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Interactive approach to optical tweezers control

Jonathan Leach, Kurt Wulff, Gavin Sinclair, Pamela Jordan, Johannes Courtial,
Laura Thomson, Graham Gibson, Kayode Karunwi, Jon Cooper, Zsolt John Laczik,

and Miles Padgett

We have developed software with an interactive user interface that can be used to generate phase
holograms for use with spatial light modulators. The program utilizes different hologram design tech-
niques, allowing the user to select an appropriate algorithm. The program can be used to generate
multiple beams and can be used for beam steering. We see a major application of the program to be in

optical tweezers to control the position, number, and type of optical traps.
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1. Introduction

Optical tweezers! have been implemented for many
years. They use a high-magnification objective lens to
tightly focus light, producing a region of high electric
field. Dielectric particles are then attracted to this
region through the gradient force such that micro-
scopic particles can be trapped. In initial experi-
ments, these particles are dielectric spheres, but the
trapping of biological media has also been
achieved.2-> The trapping of metal particles is also
possible by use of the scattering force as the trapping
mechanism.67

Holographic optical tweezerss® use a diffractive op-
tical element to shape the light into multiple foci so
that multiple particles can be trapped. With this
technique, complex arrangements of particles can be
built, as well as dynamically rotated or scaled. In the
past, holographic optical tweezers schemes have im-
plemented static, one-off computer-generated phase
masks that create the desired beam, but the inability
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to update or quickly modify the design limits their
functionality. The development and commercial
availability of spatial light modulators (SLMs) over
the past 3 years has revolutionized holographic opti-
cal tweezers, greatly expanding their range of appli-
cations. Indeed, it is possible to buy a stand-alone
holographic optical tweezers system with an inte-
grated SLM.1°© SLMs are computer-controlled holo-
grams that can be updated at video frame rates. For
holographic optical tweezers, they make possible in-
teractive control of the traps.11-13

The drive to fully integrate SLMs with optical
tweezers places increasing demand on computer and
hologram-generation technologies. Effective and effi-
cient hologram design has therefore become crucial to
many optical tweezers schemes. Selecting the appro-
priate technique can allow the user real-time control
of optical traps.

For our uses, we have developed a LabVIEW pro-
gram that integrates a number of existing hologram
design algorithms for different tweezers applications.
These algorithms range from the use of the phase
distribution of the superposition of the fields behind
different lenses and wedges!4 to a Gerchberg—Saxton
algorithm for three-dimensional light shaping.> We
have also incorporated a direct binary search algo-
rithm16.17 to generate a hologram sequence that will
build complex three-dimensional structures from
much simpler starting configurations. Each tech-
nique has advantages appropriate for specific appli-
cations. In each case there is a trade-off in speed of
calculation of the hologram with complexity of design.
Here we describe our software and application to op-
tical tweezers. Note that a similar system for inter-
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Fig. 1. Schematic diagram of a holographic optical tweezers sys-
tem. The plane of the SLM is imaged into the pupil plane of the
microscope objective.

active hologram design based on using a virtual pen
has recently been reported.1s

2. Program Overview

We have developed an interactive LabVIEW program
that can be integrated within holographic optical
tweezers, such as the system in Fig. 1. The program
can be used to generate holograms such that multiple
optical traps can be created and individually con-
trolled. In addition, it is possible to overlay a live
video image of the objects being manipulated onto a
schematic showing the trap positions. This allows the
user to use the computer mouse or a joystick as an
interactive optical hand. The program is available
from the Glasgow University Optics web page, http:
/lwww.physics.gla.ac.uk/Optics/projects/tweezers/.

Our program consist of three main parts. The first
of these is the interface, which is shown in Fig. 2. This
is where the user specifies the number of traps and
the trap coordinates. For example, the simplest con-
figuration would be to generate one trap with coordi-
nates x, y, z relative to the focal point of the
microscope objective. Complex arrangements with
multiple trap positions can be specified; however, the
trapping efficiency falls off with increasing displace-
ment in x, y, and z.19 In addition, one is limited by the
spatial resolution of the SLM, and there is a trade-off
between trap complexity and hologram calculation
time.

The interface contains an area that represents the
trapping plane of the optical tweezers. Cursors can be
placed within this area with the computer mouse to
the positions of the desired traps. Clicking and drag-
ging allows the user to change the coordinates of each
trap, and traps can be added or deleted with the
appropriate controls. The coordinates of the traps can
also be entered numerically via the keyboard. It is
also possible to display a suitably scaled camera im-
age of the trapping plane as the background of this
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Fig. 2. User interface for the software. The circular markers in-
dicate the trap positions. These can be moved with a mouse or
joystick.

area. This gives the user visual feedback on the po-
sitions of the optical traps.

The coordinates that are generated with the inter-
face are then used by the calculation engine to gen-
erate the corresponding hologram. Within the engine,
one can specify the algorithm with which to calculate
the hologram. There are four algorithms to choose
from that we refer to as gratings and lenses,4
Gerchberg—Saxton two-dimensional,2® optimized
gratings and lenses,!! and direct binary search.16.17
These are explained in more detail in Section 3. The
hologram design is then passed to the final part of the
program, which displays the calculated hologram
pattern on the SLM.

3. Algorithm Summary

In this section we briefly describe the algorithms that
are currently implemented within our program. An
optical beam can be represented by a complex field,
which can be written as

u =a exp(id). (D

The modulus « is the amplitude of the field and the
argument ¢ is the phase. SLMs can act as phase
holograms, which have transmission #(x;, yy)
= exp[id,(xy, y,)] and which therefore modify only the
phase of the beam. This is advantageous because the
transmitted intensity is not reduced and therefore
light throughput is maximized. When the beam given
by Eq. (1) is incident on a SLM, the complex ampli-
tude profile of the beam after passing through the
SLM will be u;, = a exp[i(d + dby)].

