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Abstract

Image collections are getting larger and larger. To access those collections, systems for managing,

searching, and browsing are necessary. Visualization plays an essential role in such systems. Existing

visualization systems do not analyze all the problems occurring when dealing with large visual

collections. In this paper, we make these problems explicit. From there, we establish three general

requirements: overview, visibility, and structure preservation. Solutions for each requirement are

proposed, as well as functions balancing the different requirements. We present an optimal

visualization scheme, supporting users in interacting with large image collections. Experimental

results with a collection of 10,000 Corel images, using simulated user actions, show that the proposed

scheme significantly improves performance for a given task compared to the 2D grid-based

visualizations commonly used in content-based image retrieval.

r 2006 Elsevier Ltd. All rights reserved.

Keywords: Content-based image retrieval; Similarity-based visualization; Interaction

1. Introduction

Through the development of multimedia technologies and the availability of cheap

digital cameras, the size of image collections is growing tremendously. Collections range

from consumer pictures, to professional archives such as photo stocks of press agencies,
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museum archives, and to scientific pictures in medicine, astronomy, or biology. Hence,

large image collections are common everywhere.

The use of image collections is domain dependent. For consumer pictures, a task is

finding all pictures taken of a family member in a certain event. In medicine, a doctor

wants to search images similar to a given one, to diagnose a disease. In general, when

working with image collections the main task is searching relevant pictures in the

collection.

When the collection contains a couple of hundred images, one can find all relevant

images by visually inspecting the whole collection. If the size of the collection increases to

thousands or even millions of images, one needs efficient methods for searching and

browsing those collections. To that end, we should note the ‘‘semantic gap’’ between the

system’s automatic indexing capability and the user’s conceptual interpretation of the data

[1]. Interaction and visualization are needed to bring the system perspective and user

perspective together.

The appropriate visualization and interaction method are task dependent. For

understanding the structure of the collection, visualization should allow interaction with

clusters, local structures and outliers [2]. For browsing, some form of rapid serial visual

presentation can be appropriate [3], or network relations between images can be visualized

for easy navigation [4]. Searching requires the possibility to see overviews as well as being

able to interactively zoom-in on the information [5]. Finally, annotation requires that

images which should receive the same annotation are close to each other so they can be

annotated with one interaction step [6]. The examples indicate the need for generic tools

which can be combined to support each of these tasks.

In content-based image retrieval literature, few systems take the visualization as a tool

for exploring the collection. In most query by example-based systems, a randomly selected

set of images from the collection is displayed in a two-dimensional (2D) grid [1,7,8]. In this

way, the user does not get an overview of the collection. As a consequence, much time is

wasted in considering non-relevant images and relevant images are easily missed.

Visualization offers the opportunity to guide the user in her exploration.

To guide a user, the structure of the collection is of prime importance. Thus, focus must

not be on the images alone, but especially on the relations between the images. These

relations are captured by a similarity function. Similarity is a very generic notion and can

be based on features computed from the image content, free text descriptions, or semantic

annotations. Recently advanced systems have been developed for browsing images based

on similarity [2,4,9–14]. In these systems the similarity-, and thus structure, based

visualization of the collection is the guide for the user.

None of the above methods explicitly addresses the problems occurring when visualizing

large visual collections. The most important problem is the limited display size, not

allowing to show the whole collection as images on the screen. Some systems have made an

effort to relief this limitation by showing the whole collection as a point set [2]. Once the

user selects a point, the corresponding image is displayed [10]. To see the visual structure of

the collection, many images need to be shown simultaneously. A problem here is visibility.

If small thumbnails are used, the images cannot be understood by the user. Larger

thumbnails lead to substantial overlap of the images on the screen. Most of the existing

systems do not take this problem into account. Exceptions are [15,16], but their treatment

of the problem is rather ad-hoc. A final issue to consider is the difference between the

high dimensional feature space, typically of dimension 50 or more, and the 2D display.
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A mapping between the two is needed. For instance, in [15] Principal Component Analysis

(PCA) is employed, whereas Rubner et al. [4] uses Multi-Dimensional Scaling (MDS).

