
Interactive Analysis of Web-Scale Data

Christopher Olston, Edward Bortnikov,
Khaled Elmeleegy, Flavio Junqueira, Benjamin Reed

Yahoo! Research

ABSTRACT
We consider how to support interactive querying over web-
scale data. The basic approach is to view querying as a
two-phase activity: first supply a query template, and later
supply specific instantiations of the template. Interactive
responsiveness is offered in the second phase only. While in-
stances of this problem have been studied in the past, e.g.,
OLAP and web search, we pursue a more general formula-
tion. Our aim is to build a general two-phase query system.

1. INTRODUCTION
Organizations derive significant value from deeply under-

standing web-scale data sets. A web-scale data set has ta-
bles of cardinality 1010 or more with perhaps hundreds of
columns, populated with web pages, user click events, and
other phenomena recorded from the web. Management of
data at this scale is achieved via large shared-nothing clus-
ters of commodity computers, often administered as a ser-
vice by an (internal or external) third party. Current soft-
ware systems for this context focus on one of two paradigms:
real-time processing of simple key-based lookup queries, or
offline batch processing of general queries (Figure 1).

For ad-hoc data analysis, real-time processing yields a
qualitative benefit compared with batch processing. If the
query-response cycle occurs in real time, the user does not
need to context-switch while waiting for query results. In-
stead, she can interact with the data in a continuous fashion:
submit a query, view the results, pose a follow-on query, and
so on. It is widely acknowledged that interactive analysis
sessions constitute the most effective means of understand-
ing a complex data set. Existing interactive data analysis
paradigms include on-line analytical processing (OLAP) [3]
and dynamic queries in data visualization [16].

Hence the bottom-right quadrant of Figure 1 is the most
desirable. Of course it is also the most difficult to achieve—
responding to arbitrary queries over web-scale data in real
time is infeasible. Fortunately, rather than arbitrary queries,
an interactive analysis session usually comprises a series

This article is published under a Creative Commons License Agreement
(http://creativecommons.org/licenses/by/3.0/).
You may copy, distribute, display, and perform the work, make derivative
works and make commercial use of the work, but you must attribute the
work to the author and CIDR 2009.
4th Biennial Conference on Innovative Data Systems Research (CIDR)
January 4-7, 2009, Asilomar, California, USA.

batch real-time
processing processing

lookup any of BigTable [2]

queries [2, 4, 5, 11] PNUTS [4]

general Map-Reduce [5]

queries Dryad [11]

Figure 1: Web-scale data processing taxonomy.

of interrelated queries, which conform—either explicitly or
implicitly—to some sort of common template. If the tem-
plate is known in advance, or can be predicted along the way,
the system can prepare auxiliary structures (materialized
views and indexes) to facilitate real-time query response.

OLAP constitutes one instance of this approach. Web
search constitutes another instance, where the query tem-
plate asks to retrieve the top K pages matching a query
phrase P , ordered according to a built-in ranking function,
with K and P bound at query time. Data visualization with
dynamic queries also follows this rubric, but current systems
only handle small data sets. Our aim is to enable interactive
querying for a much more general class of queries and data
than OLAP and web search, and at very large scale.

In terms of handling general queries, the classical physical
database design problem [1] comes to mind. The standard
formulation aims to minimize average query and update cost
(where cost may be tied to resource utilization and/or re-
sponse time) given a model of the anticipated query/update
workload, under a space constraint. Our formulation dif-
fers in several important ways, the first making the problem
much harder, and the rest alleviating the difficulty:

• We impose a hard constraint on query response time, on
the order of a few seconds, to ensure interactivity.

• Rather than coping with a mixed query workload, we
require the user to declare a single, specific query tem-
plate in advance. (Targeting a single template enables
very aggressive optimizations.)

