ERRATA CORRIGE

Interactive Algorithm for Multiobjective Optimization

E. E. ROSINGER¹

Communicated by A. V. Fiacco

Abstract. The definition of a class of matrices in Ref. 1 is modified.

Key Words. Multiobjective optimization, one decision-maker, manmachine interaction, modified Frank–Wolfe algorithm.

In a private correspondence, H. Streuff has pointed out that, in the relation

$$0 < (\epsilon_k)^{1/2} \le 2(m, p)^{1/2} \delta,$$

at the end of the proof of Theorem 5.2, page 362, Ref. 1, ϵ_k might depend on δ , thus invalidating that proof. This inconvenience can easily be eliminated by replacing the class $\mathscr{D}(P, a^*)$ of matrices defined by the relation (78) on page 359, Ref. 1, as follows. Given an inquiry pattern P, a vector $a^* = (a_1^*, \ldots, a_m^*) \in \mathbb{R}^m$, $||a^*|| = 1$, and H > 0, denote by $\mathscr{D}(P, a^*, H)$ the set of all matrices

$$D^* = \begin{bmatrix} \mu_1^* & 0 \\ 0 & \mu_p^* \end{bmatrix} P \begin{bmatrix} a_1^* & 0 \\ 0 & a_m^* \end{bmatrix},$$

where

$$\mu^* = (\mu_1^*, \ldots, \mu_p^*) \in \mathbb{R}^p, \qquad \mu_1^*, \ldots, \mu_p^* > 0, \qquad \mu_1^* + \cdots + \mu_p^* \le H.$$

Accordingly, the class $\mathscr{D}(P_k, a_k^*)$ will be replaced (in Remark 5.1, Lemma 5.1, and Theorem 5.2) by a class $\mathscr{D}(P_k, a_k^*, H_k)$.

¹ Senior Chief Research Officer, National Research Institute for Mathematical Sciences, CSIR, Pretoria, South Africa.

References

1. ROSINGER, E. E., Interactive Algorithm for Multiobjective Optimization, Journal of Optimization Theory and Applications, Vol. 35, pp. 339-365, 1981.