Inevitably in the projection, information on the structure of the collection is lost.

In summary, there are a number of problems when visualizing large image collections.

In this paper, we make them explicit.

The advanced visualization tools mentioned above make the development of systems

more complex. The question arises whether it is worth the effort. This requires extensive

evaluation. Evaluating the usability of a system can be done subjectively or objectively [17].

To evaluate subjectively, real users judge the performance of the system. In this direction,

only Rodden [16,18], performed evaluations of similarity-based visualization. However,

the use of subjective evaluation is quite expensive and cannot be repeated easily. When the

task is well defined some aspects of usability evaluation can be automated [17]. Such

objective evaluation has several advantages such as reducing the cost of evaluation,

reducing the need for evaluation expertise and increasing the coverage of evaluated

features [17]. It effectively allows to decompose the evaluation into evaluating the

methodology and the design of the interface and its usability. We view objective evaluation

as an important step in the development of complex systems.

Various techniques that aim at providing this type of evaluation can be found in [17] such as

testing, inspection, inquiry, analytical modelling, and simulation. Simulation method is most

suited for our case as it reports the performance of the system and user’s interactive actions.

This method uses models of the user and interface design to simulate a user interacting with

the system. We employ this method making the scenario of use and criteria for success of our

new approach explicit. From there, we develop a method to simulate the user actions.

The paper is organized as follows. In Section 2, we analyze the general requirements for

visualizing large image collections. A set of requirements is proposed. Solutions for each

requirement are then given in Section 3. From there, cost functions are established for

optimal visualization in Section 4. A visualization system to illustrate the proposed theory

with a collection of 10,000 Corel images and experiments based on a user simulation

system are presented in Section 5.

2. Problem analysis

In this section, we analyze in detail the problems occurring when visualizing a large

visual collection. From there requirements for a generic system are defined.

First of all, we give some notations and conventions used throughout the paper. An

image collection is a set of N images, where we assume Nb1000. Each image I in the

collection is represented by a feature vector f I , for example, a color or texture histogram.

The similarity of two images I ; J is denoted by SIJ . Often we will rather use a distance, or

dissimilarity measure DIJ , which is zero whenever the images have exactly the same feature

vector, and larger than zero otherwise. Thus, each image in the collection corresponds to a

point in a high-dimensional feature space. The image collection, the corresponding feature

vectors, and the distances between them define the information space. Fig. 1 shows a simple

example of a 3D information space.

Apart from the data preparation step, the general scheme of a visualization system

contains three steps. First, in the projection step, the information space is projected to the

visualization space yielding a 2D view. The image collection now corresponds to a set of

positions f~yig
N
i¼1 in the 2D space. In the selection step, the system selects a subset of images
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to display. Finally, the interaction step involves the visualization of the selected set and

user feedback. The overall scheme is illustrated in Fig. 2.

An obvious issue in visualizing a large collection is the limited display size of the

visualization space. This dictates that only a restricted number of images can be shown

simultaneously since the goal is to show the content of the images. Randomly selecting

images is certainly not a good approach as it does not capture the distribution of images in

the collection [19]. Therefore, the first requirement is:

Overview requirement: The visualization should give a faithful overview of the distribution of

images in the collection.

Secondly, the information space often exhibits considerable structure in the form of

clusters, low-dimensional manifolds, and outliers. Many examples are found in literature

e.g. in [20,21]. Fig. 3 shows examples of different structures found in a set of images from a

video sequence, similar to those in [21]. Another example of structure is present in a set of

images of the same object in different conditions such as different light source, viewpoint,

and/or orientation (see Fig. 4). This structure should be preserved in the visualization.

Thus we have:

Structure preservation requirement: The relations between images should be preserved in the

projection of the information space to the visualization space.

ARTICLE IN PRESS

Fig. 1. An example of a three-dimensional information space based on the amount of red, green and blue in an

image. Note that in practice the dimensionality is much higher.
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Finally, it must be stressed that the image itself provides important information for the

user, but only when it is large enough to be understood. Now, when a set of images is

displayed, they tend to overlap each other partially or fully [15,16]. The overlap between
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Fig. 2. General scheme of an image collection visualization system.

