane equation of the selected planar segment. One or more of the
following transformations can be applied in succession: (a) sweep
the plane along its normal direction while keeping the normal fixed;
(b) select a rotation point on the plane and rotate the plane about it
in an arc-ball fashion; or (c) draw a line on the plane and rotate the
plane about the line. These operations do not modify the shape of
the planar segment unless it is welded to neighboring planes.

Editing the plane boundary involves modifying the polygonal
outline, i.e., the shape of the planar segment. Its vertices or edges
can be moved within the plane. Additional vertices can also be in-
serted into the polygonal chain. The degrees of freedom for this
motion varies between 0 and 2 depending on the number of weld
constraints on the vertices of the polygon. This operation can also
perform snapping. When a line segment is nearly parallel to one of
the families of parallel lines (corresponding to vanishing directions
within this plane), snapping forces it to be exactly parallel.

Fillet planes can be created to connect pairs of existing planes as
follows. The user selects a pair of non parallel line segments (the
polygon edges of two different planar segments) and the system fits
a parallelogram to the pair of line segments (Figure 6b). A least
squares fit is performed to deal with non-coplanar line segments.

Extrusions can be created in various ways. An existing planar seg-
ment can be extruded along its normal direction to create a swept
volume. Another form of extrusion involves drawing polygonal
cutouts on an existing plane and then extruding the polygons in-
ward (Figure 6¢). This is useful for modeling structures such as
windows, doors and other details in facades of buildings. To deal
with repeated patterns often found on such fagades, we provide the
ability to replicate cutouts within the same plane and snap them
into position for exact horizontal and vertical alignment. (See the
accompanying video.)

3.4 View Selection

Every planar segment in our reconstructed model has a set of k
(typically k < 6) selected views associated with them, which are
the images in which the planar segment is expected to be signif-
icantly visible. We solve the visibility problem approximately by
combining the following heuristics. The set of 3D points that be-
long to the reconstructed plane (i.e., those that formed the inlier
set during the RANSAC-based plane fit) are each linked to interest
points detected in specific photographs. The fact that these 2D in-
terest points were matched across views and generated 3D points in
the point cloud implies that the plane must have been visible in the
images where they were detected.

Thus, based on 2D interest point count, we pick k cameras from
the set of selected views. In the case of very few or no inliers, we
choose k£ most frontal cameras after rejecting all cameras observing
the plane at a grazing angle (> 80°). The selected views are used
in the RANSAC-based plane fit step, the projective texturing in the
3D viewer, and for generating the image-based texture maps.

4 Texture Mapping and Blending

To compute a texture map for each planar segment, we backpro-
ject the selected views onto the plane. As the reconstructed plane
is typically visible in multiple images, pixels from each of these
backprojected images provide potential candidates for the texels in
the target texture map. The resolution of the target texture map is
determined by choosing the coarsest grid that avoids aliasing in all
of the selected images for the chosen plane. We perform visibil-
ity estimation on a per-texel basis to determine a set of visible pixel
candidates. A simple way to obtain a texture map would be to blend
together all the candidates for each texel, but this produces ghost-
ing artifacts noticeable in the case of misalignment or unmodeled
geometric detail and in general blurs the fine resolution present in
the photographs. Choosing the pixel from the most frontal view
for each texel independently would avoid these problems but would
create other artifacts in the form of noticeable seams in the texture
map. In addition, none of these approaches deal with the problem of
partial occlusion of the modeled surface by foreground occluders.

We therefore pose texture map generation as an MRF optimization
problem, where a high quality seamless texture map is computed by
minimizing a suitable energy functional consisting of data penalty
terms and pairwise terms. While Lempitsky and Ivanov [2007] used
a similar technique for generating image-based texture maps, their
underlying MRF was defined on a tesselated triangulated manifold
mesh instead of a texel grid. We also incorporate user constraints
specified in the form of brush strokes and use the sparse depth sam-
ples obtained from the 3D point cloud in our energy functional to

create texture maps with fewer foreground occluders.