• The user’s query template is subject to negotiation: If
the system deems it impossible to achieve interactive re-
sponse times with the original one, it can ask the user to
make modifications. The system may even suggest can-
didate modifications, i.e., specific filtering, sampling or
aggregation steps that improve auxiliary structure size
and speed, but retain (some of) the query’s usefulness.



• The data is assumed to be static or only updated in
occasional large batches, as is typical in large-scale data
analysis settings such as warehousing and map-reduce.

In short, our scenario entails interactive processing of a sin-
gle, negotiated query template over static data. The central
optimization problem deals with a constraint on response
time and maximizes query generality, rather than handling
general queries and minimizing average response time.

1.1 Outline
We present an example usage scenario in Section 2. Then

in Section 3 we sketch the design of a two-phase query sys-
tem. We describe techniques for ensuring real-time response
in the second (online) phase in Section 4, and give some ini-
tial empirical results in Section 5. Lastly we discuss future
directions in Section 6.

2. EXAMPLE SCENARIO
Consider the following web-scale data set maintained by

a search engine company:

pages(url, content, contentType, language, isSpam,

isDuplicate)

clicks(ipAddress, url, time)

locations(ipPrefix, country)

The pages table contains one tuple per web page URL,
with the raw URL content as well as various extracted fea-
tures: the content type (text, audio, video, ...); the lan-
guage used in the content, if known (English, French, etc.,
or Unknown/Not-Applicable); whether the page has been
classified as spam; and whether the page has been classi-
fied as a duplicate or near-duplicate of another page. The
clicks table contains a series of tuples indicating that a
user originating at a particular IP address visited a particu-
lar URL at a particular time. The locations table provides
a mapping from IP address prefixes to countries.

The data is kept on a large cluster with thousands of
nodes. The software running on the cluster processes ad-
hoc queries and scripts submitted by employees.

Suppose a particular employee wishes to explore some
characteristics of the web that might influence the design of
a future crawler. The characteristics of interest include the
pre-extracted features stored with each URL (content type,
language, spam tag, duplicate tag), as well several features
that need to be computed: number of referring hyperlinks,
content of referring anchortext, number of user visits from a
given country. She wishes to see which web sites are domi-
nant for a given set of characteristics, and be able to adjust
the characteristics interactively and get a rapid response.
For example, she may start by looking at dominant web
sites referred by French-language URLs, and then drill-down
into ones that contain the phrase “telechargement gratuite”
(“free downloads”) in the referring anchortext. She may
spend several hours exploring the data by applying different
filters and seeing which web sites surface.

2.1 Underlying Query Template
Figure 2 shows the template that applies to this query

session. Cylinders denote tables, ./ symbols denote joins,
γ symbols denote grouped aggregation, “UDF” symbols de-
note user-defined functions, and σ symbols denote filters.
Each filter is optional, and is governed by predicates sup-
plied by the user dynamically, as part of the data exploration

Figure 2: Web exploration query template.

process. A given set of filter predicates yields a particular
instantiation of the query template. There are four types of
predicates: Boolean predicates for isSpam and isDuplicate,
categorical predicates for contentType, language and country,
keyword matching predicates for anchortext (i.e., does the
anchortext contain a given set of words), and numerical
predicates for inlinkCount and clickCount.

The query template operates as follows. Starting in the
lower-left corner, it makes two copies of the web pages ta-
ble, one to represent referring pages and one to represent
target pages. Both copies may be filtered according to op-
tional predicates on content type, language, spam tag and
duplicate tag. For the referring pages table, a special UDF
ExtractLinks() is applied to extract the anchortext and
URL of outgoing links. After filtering according to zero or
more anchortext keywords, the referring pages table is joined
with the target pages table according to the hyperlink ref-
erence. Then, the number of pages referring to each page
(the inlink count) is determined, and pages may be filtered
according to a user-supplied lower bound X on inlink count.