Fig. 3. (a) Linear structure of a sequence showing a car riding in a street. (b) Non-linear structure of a video

sequence capturing the conversation between two people.
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Fig. 4. A set of images of a toy taken from different orientations [20]. When the viewpoint changes in one

direction, the structure is linear.

Fig. 5. Problems and requirements for visualization of large image collections.
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images influences the quality of a visualization tool greatly. Due to overlap important

images can be missed. Therefore, the overlap among them should be reduced as much as

possible, leading to the following requirement.

Visibility requirement: All displayed images should be visible to the extent that the user can

understand the content of each image.

So we have three general requirements: overview, structure preservation, and visibility.

Those requirements are not independent. To increase the visibility, images should be

spread out. This has a negative effect on the preservation of structure. Furthermore, more

representatives yield better overviews, but the visibility decreases because overlap becomes

more likely. The relations among the three requirements are illustrated in Fig. 5. To

generate appropriate visualizations, we need means to balance the different requirements.

In the next sections, we find appropriate cost functions for each of the requirements, which

are then combined and jointly optimized.

3. Projection and selection methods

In this section, we consider different methods for projecting the information space to

visualization space. As well as methods for selecting images for the overview.

3.1. From information space to visualization

Well-known techniques used in existing systems are PCA [15] and MDS [4,16]. These

methods are designed to find linear structures in the information space. If the information

space contains a non-linear structure they will not satisfy the structure preservation

requirement. This is illustrated in Fig. 6.

This issue is considered in new techniques, known as non-linear embedding algorithms,

namely isometric mapping (ISOMAP) [22], local linear embedding (LLE) [23], and more

recently stochastic neighbor embedding (SNE) [24]. The proposed mapping algorithms are

able to preserve the real structure of the data and perform better than PCA and MDS. We

consider non-linear techniques only.

ISOMAP was introduced in 2000 [22]. Instead of directly computing the distance

between points, the authors use graph-based distance computation aiming to measure the

distance along local structures. Their algorithm contains three main steps. First, the

algorithm builds the neighborhood graph using t-nearest neighbors (the t closest points) or

�-nearest neighbors (all points with distance to the point less than �). The second step uses

Dijkstra’s algorithm to find shortest paths between every pair of points in the graph. The

distance for each pair is then assigned the length of this shortest path. After the distances

are recomputed, MDS is applied to the new distance matrix.

A different approach is SNE [24], a probabilistic projection method. This method first

computes the probabilities that two points take each other as neighbors, assuming a

Gaussian distribution, in both the high and the 2D space. The method then tries to match

the two probability distributions. Hence, it provides preservation of local geometric

structure and also keeps points which are distant in the high dimensional information

space distant in the visualization space. The working principle of the SNE can be briefly
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described as follows. Let P ¼ PIJ denote the probability that an image I would pick j as its

neighbor in the high-dimensional space. Under the Gaussian distribution assumption, PIJ

is given by

PIJ ¼
expð�D2

IJ Þ
P

LaI expð�D2
ILÞ

, (1)

with PII ¼ 0. Note that this measure in general is asymmetric: PIJaPJI .

In the 2D space, SNE initializes f~yig
N
i¼1 at random positions. The induced probability

Q ¼ fQIJg is then calculated for every pair of images:

QIJ ¼
expð�k~yi �~yjk

2Þ
P

kai expð�k~yi �~ykk
2
; QII ¼ 0. (2)

To measure the distance between these two distributions P and Q, the Kullback–Leibler

distance is used. This asymmetric distance is commonly used in measuring a natural

distance from a ‘‘true’’ probability distribution,P, to a ‘‘target’’ probability distribution, Q

DPQ ¼
X

I

X

J

PIJ log
PIJ

QIJ

.

The algorithm then finds the optimal positions f~yig by minimizing DPQ.

SNE uses direct distance computation among points, hence it can benefit from replacing

this distance by the graph-based distance from ISOMAP. We therefore propose ISOSNE,

a combination of ISOMAP and SNE.