Our texture mapping stage proceeds as follows. The system auto-
matically creates a texture map composite for each plane. This is
done by performing an automatic graph cut optimization to opti-
mally choose source images for the texture map composite. The
user is then given the option to modify the result interactively
by specifying constraints using brush strokes drawn on the recon-
structed plane. Each interaction results in an additional iteration
of the graph cut optimization on the same MRF. When the user is
satisfied with the composite, Poisson blending [Pérez et al. 2003]
is performed to reduce seam artifacts and this generates the final
texture map.

4.1 Graph Cut Optimization

Graph cut optimization is the preferred technique used in computa-
tion photography for finding optimal seams between image regions
being stitched together [Agarwala et al. 2004]. This technique min-
imizes the following energy function. We denote the set of aligned
images rectified to the target plane by I1,...,I,. The graph cut
estimates a label image L where the label at pixel p denoted by
L(p) indicates which image I should be used as the source for p
in the target texture map. The energy functional we minimize is de-
noted by E(L) where L is a particular label image. Note that L is
piecewise constant except at seams between adjacent pixels p and

¢, where L(p) # L(q).

Our energy functional E (see Equation 1) is the sum of a data
penalty term summed over all pixels of the label image L and a
pairwise interaction penalty term summed over all pairs of neigh-
boring pixels in L.

E(L) = Dp.Lp) + Y _ Sr,a, L), L) (1)

The data penalty term denoted by D(p, L(p)) stores the cost of
assigning label L(p) to pixel p while the interaction penalty term
S(p,q, L(p), L(q)) stores the cost of assigning labels L(p) and
L(q) to neighboring pixels p and ¢ in the label image.

S(p,q, L(p),L(g)) = 0 if L(p) = L(q)
A+ B
A = ey (P) — 1@+ o) (@) — Tug)(9)]

B

IVILp)(P) = VL) (p) +VILp) (@) — Vg (9)]

We use the same pairwise seam term as used in [Agarwala et al.
2004] to encourage invisible seam transitions. Minimizing the ra-
tio of the average color difference and the average gradient differ-
ence generates invisible seams that are biased towards strong im-
age edges. However this can lead to artifacts in the Poisson blend-
ing. Therefore we prefer seams such that colors and gradients are
matched across it without the strong edge bias. The results of run-
ning our graph cut seam finding on a house wall are shown in Fig-
ure 7. Our data term is a weighted sum of the following four terms.

Preference for a frontal view. We use D; = 1 — cos?(6), where
0 is the angle between the plane normal and a particular camera.

Photo-consistency. We find the median color u of the set of can-
didate pixels and set a high penalty for choosing a pixel whose
color Iy, (p) deviate from the median color. Specifically, we use

Dy = I (p) — pl-

Brush Strokes The user can specify additional constraints using
brush strokes. Constraints can be both positive (the user draws in

Figure 7: (Left) Source images for building the texture map. (Mid-
dle) Texture map generated by the graph cut. (Right) Label map.

one of the source images indicating the preference for pixels from
that image in the vicinity of the brush stroke) or negative (the user
wants to erase pixels in the current estimate of the texture map and
replace them with alternate pixels from other source images). An
infinite penalty is used to enforce such constraints in a hard manner.

Sparse Point Cloud Depth By projecting the 3D point cloud into
all the images, we obtain accurate depth at a few pixels. If a pixel
with known depth corresponds to a 3D point on the target plane,
then the corresponding image is a good candidate for texturing that
pixel. A positive constraint for preferring this image as a source
is introduced in a 3x3 patch around the pixel in the texture map.
Otherwise the 3D point is part of a different geometric structure. If
the distance between the 3D point and the nearest point on the plane
when reprojected into a particular image exceeds a threshold (> 10
pixels) we introduce a negative constraint for choosing that image
as a source for the corresponding pixel in the texture map.

5 Results

Using our system, we have reconstructed a variety of scenes ranging
from small houses (Figure 1 and Figure 8(top)) to complex architec-
ture, aerial urban footage and an artist gallery (Figure 8 (bottom)).
Structure from motion worked accurately on all these sequences.
While dealing with structure from motion failures is important, we
do not address this issue here but will investigate it in future work.
Tables 1- 3 report the number of photos used and the time spent
by the user while building these models in our system. For all the
datasets except for the city scene which contains many buildings,
the user was able to build a coarse model of the whole scene very
quickly.