Next, moving to the lower-right corner, locations are op-
tionally filtered by country, and then joined with clicks ac-
cording to IP prefixes extracted from the click IP addresses.
The resulting table is joined with the main web page ta-
ble. Then, the number of clicks to each page (the click
count) is determined, and pages may be filtered according
to a user-supplied lower bound Y on click count. Lastly, a
UDF ExtractSite() is applied to determine the web site as-
sociated with each URL (for example, the web site for http:
//www.yahoo.com/games/checkers is yahoo.com), and a fi-
nal aggregation step determines the number of URLs per
site that have survived all the previous filtering steps. The
resulting count is the output inspected by the user, who may
be interested in all the results or perhaps just the web sites
with the highest counts for the given filter instantiations.

3. TWO-PHASE QUERY SYSTEM
In our approach, querying occurs in two phases:

1. Offline phase. The user submits a query template.
The system then prepares appropriate auxiliary struc-
tures, and may in the process negotiate restrictions on
the original template.



Figure 3: Query planning and negotiation process.

2. Online phase. The user poses instances of the query
template, and the system uses the auxiliary structures
to compile responses in real time.

The offline phase operates over web-scale data in a clus-
ter computing environment. The online phase may also
take place in the cluster, provided resource allocation and
scheduling techniques that are capable of ensuring interac-
tive response times for all concurrent users. Alternatively,
the online phase can take place on a private device operated
by the user: the user’s desktop, laptop or PDA.

(The primary rationale for out-of-cluster online processing
has to do with resource utilization: A company with 10, 000
employees has about 10, 000 desktops, and service-oriented
or “cloud” computing is unlikely to cause their demise any
time soon. A large data-center cluster has 1000–10, 000
nodes. Utilizing desktops for querying roughly doubles over-
all processing and storage capacity, or seen from another an-
gle reduces service charges billed from the cluster provider.)

In the out-of-cluster scenario, there is one user and one
machine, which leads to both space and time constraints for
the online phase of querying. The same can be said of the
alternative in-cluster scenario, where there are N concurrent
users and M machines, with N and M typically being in the
same order of magnitude. In either case, given the limited
resources available and the constraint of real-time query re-
sponse, sufficient work and data reduction needs to occur in
the offline phase to allow the online phase to fit within the
alloted space and time constraints.

3.1 Query Planning and Negotiation
Figure 3 shows a high-level architecture for query planning

and negotiation. When a new query template is received
from the user, it first passes through a query segmenter
module, which produces a two-phase execution plan. A two-
phase query execution plan consists of a parameter-free of-
fline portion that terminates in operators which construct
a set of auxiliary structures (materialized views and/or in-
dexes), followed by an online portion that reads from the
auxiliary structures and produces the final query answer (see
Figure 4). Since the real-time response time constraint is
likely to be the toughest to achieve, the query segmenter’s
optimization objective is to minimize work performed in the
online phase, with other concerns such as offline costs and
offline/online space footprint treated as secondary.

Following query segmentation, a size and response-time
estimator module determines whether the space and response-
time characteristics of the generated plan are acceptable. If
not, the query template passes to a query negotiator module,
which works with the user to restrict the query template so
as to reduce its space and time requirements. The query
template is then routed back to the query segmenter, and
the cycle repeats until an acceptable plan is reached.

3.1.1 Query Segmentation
Our query segmentation problem can be thought of as a

simplified version of the classical physical database design
problem. In our case, space considerations are ignored and
there is only one query template. Hence, rather than an
enumerative cost-based search strategy as in [1], a simple
rule-based approach may suffice. A basic rubric for trans-
forming a query template into a two-phase plan is as follows
(for simplicity we assume the only type of operator whose
behavior can depend on parameters is a filter operator, and
refer to such operators as parameterized filters):

1. Start with a canonical query plan tree.

2. Restructure the plan such that parameterized filters
are placed as close to the root (final) operator of the
plan tree as possible.

3. Divide the plan into offline and online portions, such
that the offline portion incorporates as many operators
as possible while remaining parameter-free.