Since SNE uses gradient descent methods it requires substantial computation time,

especially when the size of the data reaches several thousand images. LLE [23] can be

viewed as an approximation to SNE which is much faster to compute. This method first

constructs the t-nearest neighborhood graph. Then, for each point ~yi it computes the

weights wij that optimally reconstruct ~yi from its neighbors by minimizing the cost function
P

ik~yi �
P

jwij~yjk
2.

In the reference, LLE distance is computed directly, but we can also recompute distance

like in ISOSNE. We denote this combination by ISOLLE.
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3.2. Selection methods

To select a representative set from the collection to be used in the overview, a common

method is dividing the collection into a number of groups. One image from each group is

then selected as representative. This requires finding clusters based on the distance matrix.

A comprehensive overview of different clustering techniques is presented in [25].

Comparisons among different methods are given in [26–29]. They conclude that the

k-means algorithm is one of the most successful methods because of its simplicity in

implementation and its linear time complexity. We therefore employ k-means to select

images for the overview in our system.

The k-means algorithm is applied after projection of the information space to

visualization space. We initialize the k center points at random positions. The reassignment

of points to the nearest center is repeated until the clustering satisfies certain requirements,

or when the maximum number of iterations is reached. The image corresponding to the

point nearest to the cluster center fmg is selected as the representative of that cluster.

4. Balancing the requirements

As mentioned in the problem analysis, the three requirements are dependent on one

another. In order to balance them, we first develop a cost function for each requirement.

For the first two requirements, existing functions are employed, while for the last

requirement, we introduce our own cost function as it has not yet been investigated in

literature. From there, balancing functions are introduced and applied to realize our final

visualization scheme.

4.1. Cost functions

4.1.1. Structure preservation cost function

To preserve the non-linear structure of a collection, the projection algorithm should at

least map the neighbors of an image in the information space in such a way that they are

neighbors in the visualization space also, which is less strict than preserving distance. In

addition, users are also using comparisons of distance rather than absolute distance. The

cost function used in SNE is therefore a good option for evaluating different projections. It

is given by the Kullback–Leibler distance between the two distributions P and Q defined in

Section 3.1:

CS ¼
X

I

X

J

PIJ log
PIJ

QIJ

. (3)

Clearly, the lower this cost, the better the projection has preserved the relations between

neighbors.

4.1.2. Overview cost function

When the images are assigned to their corresponding cluster, we need to find a cost

function to evaluate the overview provided by the representative images of each cluster.

Clearly this depends on the number of clusters k asked for, and how well the

representatives cover the whole data set. A commonly used measure for the quality of
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the clustering is the modified Hubert statistic [27] ranging from 0 to 1, where the higher the

value the better the clustering. So our overview cost function is

CO ¼ 1�
r�MpMc

spsc
, (4)

where

r ¼ ð1=MÞ
XX

DIJdðmI ;mJÞ,

Mp ¼ ð1=MÞ
XX

DIJ ,

Mc ¼ ð1=MÞ
XX

dðmI ;mJÞ,

s
2
p ¼ ð1=MÞ

XX

D2
IJ �M2

p,

s
2
c ¼ ð1=MÞ

XX

d2ðmI ;mJÞ �M2
c ,

M ¼ kðk � 1Þ=2,

where mI is the center of the cluster containing image I and dðmI ;mJÞ is the distance

between two cluster centers.

4.1.3. Visibility cost function

So far the solution for the requirements can be based on existing measures, mainly

because they apply equally well to point-sets.

The major issue in visibility is the overlap of the images displayed. This depends on the

number and size of images displayed. A few small images will not overlap, but when 1000

large images are displayed there is always overlap. It also depends on the structure of the

data. If images are clustered in information space, the structure preservation requirement

will dictate that a lot of overlap is present in visualization space.

To define a cost for the overlap among images displayed, we consider the overlap of two

images, and combine them over all pairs. Finding the overlap between the rectangles

defining two images is not difficult, however, many different cases have to be distinguished.