In the Leuven castle sequence, very few lines associated with the
vanishing directions of the two roofs were detected in the images.
The system could reconstruct the roof planes accurately without re-
quiring these oblique vanishing directions to be specified. For both
the castle and the Zurich Rathaus dataset, we found the replica-
tion of planes and polygon cutouts aided by the horizontal/vertical
alignment snapping particularly helpful for extruding the windows.
The aerial city images contain parallel streets and offset city blocks
at multiple orientations. Multiple vanishing directions proved to be
extremely beneficial here.

The photographs of the brown house contain foreground occlud-
ers such as trees. Avoiding such clutter is sometimes impossi-
ble while photographing buildings and architecture while walking
around them. For the trees in the brown house dataset that were
observed in multiple images, the structure from motion preprocess-
ing often found several points on them. Since these 3D points are
not on the wall being textured, many of the trees are automatically
eliminated from the texture map. In some cases, when the auto-
matic graph-cut step could not eliminate the occluders completely,

(a) Geometric Model (b) Texture Mapped Model (c) Model overlaid on photo

Figure 8: Results from five different photo collections shown from top to bottom - (1) Brown House (61 images); (2) Leuven Castle (28
images) (3) Zurich Rathaus (98 images) (4) City Scene (102 images) and (5) Indoor Gallery Scene (158 images) (better seen in color).

Playhouse (10 images) | BrownHouse (61 images)

LeuvenCastle (28 images) | Zurich Rathaus (98 images)

Coarse Models (polygon count, total time)

Coarse Models (polygon count, total time)

3 2 mins 19 6 mins

35 4 mins 63 | 8 mins

Detailed Final Models (polygon count, total time)

Detailed Final Models (polygon count, total time)

46 | 5 mins 311] 25 mins

261 | 15 mins 616 | 30 mins

Table 1: Polygon count (number of planar polygons) and total user
time for the Playhouse and brown house models (better seen in
color).

the user specified a few brush strokes to remove them from the tex-
ture map. The final texture maps were almost fully free of artifacts
due to un-modeled structures like the trees and bushes.

The advantage of being able to utilize hundreds of photos is evi-
dent in the artist gallery reconstruction. The close-up photos of the
paintings and canvas boards allowed us to generate high resolution,
photo-realistic texture maps for the 3D model. For the city dataset
which had severe occlusions due to the presence of many high-rise
buildings, using about a hundred photographs helped in generating
more complete texture maps. Both severe occlusions and variation
in lighting made texture map generation for this scene quite chal-
lenging. Sometimes our automatic view selection strategy did not
provide maximal coverage for generating texture maps requiring
the user to manually specify additional source images. This task
will be fully automated in future and better strategies for dealing
with lighting variation and auto-exposure will be investigated.

5.1 User Study

To evaluate the ease of use of our system, we conducted a user study
with four novice users. After providing a 40 minute long demon-
stration and training, we asked the subjects to model the playhouse
(Figure 1). We evaluated them on the playhouse by comparing the
duration of their modeling sessions and the accuracy and level of
detail of their results against those of an expert user. The subjects
were able to create quite accurate and detailed models of the play-
house in 11 — 16 minutes while an experienced user took about 5
minutes. The new users were often satisfied with the automatically
generated texture maps and did not edit the texture maps further,
although a little editing would have removed the few artifacts that
remained in some cases.

Finally one of the subjects was told to use the system to model a
small scene of their own choice. The subject took 16 photos of a
small shed and then successfully built a textured 3D model using
our system (please see the video).

Table 2: Polygon count (number of planar polygons) and total user
time for the Leuven Castle and Zurich Rathaus models (better seen
in color).

5.2 Conclusions

Based on the user study, we found vanishing directions to be a pow-
erful modeling aid for architectural scenes. Allowing users to snap
line segments to vanishing directions not only makes the sketching
interface easier to use, but also greatly enhances the system’s ability
to accurately estimate 3D planes. Using the vanishing point con-
straints during plane reconstruction proved critical for low texture
surfaces such as the fascia boards lining the roof of the playhouse.
This extra robustness greatly improves the user experience.