4. Move parameterized filters as close to the leaves of the
newly-formed online portion as possible.

5. At each offline/online juncture, introduce indexes (in
the case of one or more paremeterized filters) or a ma-
terialized view (in other cases).

6. Perform conventional query optimization on the offline
and online portions, independently.

The even-numbered steps require some explanation: Step
2 maximizes the size of the offline (parameter-free) por-
tion. Step 4 maximizes the use of indexes for parameter-
dependent operations. Step 6 ensures that once the query
has been segmented, each segment is maximally efficient.

Figure 4 shows the result of applying this query segmen-
tation heuristic to our example query in Figure 2. Triangles
denote indexes, which are constructed in the offline phase
and probed in the online phase when specific parameter
bindings are supplied. Some items of interest are: (1) partial
aggregation of click counts has been pushed into the offline
phase, leveraging the algebraic [8] property of the count
function; (2) although it is not shown in the diagram, early
projection introduced in Step 6 can reduce the size of the
indexes significantly; (3) if the indexes are clustered on url,
most of the online phase can employ nonblocking (pipelined)
physical operators. Since query segmentation is specialized
to a single query template, it can perform highly aggres-
sive optimizations such as items 1 and 3, which a general
physical design wizard is unlikely to attempt.



Online phase.

Offline phase.

Figure 4: Two-phase query plan.

3.1.2 Query Negotiation
Query negotiation seeks to reduce the online-phase space

and/or time complexity of the user’s original query tem-
plate. One tactic is to suggest the addition of data-reducing
operators such as sampling or filtering. For example, in Fig-
ure 4 a filter operator that eliminates anchortext terms with
low frequency (i.e., occurs in few tuples) can dramatically
reduce the size of the index on the left-hand side. Such
a modification may have little impact on usability because
typically (but not always) only high-frequency terms are of
interest to the data analyst. In the same spirit, the index
on the right-hand side can be shrunk by eliminating URLs
whose click count is below a fixed threshold, since the user
may only be interested in URLs with large click count (i.e.,
large values of Y ). Smaller indexes reduce the space foot-
print and can yield faster query response times. The design
of an automatic query negotiator is left as future work.

4. REAL-TIME QUERY ANSWERING
We now describe two techniques to achieve real-time re-

sponsiveness in the online phase. The scenario here is to
accept query parameters from the user, and derive the an-
swer quickly using indexes that have been constructed in
advance in the offline phase. In this section we use the term
“query” to refer to the query template instantiation implied
by the current parameters supplied by the user, and assume
the online execution phase takes place on a single computer.

4.1 Index Ordering to Reduce Seeks
Due to our requirements for extremely fast execution in

the online phase, combined with the importance of incor-
porating unstructured textual data, we are pursuing a solu-
tion based on information retrieval (IR) indexes, sometimes
called “inverted files.” IR indexes incorporate sophisticated
compression technology, and are optimized for extremely
fast intersection of partial result sets.1 However, in a tra-
ditional information retrieval context the index is only used
to retrieve a handful of results (e.g., the top ten search re-
sult documents), and consequently IR indexes have not been
optimized for retrieving the complete result set.

With an IR index, queries that only match a few indexed
tuples (low-selectivity queries) are fast. On the other ex-
treme, queries that match a very large number of indexed
tuples (high-selectivity queries) tend to be fast as well, be-
cause they benefit from mostly-sequential disk access and
can often be terminated early once a large sample has been
acquired (if approximate, statistical answers are acceptable).
It is queries with moderate selectivity that can be too slow
and make the query interface seem non-interactive, because
they must fetch a fair number of tuples, and these tuples
are likely to be spread across the disk and require individual
seeks. If the query segmenter has not imposed a particular
index clustering rule (e.g., cluster by url as mentioned in
Section 3.1.1), then there is room to choose a physical index
layout that alleviates these costly seeks.