To develop an analytical function, we make the simplifying assumption that all images

have width w and height h, with w ¼ h. We then represent an image as a circle, with radius

R ¼ w=2 (see Fig. 7a). This is a reasonable approximation as the area of the circle covers

p=4 ’ 80% of the image area. So, if the two images overlap outside the area of the circle

and inside the image area (see Fig. 7b), the viewable area of the image is larger than 75% of

the image area, which is sufficient for visibility.

The overlap between two circles i and j is given by

Oij ¼
R2 2 arccos

d ij

2R

� �

� sin 2 arccos
d ij

2R

� �� �� �

if d ijo2R;

0 otherwise;

8

>

<

>

:

(5)

where d ij is the Euclidean distance between the center points of the images I and j.

Hence, if the number of displayed images is n, the total visibility cost is defined by

CV ¼
1

nðn� 1Þ

X

n

i

X

n

jai

Oij

PR2
. (6)
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Because of the limited size of the visualization space, there is a maximum number of

images which can be displayed while satisfying the visibility requirement. Let us assume an

image is called viewable if its visible area occupies t% of the image and the visualization

space has size W and H. Then, the maximum number of displayed images with t% visible

is ðH�WÞ=ðh� w� tÞ. This yields a strong constraint on the design of the visualization

method.

4.2. Balancing functions

There are two main relations among the three requirements. First, the relation between

overview and visibility, which is affected by the number of representative images. The more

images, the better the overview, but visibility is reduced. To balance these two

requirements we take a linear combination of their cost functions Eqs. (4) and (6):

C1 ¼ l1CO þ ð1� l1ÞCV , (7)

where 0pl1p1. Now, for given l1 we find the n where C1ðnÞ reaches its maximum value:

nopt ¼ argmax
n2½2...nmax�

C1ðnÞ. (8)

Since this step is done offline, we use a brute-force approach computing CO and CV for n

from 2 to nmax.

The second relation is between the visibility and the structure preservation requirement.

The more visibility, in other words less overlap, the less structure is preserved. We again

use a linear combination of Eqs. (3) and (6). The problem boils down to finding the best

optimal positions of images in visualization space where the joint cost of overlap and

disobeying structure preservation is minimal:

~yopt ¼ min
~y

C2ð~yÞ,

with

C2ðyÞ ¼ l2CSðyÞ þ ð1� l2ÞCV ðyÞ, (9)

where 0pl2p1.
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To find the optimum, gradient descent is applied. This requires to compute how the cost

function changes when images are moved away from their positions i.e. the derivative of

C2 with respect to ~yi:

qC2

q~yi
¼ l2

qCS

q~yi
þ ð1� l2Þ

qCV

q~yi
.

The differentiation of CV is given in [24]

qCS

q~yi
¼ 2

X

J

ð~yi �~yjÞðPIJ �QIJ þ PJI �QJI Þ.

Given Eq. (6), we derive

qCV

q~yi
¼

1

kðk � 1ÞPR2

X

J

ð~yi �~yjÞ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4R2 � d2
ij

q

d ij

.

4.3. Final visualization scheme

Up to this point, we have analyzed the visualization requirements and how to optimize

them using balancing functions. We propose a new visualization scheme which conforms

the general scheme in Fig. 2 (see Fig. 8).

The data preparation step, the projection step and a part of the selection step can be

prepared beforehand. Therefore, we call these steps the offline process. In this stage,

features are first extracted for all images in the collection and a dissimilarity matrix is

computed. Next, a projection from the information space to the visualization space is

applied. After that, k-means is applied with n ranging from 2 to nmax (we select

nmax ¼ 300). We then calculate CO and CV . From there, the balancing function in Eq. (7)

with given l1 returns the optimal number of images to be displayed in each iteration. The

optimal clustering is kept for subsequent steps.

The other part of the selection step, involving the selection of the representative set, and

the interaction step are part of the interactive process. In the first iteration, representatives

are the cluster centers. The visualization step computes the arrangement of representative

images on the screen according to the second and the third requirement. This means that

the balancing function C2 (Eq. (9)) is optimized to find positions for all displayed images.