Users often had a tendency to sketch in regions where reconstructed
interest points were absent. Currently our system is unable to gener-
ate a plane from the user’s input in such cases. In the future, we will
make the system more robust by generating denser point clouds us-
ing multi-view stereo and providing better visual feedback to guide
the user while sketching.

New users found it intuitive to create disconnected planar poly-
gons by sketching over the images followed by manual welding
and plane editing in the 3D editor to generate connected surfaces.
In some cases using the snap to pre-existing geometry feature while
sketching would have been quicker but news users preferred the
simpler but more time-consuming strategy.

Subjects found the visual feedback provided by projecting textures
on the geometry in the 3D editor quite useful. They used this mode
frequently for editing the plane boundary, creating extrusions, cut-
outs and for generating fillet planes.

Users also spent substantial time browsing the photo collection to
select an appropriate photo to sketch over. Although this choice is
not critical for the system, we believe that users will do this quite of-
ten to explore the photo collection in order to understand what can
be reconstructed in the scene. To improve the user’s experience,
our system could be enhanced with a spatially aware photo naviga-
tion system similar to the one proposed by Snavely et. al. [2006].
The benefit of doing this would be evident while processing a large
photo collection.

City Scene (102 images) | Gallery (158 images)

Coarse Models (polygon count, total time)

47 10 mins 38 | 10 mins
Detailed Final Models (polygon count, total time)

746 | 2 hrs 568 | 2 hrs

Table 3: Polygon count (number of planar polygons) and total user
time for the City and Gallery models (better seen in color).

6 Summary and Future Work

We have introduced an interactive image-based modeling system
for architectural scenes that leverages recent advances in auto-
matic computer vision techniques and sketch-based interfaces for
3D modeling. Our system can handle large photo collections and is
well suited for modeling architectural scenes as it utilizes vanishing
point constraints. It also supports the generation of seamless high-
quality image-based texture maps for the 3D models by utilizing all
the images that are available.

In the future, we will use advanced computer vision algorithms to
make our system more automatic. In particular we will explore ap-
proaches for automatically suggesting candidate planes. We plan to
improve the pre-processing pipeline by performing vanishing point
extraction coupled with 3D line segment reconstruction as well as
integrating quasi-dense stereo into our system to generate denser
3D point clouds. In-painting will be incorporated into the texture
map generation pipeline in order to deal with the problem of severe
occlusions and missing information which occurs when the surface
is not visible in any of the source images.

In our system, there is currently no mechanism for correcting the
image sequence for color balance or to handle lens vignetting. This
is important for accurate image-based texture map generation es-
pecially when the photographs are taken with auto-exposure set-
tings. We will address this in future by incorporating automatic
algorithms for radiometric calibration from image sequences such
as those proposed by Kim et. al. [2008] to neutralize the effects of
auto-exposure and perform correction for vignetting.

In practice, the fully automatic feature matching and structure from
motion pipeline will sometimes fail or produce errors for some im-
ages in a collection. Currently, our system is unable to process such
datasets. However in future we will provide a way to interactively
correct such failures using a few user-provided correspondences (as
in the classical approach of Debevec et. al. [1996]) within our sys-
tem. Our system could also be extended to deal with curved and
free-form surfaces in the scene and handle a wider range of archi-
tectural styles.

References

AGARWALA, A., DONTCHEVA, M., AGRAWALA, M., DRUCKER,
S., COLBURN, A., CURLESS, B., SALESIN, D., AND COHEN,
M. 2004. Interactive digital photomontage. In ACM Trans. on
Graphics (SIGGRAPH’04), 294-302.

ALIAGA, D. G., ROSEN, P. A., AND BEKINS, D. R. 2007. Style
grammars for interactive visualization of architecture. IEEE
Trans. on Visualization and Computer Graphics 13, 4, 786-797.

BAILLARD, C., AND ZISSERMAN, A. 2001. Automatic recon-
struction of piecewise planar models from multiple views. In
CVPR, 559-565.

BROWN, M., AND LOWE, D. G. 2005. Unsupervised 3d object
recognition and reconstruction in unordered datasets. In 3DIM
’05, IEEE Computer Society, Washington, DC, USA, 56-63.

CIPOLLA, R., AND ROBERTSON, D. 1999. 3d models of archi-
tectural scenes from uncalibrated images and vanishing points.
ICIAP 00.