For low-dimensional indexing over ordered attributes, spe-
cial bulk-loading techniques have been devised to reduce the
number of random seeks incurred by range queries. For one-
dimensional indexes, e.g., B-trees, one simply orders the un-
derlying data by the attribute to be indexed, prior to con-
structing the index. For indexes with a small number of
numerical dimensions, e.g., R-trees [9], space-filling curve
techniques such as z-ordering [13] and the Hilbert curve [6]
can be used.

In our context, however, because queries define arbitrary
subsets of the data, in general there is no way to arrange
the data sequentially such that each query’s matches are
contiguous or even near-contiguous. Fortunately, strict con-
tiguousness is not required—we just need to keep the num-
ber of seeks below a threshold. So we need not concern
ourselves with low-selectivity queries, and for the remaining
queries we can aim to partially cluster the data by query to
reduce (but not eliminate) seeks.

In view of the above considerations, we propose the fol-
lowing bulk-loading heuristic, which we call semi-clustering.

Let B denote a query parameter binding, represented as a
(parameter, value) pair, e.g., (language, Chinese). A query
template is instantiated by supplying zero or more bindings
(it is fine to leave some parameters unbound; recall from
Section 2.1 that each parameterized filter is optional). Let
B(t) ∈ {0, 1} be a Boolean variable that indicates whether
tuple t matches the filter predicate that B instantiates.

Let s∗ denote the maximum selectivity value for which
random seeks are sufficiently fast (i.e., a query that incurs
s∗ seeks still completes within an acceptable response time
threshold; a typical value is s∗ = 1000). Lastly, let B =
(B1, B2, . . . , Bn) denote the list of possible query parameter

1Of course, IR indexes are geared toward equality-based
lookups. To support range lookups, we will need tree-
structured indexes, e.g., B-trees, or a way to handle range
queries in IR-style indexes, e.g., [7].



Figure 5: Index with forward bitmaps.

bindings whose selectivity is above s∗, ordered in ascending
order of selectivity, i.e., s∗ ≤ s(B1) ≤ s(B2) ≤ · · · ≤ s(Bn),
where s(Bi) denotes Bi’s selectivity. For a given tuple t, let
m(t) = min{i ∈ [1, n] : Bi(t)}, i.e., the index of the earliest
value in B for which t is a match.

Semi-clustering uses m(t) to determine the order of inser-
tion for bulk-loading the index. (We evaluate the effective-
ness of this physical index ordering heuristic in Section 5.1.)

4.2 Adaptive Background Precomputation
Even with the index ordering optimization described in

Section 4.1, some queries may be slower than desired. We
can take advantage of the fact that users do not pose ran-
dom queries, but instead tend to pose sequences of related
queries. One common pattern is drill-down, in which a user
starts with an initial query q1 = {b1, b2, . . . , bk} (where
each bi is a query parameter binding), and then formu-
lates a new query q2 = {b1, b2, . . . , bk, bk+1}, and then q3 =
{b1, b2, . . . , bk, bk+1, bk+2}, and so on.

For example, suppose Sue, a member of a search engine
company’s crawler development team, wishes to understand
the crawler’s coverage of the China market. She issues the
query q1 = {chinese}, and shows the resulting visualiza-
tion in a meeting. A colleague points out that the presence
of duplicate web pages can cause the visualization to be
misleading, so Sue refines the query to q2 = {chinese, ¬
duplicate}, causing the display to update accordingly. An-
other colleague asks whether the visualization includes spam
pages, which leads to a third refinement q3 = {chinese, ¬
duplicate, ¬ spam}.

In general, given a sequence of queries q1, q2, . . . , qm seen
so far, the next query is more likely to be a drill-down of one
of q1, q2, . . . , qm than a random query.2 Given that obser-
vation, the system can take advantage of the user’s “think
time” between queries to compute answers to anticipated
drill-down queries. This precomputation work must occur
in the background in an interruptible process that is termi-
nated as soon as the user issues a new query.