These positions assure that relations between them are preserved as much as possible and

the content of images are sufficiently visible. After the find next step, the system selects the

set of images to display in the next iteration. The selection contains images which have not

been displayed before and are closest to the corresponding center points.

5. Experiments

In this section, we present experiments to validate the different components of the

visualization system. The preparation of the offline stage contains the data selection,

feature selection, and dissimilarity computation. Then, we compare different mapping

algorithms for the projection step. A system to demonstrate the scheme is presented in

Section 4.1.3. Finally, we apply our system to a search task, comparing our approach to

more traditional visualization.
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5.1. Data collection

We select a collection of N ¼ 10; 000 Corel images. There are 100 predefined categories,

where each category contains 100 images. The existing categorization will be used as

ground-truth for later evaluation. The images depict different scenes, and objects.

Computing the dissimilarities between images strongly depends on the features and

dissimilarity function chosen. Because of the large variety in images in this particular

collection, no features and/or dissimilarity functions exist which correctly classify images.

As in practice this is also the case and we are focussing on the interaction process, we

employ simple global color histograms. In particular, hue and saturation (HS) and

L�a�b ðL� defines lightness, a� denotes red/green value, and b� the yellow/blue value). We

compute the histogram using 32 bins for each color channel, this means that for HS we get
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a histogram of 64 dimensions, and 96 in the case of L�a�b. Histogram intersection and

Euclidean distance are used as similarity functions for HS and L�a�b histogram,

respectively.

5.2. Comparison of projection methods

As mentioned above, we concentrate on the non-linear dimension reduction methods

ISOMAP, LLE, SNE, ISOSNE, and ISOLLE. MDS is used as a baseline.

SNE and ISOSNE are expected to perform best as we have chosen Eq. (3) as the

evaluation criterion. However, these two use gradient descent in finding the optimal

solutions hence they have a long processing time. LLE and ISOLLE are fast as they use

approximations to find the embedding. Hence, in the comparison, we also take into

account time complexity. All the experiments are run on the same PC PenIV, 2GHz. The

results are in Table 1. In both experiments, MDS yields the worst performance. SNE and

ISOSNE outperform the others, but require 10 times longer processing time than LLE

which still has good performance. So when computations are done offline, SNE-based

methods are preferred. In practical situations LLE can often be employed.

5.3. A system demonstration

In our system the projection is computed once in the offline stages so we choose

ISOSNE. Fig. 9(a) and (b) shows the mapping results of ISOSNE on the given collection

using the HS and L�a�b feature space, respectively.

For further demonstrating the system, we use the HS features. First, to find the optimal

number of clusters the collection should be divided into, we apply Eq. (7) with l equal to 0:5
and n 2 ½2 . . . 300�. From Eq. (8), we find nopt ¼ 55, so the collection is divided into 55 clusters.

Note that the above optimal number of images are with no overlap reduction. This

means that in the visualization space, with nopt ¼ 55, all displayed images satisfy the

visibility requirement. As in practice, one may prefer to have more images on the screen,

the value of nopt is used as a threshold. If there is a higher number of displayed images, we

will get a better overview, but the visibility is reduced. Then we need to consider the

overlap problem. Applying Eq. (9), one can increase the number of displayed images.

In the subsequent online process, in the first iteration of the visualization, images closest

to the center points are selected for display. Each image represents one cluster. The second

balancing function C2 with l2 ¼ 0:5 is used to find the optimal positions for the displayed

set. This process is repeated to display the subsequent sets of images.
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Table 1

Results for MDS, ISOMAP, SNE, LLE, ISOSNE, and ISOLLE in preserving original structure when mapping

data from high-dimensional feature space to 2D visualization space

MDS ISOMAP SNE LLE ISOSNE ISOLLE

CS with HS feature 0.008653 0.006785 0.000247 0.000252 0.000076 0.000225

CS with Lab feature 0.043584 0.004489 0.000089 0.000202 0.000063 0.000190

T (hour) �1.5 �1.5 �10 �2.0 �10 �2.0

The first row gives results of mapping from HS feature space. The second row is for L�a�b feature space. The last

row shows the computation time of each method.
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In selecting the optimal positions, not only the number of displayed images, but also the

value of l2 can affect the result. With l2 equal to 1:0, only structure is preserved. When l2

goes to 0, images are spread out loosing much of the structure. An example is shown in
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Fig. 9. Result of projecting 10,000 Corel images from 64-dimensional HS feature space and 96-dimensional L�a�b

feature space to the two-dimensional visualization space.
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Fig. 10. We have to notice that there is another factor affecting the selection of these

parameters, which is size of the display space. We assume the visualization space is equal to

the size of a standard computer screen.