CRIMINISI, A., REID, I. D., AND ZISSERMAN, A. 2000. Single
view metrology. Int. J. of Computer Vision 40, 2, 123-148.

DEBEVEC, P. E., TAYLOR, C. J., AND MALIK, J. 1996. Mod-
eling and rendering architecture from photographs: A hybrid
geometry- and image-based approach. In SIGGRAPH 1996,
Computer Graphics Proceedings, 11-20.

DicK, A.R., TORR, P. H. S., AND CIPOLLA, R. 2004. Modelling
and interpretation of architecture from several images. Int. J.
Comput. Vision 60, 2, 111-134.

EL-HAKIM, S., WHITING, E., AND GONZO, L. 2005. 3d model-
ing with reusable and integrated building blocks. The 7th Con-
ference on Optical 3-D Measurement Techniques.

FISCHLER, M. A., AND BOLLES, R. C. 1981. Random sample
consensus: a paradigm for model fitting with applications to im-
age analysis and automated cartography. Commun. ACM 24, 6,
381-395.

GIBSON, S., HUBBOLD, R., COOK, J., AND HOWARD, T. 2003.
Interactive reconstruction of virtual environments from video se-
quences. Computers and Graphics 27, 2.

GOESELE, M., SNAVELY, N., CURLESS, B., HOPPE, H., AND
SEITZ, S. M. 2007. Multi-view stereo for community photo
collections. In ICCV.

HoIEM, D., EFROS, A. A., AND HEBERT, M. 2005. Automatic
photo pop-up. In SIGGRAPH 2005, Computer Graphics Pro-
ceedings.

IGARASHI, T., AND HUGHES, J. F. 2001. A suggestive interface
for 3d drawing. In UIST, 173-181.

KimMm, S. J., AND POLLEFEYS, M. 2008. Robust radiometric cali-
bration and vignetting correction. IEEE Transactions on Pattern
Analysis and Machine Intelligence 30, 4, 562-576.

LEMPITSKY, V. S., AND IVANOV, D. V. 2007. Seamless mosaicing
of image-based texture maps. In CVPR.

MUELLER, P., ZENG, G., WONKA, P., AND GooL, L. V. 2007.
Image-based procedural modeling of facades. ACM Trans. on
Graphics (SIGGRAPH 2007) 26, 3, 85:1-85:9.

OH, B. M., CHEN, M., DORSEY, J., AND DURAND, F. 2001.
Image-based modeling and photo editing. In SIGGRAPH 2001,
Computer Graphics Proceedings, 433-442.

PEREZ, P., GANGNET, M., AND BLAKE, A. 2003. Poisson image
editing. ACM Trans. on Graphics (SIGGRAPH’03) 22, 3, 313—
318.

POLLEFEYS, M., GooL, L. V., VERGAUWEN, M., VERBIEST,
F., CorNELIS, K., Tops, J., AND KocH, R. 2004. Visual
modeling with a hand-held camera. Int. J. of Comput. Vision 59,
3,207-232.

POLLEFEYS, M., NISTER, D., FRAHM, J.-M., AKBARZADEH,
A., MORDOHALI, P., ET AL. 2008. Detailed real-time urban 3d
reconstruction from video. Int. J. of Computer Vision (in press).

ROTHER, C. 2002. A new approach for vanishing point detection
in architectural environments. In BMVC, vol. 20, 382-391.

SKETCHUP. http://www.sketchup.com.

SNAVELY, N., SEITZ, S. M., AND SZELISKI, R. 2006. Photo
tourism: exploring photo collections in 3d. ACM Trans. on
Graphics (SIGGRAPH’06), 835-846.

TRIGGS, B., MCLAUCHLAN, P., HARTLEY, R., AND FITZGIB-
BON, A. 2000. Bundle adjustment — A modern synthesis. In
Vision Algorithms: Theory and Practice, W. Triggs, A. Zisser-
man, and R. Szeliski, Eds., LNCS. Springer Verlag, 298-375.

VAN DEN HENGEL, A., DICK, A., THORMAHLEN, T., TORR, P.
H. S., AND B.WARD. 2006. Fitting multiple models to multiple
images with minimal user interaction. In the Intl. Workshop on
the Representation and use of Prior Knowledge in Vision.