Since the background precomputation will have limited
time to execute, to maximize its effectiveness the system
should only precompute queries that are too slow to execute
on the fly, i.e., queries with selectivity greater than s∗ as
defined in Section 4.1 (we refer to these as dense queries).
Query selectivity can be estimated using various statistical
techniques, e.g., [12, 15]. For simplicity, in our implementa-
tion we use the hashed counter technique of [14] to identify
most (but not all) pairs of attributes that cause query selec-
tivity to fall below s∗, in a time- and space-efficient manner
in an initial preprocessing phase.

Given a set of d potentially-dense drill-downs of query q to
compute, the obvious strategy is to perform d independent

2A similar situation occurs in OLAP, text search and faceted
search environments, which is why those systems provide ex-
plicit shortcuts for drill-down (a.k.a. “query suggestions”).

Figure 6: Screenshot of our initial prototype, show-
ing top web sites for French-language audio files.
The web sites are arranged in the vertical dimen-
sion according to the number of French audio files
they contain. The query parameter bindings can be
changed dynamically by typing new values after the
prompts in the top portion of the screen.

index lookups. We introduce an alternative strategy that
enables all d drill-down queries to be computed simultane-
ously in a single index lookup, by leveraging the fact that
the tuples that match a drill-down of q are a subset of the
ones that match q. The idea is to store a forward bitmap
with each tuple t as shown in Figure 5, giving the value of
Bi(t) for each i ∈ [s∗, n].3 To compute answers to a set of
d drill-downs from query q, we initialize d query processors,
and use the index to scan the set of tuples matching q. For
each match t, we use the forward bitmap to determine the
set of drill-downs for which t is a match, and feed t to the
corresponding processors.

5. INITIAL RESULTS
We have implemented a simple initial prototype; a screen-

shot is shown in Figure 6. The prototype incorporates the
optimizations described in Section 4 for interactive-speed
query response, but other functions such as query segmen-
tation are currently done by hand. We give an initial eval-
uation of the index ordering and background computation
techniques (Sections 4.1 and 4.2 respectively), over a 9 GB
web crawl data set, which has been derived from a much
larger full web crawl data set resident on a 1000-node clus-
ter. The derivation process included UDF processing to ex-
tract anchortext strings, projection to eliminate irrelevant
columns, and row-wise sampling to achieve further data re-
duction. The reduced, 9 GB data set is stored and pro-

3The bitmaps are typically small, because a small minority
of binding values have high selectivity.



Figure 7: Query performance using standard index
(light bars) versus semi-clustered index (dark bars).

Figure 8: Background precomputation time, using
repeated index lookups vs. forward bitmaps.

cessed on a modest MacBook Pro laptop computer, with a
2.16 GHz two-core processor, and 1 GB of physical memory.
Our implementation is in Java, and our measurements use
a Java Virtual Machine with a 500 MB memory size.

5.1 Index Ordering Effectiveness
Figure 7 shows average query running time for a simplified

version of the query template shown in Figure 2, under ran-
dom vs. semi-clustered index ordering. The x-axis plots se-
lectivity ranges, and the y-axis shows average running time
(with confidence intervals). By design, semi-clustering re-
duces query times most substantially for queries of selec-
tivity just above s∗; in our system s∗ ≈ 1000. In terms
of real-time responsiveness, queries of selectivity below 5000
will feel interactive. (Ideally the latency of higher-selectivity
queries can be hidden by background precomputation.)

5.2 Background Precomputation Speed
Figure 8 shows the background computation running time

under the two approaches using a semi-clustered index, as a
function of query selectivity (log scale). Clearly, the forward
bitmaps approach permits the set of potentially-dense drill-
downs to be computed in a much shorter amount of time,
compared to independent index lookups. That said, one
advantage of the repeated lookup approach is that if the
background computation is halted mid-way, due to the user
posing a new query, then at least some of the drill-downs
will have been computed.

Figure 9: Desktop-cluster virtual environment.