We, therefore, experiment with different numbers of images, as well as different values

of l2 to see the effect of those two parameters on the visibility and the structure

preservation requirements. In order to do that, the k-means clustering is applied with

n ¼ 50; 100; 150; 200. After the clustering, each time a set of n representative images is

displayed. The balancing function in Eq. (9) is applied with l2 ranging from 0 to 1. We

then calculate for the currently displayed set the percentage of images visible for at least

t%, with t ¼ f25; 50; 75; 100g. The cost CS is also computed for each case.

Fig. 11 shows the results for different n and t. The figures clearly illustrate the relation

between number of images, l2, structure preservation and the visibility. With a small number

of images, the system easily finds a solution for Eq. (9). For example, in case of 50 images,

without any constraint on visibility (l2 ¼ 1), the percentage of images 75% visible is very close

to 100%. With l2 ¼ 0:5 all images are visible while structure is well preserved. In contrast,

with 200 images, even when l2 ¼ 0 meaning no structure preservation, the total percentage of

50% visible images is not increased much. This is to be expected from the discussion in 4.1. In

fact, too few images will increase the browsing and exploration time through the image

collection. From the above, selecting 100 images with l2 ¼ 0:9 is a good option.

5.4. Similarity based vs. 2D sequential visualization

In this section, we compare traditional 2D sequential visualization with our 2D

similarity-based visualization. We do so by setting up an explicit scenario of use and then

we simulate the user actions.

5.4.1. Scenario setup and evaluation criteria

The scenario we use is full database annotation.

Database annotation: Assigning all images in the database to their corresponding category.

Manual database annotation is very time consuming and labor expensive, especially

when the size of the data is getting larger. Now let us see how this scenario is performed
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Fig. 10. Example of displaying 100 images with l2 ¼ 1, 0.5, and 0, respectively.
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in our system. In visualization space, a set of n images, where each image represents

one cluster, is displayed to the user. He/she selects an image and then goes inside

the corresponding cluster. Images in that cluster are then annotated. One user action

is an interaction of the user to annotate one image a group of images. We finally obtain

the total number of actions to annotate the whole database, the so called annotation

effort.

Annotation effort: The total number of user actions needed to perform the task.

In sequential visualization, displayed images are arranged on a grid with no relations

between them taken into account. So a user action is needed for each separate image on the

screen. This means that annotation effort equals the size of the collection.
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Fig. 11. Examples of visibility vs. structure preservation with different number of images, and different values

of l2.
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In 2D similarity-based visualization, similar images are located close to each other. In

the ideal case, all images in a cluster belong to the same category. In practice the cluster

contains images from different categories, therefore the user draws a rectangle around each

set of images belonging to the same category to annotate them. Fig. 12 shows an

illustration of the process.

As we propose a user simulation scheme to implement a quantitative evaluation, we

need to mimic the above defined user action. We do so by implementing an algorithm

finding the number of rectangles needed to assign all images displayed to the appropriate

category. Optimal search for the minimum number of rectangles can be employed.

However, in reality, the user often does not draw an optimal number of rectangles to cover

all images of interest. Hence, a simpler greedy search appropriately fits the user action. The

pseudo code is as follows.

Rectangle-search(an image set M)

For each element m in M

If (m has not been annotated as positive)

X ¼ sort(neighbors(m)) on distance to m;

R ¼ draw_rectangle(m);

For each element x in X, where category(x) ¼ category(m)

store(R);

R ¼ draw_rectangle(R, m); //increase size of the rectangle.