VAN DEN HENGEL, A., DICK, A., THORMAHLEN, T., WARD,
B., AND TORR, P. H. S. 2007. Videotrace: rapid interactive
scene modelling from video. ACM Trans. on Graphics (SIG-
GRAPH’07), 86.

WERNER, T., AND ZISSERMAN, A. 2002. New techniques for au-
tomated architecture reconstruction from photographs. In ECCV
(2), 541-555.

WILCZKOWIAK, M., STURM, P., AND BOYER, E. 2005. Using
geometric constraints through parallelepipeds for calibration and
3d modeling. IEEE Trans. on PAMI 27, 2, 194-207.

ZELEZNIK, R., HERNDON, K., AND HUGHES, J. 1996. Sketch:
An interface for sketching 3D scenes. ACM Trans. on Graphics
(SIGGRAPH’96), 163-170.

ZIEGLER, R., MATUSIK, W., PFISTER, H., AND MCMILLAN, L.
2003. 3d reconstruction using labeled image regions. In SGP
’03: Proceedings of the 2003 Eurographics/ACM SIGGRAPH
symposium on Geometry processing, 248-259.

A Estimating Vanishing Points

Our single image VP estimation method uses RANSAC. Two ran-
dom samples are selected from the set of detected line segments.
Their intersection produces a VP hypothesis. To evaluate this hy-
pothesis, we test its agreement with all the line segments using the
method of Rother [2002]. Once a good RANSAC solution is ob-
tained, we repeat the process on the remaining outliers and look for
up to N unique solutions (N = 8 in our experiments). This approach
is quite fast and reliably finds the VPs with good support (high inlier
count of concurrent line segments). However some spurious solu-
tions are also obtained, especially when a set of lines is accidentally
concurrent but does not actually correspond to parallel lines in 3D.

Therefore we globally optimize the camera parameters and estimate
three orthogonal directions in a subsequent bundle adjustment. This
minimizes the alignment error between VPs and their associated

family of parallel lines along with the reprojection error of the re-
constructed 3D points. The camera parameters obtained earlier are
used to backproject all the single-view VP estimates into directions
which are then clustered on a unit sphere. The up-vector is com-
puted by detecting the cluster that is most well aligned with the
up vector for most of the cameras. Once clusters corresponding to
three orthogonal directions have been detected, the bundle adjust-
ment is initialized with the cluster centers and the existing camera
parameters. This bundle minimizes the sum of the reprojection er-
ror of 3D points reconstructed by structure from motion and the
alignment error of the line segments w.r.t. the corresponding van-
ishing points (the criteria described by Rother [2002]). Along with
refining the camera parameters, three orthogonal directions in the
scene are computed. When projected into the images, these produce
globally consistent orthogonal vanishing points in all the images.

B Constrained Vertex Positions

For editing the geometric model under a set of constraints, we use
Lagrange Multipliers to update the position of the vertices of our
model which are constrained to lie on 1-3 planes. In the following
section, we denote the plane equation by 7.z + d = 0 where 77 rep-
resents the normal vector of the plane and d represents its distance
from the origin.

In order to constrain a vertex p = (pz, py, p-) to lie on two planes
1 = (niz, N1y, N12),d1 and iz = (n2g, N2y, n2z), ds, the 3D
point p must satisfy

ﬁl.p+d1 = 0
ﬁz.p—‘rdg = 0

We also minimize the distance between p and a reference point
Do = (Poxs Poy; Doz), Which is given by the following expression.

L L2 2 2 2

7= Pol™ = (Px = Poz)” + (Py = Poy)” + (P= — Poz)
Minimizing this objective function under the two constraints with
Lagrange Multipliers A and p, we obtain a linear system of equa-
tions. This linear system is solved to obtain the position of the
constrained vertex.

2 0 0 Niz N2z Dz 2pox
0 2 0 niy nay Dy 2poy
0 0 2 niz N2 Pz | = | 2Poz
Niz N1y N1z 0 0 A —d1
N2z N2y N2: 0 0 m —dy

Note that a vertex lying on three non-coplanar planes is fully con-
strained to lie at the point of intersection of the three planes.

	SinhaSIGGRAPHasia08