6. LOOKING AHEAD
There are quite a few open questions in the context of this

work, some of which we have alluded to already:

• Theoretically speaking, what is the precise boundary
between query templates that are amenable to inter-
activity in the online phase, and ones that are not?

• On the practical side, can an automated query nego-
tiator be built that offers useful suggestions?

• Can we help the user reason about the correctness of
a query template before committing to it, e.g., by exe-
cuting it on sample data with sample parameter bind-
ings?

• Can predictive models be employed to anticipate likely
future queries, for which answers (or supporting struc-
tures) can be prepared in the background?

• How can we incorporate approximate query processing
techniques, e.g., online aggregation [10]?

To study these questions and test the overall viability of
our approach, we are building a prototype two-phase query
system called Giraffe. Our initial focus is on out-of-cluster
online processing, which mimics the way ad-hoc web-scale
data processing is typically done in practice: users migrate
intermediate data from the cluster to the desktop as soon
as it has been sufficiently reduced by aggregation, sampling
and filtering to fit on the desktop, and perform the final
analysis steps locally.

Unfortunately, in present practice the user must keep track
of the data and processing state in both environments (desk-
top and cluster), and manually transfer components back
and forth. Our system will serve as a single, virtual en-
vironment that spans the cluster and desktop (Figure 9).
It presents a unified abstraction to the user, automatically
divides processing into cluster-side and desktop-side com-
ponents, tracks status and errors, and automatically stages
intermediate data to the desktop for online processing.

Acknowledgments
We thank Brian Cooper for helpful discussions.



7. REFERENCES
[1] S. Agrawal, S. Chaudhuri, and V. Narasayya.

Automated selection of materialized views and indexes
for SQL databases. In Proc. VLDB, 2000.

[2] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and
R. E. Gruber. Bigtable: A distributed storage system
for structured data. In Proc. OSDI, 2006.

[3] S. Chaudhuri and U. Dayal. An overview of data
warehousing and OLAP technology. SIGMOD Record,
26(1), 1997.

[4] B. F. Cooper, R. Ramakrishnan, U. Srivastava,
A. Silberstein, P. Bohannon, H. Jacobsen, N. Puz,
D. Weaver, and R. Yerneni. PNUTS: Yahoo!’s hosted
data serving platform. In Proc. VLDB, 2008.

[5] J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. In Proc. OSDI, 2004.

[6] C. Faloutsos and S. Roseman. Fractals for secondary
key retrieval. In Proc. PODS, 1989.

[7] M. Fontoura, R. Lempel, R. Qi, and J. Zien. Inverted
index support for numeric search. Internet
Mathematics, 3(2), 2006.

[8] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman,
D. Reichart, M. Venkatrao, F. Pellow, and
H. Pirahesh. Data cube: A relational aggregation

operator generalizing group-by, cross-tab, and
sub-totals. Data Mining and Knowledge Discovery,
1(1), 1997.

[9] A. Guttman. R-Trees: A dynamic index structure for
spatial searching. In Proc. ACM SIGMOD, 1984.

[10] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online
aggregation. In Proc. ACM SIGMOD, 1997.

[11] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: Distributed data-parallel programs from
sequential building blocks. In Proc. EuroSys, 2007.

[12] R. Jin, L. Glimcher, C. Jermaine, and G. Agrawal.
New sampling-based estimators for OLAP queries. In
Proc. ICDE, 2006.

[13] J. A. Orenstein. Spatial query processing in an
object-oriented database system. In Proc. ACM
SIGMOD, 1986.

[14] J. S. Park, M.-S. Chen, and P. S. Yu. An effective
hash-based algorithm for mining association rules. In
Proc. ACM SIGMOD, 1995.

[15] D. Pavlov, H. Mannila, and P. Smyth. Beyond
independence: Probabilistic models for query
approximation on binary transaction data. Knowledge
and Data Engineering, 15(6), 2003.

[16] B. Shneiderman. Dynamic queries for visual
information seeking. IEEE Software, 11(6), 1994.