If R contains y, where category(y)! ¼ category(m)

R ¼ store(R);

break;

else

annotate(x);

5.4.2. Comparison

Of course the success of similarity-based visualization for annotating groups depends on

how well the categories are separated from each other. When elements of a category appear

in more clusters, i.e. yielding high entropy, more actions will be needed. The entropy of

category ith is computed by the allocation of all elements in this category over the

clustering [28]:

E i ¼ �
X

j

aij

ai
log

aij

ai
,

where ai is the number of images in category i, aij is the number of images in category i

which appear in cluster j.

From the results of the previous section, we select n ¼ 100, with l2 ¼ 0:9, the average

percentage of t ¼ 75% visible images will be more than 80% and reaches 100% of

displayed images visible for 50% and 25%. We use the above clustering result with 100

clusters. As a result of clustering, the sizes of clusters vary, therefore in the display of the

cluster’s content, if the size of a cluster is larger than 100, the system will show subsets of

the cluster containing at most 100 images. Fig. 13 shows the annotation effort decomposed

into the different categories.

ARTICLE IN PRESS

G.P. Nguyen, M. Worring / Journal of Visual Languages and Computing 19 (2008) 203–224220



We observe that if the categories are reasonably separated i.e. entropy is not too large,

the number of actions needed is reduced significantly. For example, in the given collection,

some categories containing black and white images can be well distinguished from other

colorful categories. Using color histogram as a feature, they will be placed close to each

other, less actions will be needed in this case. The annotation effort for those categories

reduces from 100 to only six actions. For other categories, the categorization is semantic

and cannot be easily distinguished based on the color histogram only. The entropies of

these categories are high making the mixture of images among different categories on the

display. Therefore, more actions will be required, but in general always less than the

number of actions in the baseline. On average, our system reduces the annotation effort by

20–94%. We can conclude that more complex implementation pays off, we can

significantly reduce the annotation effort.

6. Conclusion

Visualization is an essential tool for exploring visual collections. To build a good

visualization system, a set of related requirements should be taken into account.

In this paper, we established three general requirements for similarity-based visualiza-

tion systems: overview, visibility, and structure preservation. These requirements provide

the user an optimal way to interactively access a large image collection. The overview gives

the user the overall look of the whole collection, and guides the user to the right search

direction. The structure preservation ensures that original relations between images in the

collection are kept in the visualization. Visibility is essential for interaction between the
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Fig. 12. An example to illustrate user actions during annotation process.
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user and images displayed. As these requirements are not independent, compromises

among them are needed. We proposed novel balancing cost functions and algorithms used

to define the relative importance of these requirements to the overall visualization goal.

Fig. 14 shows a screendump of our visualization system that takes into account the

balancing between the three requirements.

Using a rather large data set of 10,000 images, we conducted experiments to evaluate the

proposed framework. In a first experiment, we compared the performance of different

projection methods, namely LLE, ISOMAP, SNE, ISOSNE, and ISOLLE. ISOSNE is the

best option when computation time is not the limiting factor. However, for interactive

performance, LLE or ISOLLE should be selected. To evaluate the interactive system as a

whole, instead of doing user-based evaluation which is quite expensive and not easy to

repeat, an objective user model is built. In particular we defined a database annotation

scenario. The proposed visualization scheme reduces the total annotation effort

significantly ranging from small reduction to 16 times lower effort depending on the

separation of the different categories.

Not only in the given scenario, but for different tasks such as target search, category

search, category annotation, or example-based search, one could apply the three

requirements and balancing functions to build an optimal system by simply changing

the scenario.
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Fig. 13. Counting the number of user actions for annotation by simulation using grid-based and similarity-based

visualization. The different categories are ordered by their entropy. For better viewing the result, we use an

exponential function on the x-axis. The y-axis shows the annotation efforts. The baseline is the dashed line

representing the actions in grid-based visualization. As mentioned in previous sections, because of the sequential

display, the number of actions equals the size of the categories. In this case, there are 100 images in each category.

So, annotation effort is 100 user actions. The solid line shows the result for the proposed visualization interface.
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