The algorithms that we implement are used to gen-
erate this phase pattern ¢,. The phase pattern is
designed such that when the modified beam u, is
focused by the objective lens, the light intensity dis-
tribution in the image space (at the focus of the ob-
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Fig. 3. Fourier relationship between the plane of the hologram
and the image space of the objective lens. One can easily move
between the two planes by using Fourier transforms (FT) and
inverse Fourier transforms (FT ™).

jective lens) is the one desired, for example, multiple
focused spots at prescribed positions.

For some of the design techniques we make use of
the fact that there is a Fourier transform relationship
between the complex field u;, in the pupil plane of the
objective lens, onto which the plane of the SLM is
imaged, and the complex field u; at the focus of the
lens in image space:

wixi, yi) = F{un(n, yu)}- (2)

The image space field can therefore be thought of as
a scaled version of the far-field diffraction pattern
that would be produced by the beam leaving the SLM.
Clearly, if one of u;, or u; is known, it is easy to
calculate the other unknown field by taking the for-
ward or inverse Fourier transform of the known field
(Fig. 3).

Our program is a tool that calculates the phase-
only hologram for a desired far-field intensity pat-
tern. It is designed to accept a target intensity
specification I,(x;y;) = |u/x;,y;)|® for the image
space of the objective lens. From this specification it
then calculates a phase ¢,(x;, ¥,) such that when it is
displayed on the SLM the desired intensity distribu-
tion (within experimental error) is produced in the
tweezers system at the focus of the objective lens.

A. Gratings and Lenses Algorithm

Of all the algorithms that we implement, the gratings
and lenses algorithm is the simplest and computa-
tionally the fastest. It is a method that allows the
user to generate holograms that will produce single
or multiple independent foci.’* The algorithm com-
bines the phase of basic optical components: gratings,
which result in lateral shifts, and lenses, which in a
similar way produce axial shifts.

A single beam with planar phase fronts at the
plane of the hologram, i.e., ¢, = constant, corre-
sponds to a single focused spot in the image space. It
is simple to move this point around by altering the
phase at the hologram plane. For example, a spot in
image space that is displaced laterally from the optic
axis corresponds to a beam in the hologram plane
that has an inclined phase front. This is equivalent to
passing the light through a (small-angle) prism that

Lateral shift 2

H 0 u target

o \
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prism ~ - _
Axial shift
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Phase of - - j
lens T - -

Fig. 4. Phase required for lateral and axial shifts.

introduces a linearly increasing phase delay &,
across the beam. The phase at the hologram plane
that is required to produce a lateral shift (Ax, Ay) in
the position of the focused spot is given by

d)prism(xh’ yh) = a(Axxh + Ayyh)r (3)

where a depends on the imaging characteristics and
wavelength. Similarly, the phase that is required to
introduce an axial shift in image space is given by

( )——E( P2 (4)
(blens Xhy Yn) = 2}(‘ Xn Yn)s

where fis a function of the axial shift distance and %
is the wave vector of the light. This is equivalent to
passing the light through an additional lens of focal
length f. These two processes are clearly indicated in
Fig. 4.

If the target intensity in image space is a focused
spot that is displaced both laterally and axially, the
phase of the beam at the hologram plane is required
to be the (modulo 2m) sum of ¢, and dy,,:

d)h = (d)prism + d)lens)mOd 2. (5)

To produce such a beam, these phases are calculated
and added, and then the corresponding hologram is
displayed on the SLM.

This simple method, to produce one point of high
intensity at any arbitrary position can be easily ex-
tended to allow multiple beams to be generated and
independently controlled. For N focused target spots
there are N corresponding field components, v, ,, at
the plane of the hologram. Each of these field compo-
nents can be calculated using the method described
above. Adding these complex field components at the
hologram plane gives the total field, u,,, that will pro-
duce the focused spots of light at the target positions.
Taking the argument of this total field gives the
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phase, ¢, that will be displayed on the SLM:

b= arg( 3 ) ®)

It should be noted that ¢, in Eq. (6) is only an
approximate solution to the phase of the desired
beam. In particular, the magnitude of u, is replaced
by a constant and the relative phases of the optical
traps are fixed. However, for many optical tweezers
applications the above technique is a suitable and
effective method of hologram calculation, and in prac-
tice the resulting optical traps are of sufficient quality
for many applications.

B. Gerchberg—Saxton Two-Dimensional Algorithm

The second algorithm that is implemented to calcu-
late holograms is the Fourier-transform-based
Gerchberg—Saxton algorithm.20 This algorithm can
be used to calculate the phase required in the holo-
gram plane to produce a predefined intensity distri-
bution in the focal plane of the objective lens. The
algorithm can be used to generate multiple focused
spots of light or even arbitrary two-dimensional in-
tensity distributions. Although there is a restriction
to shaping light only in the focal plane, it is useful to
look at the algorithm in some detail because it will be
the starting point for the three-dimensional case be-
low. In contrast to the gratings and lenses algorithm,
where the phase between the traps is fixed, this al-
gorithm takes advantage of the phase freedom and
iteratively optimizes the focal-plane intensity distri-
bution by varying both these phase values and ¢,,.
The target intensity distribution is defined in the
image space as I,(x;,y;), and our aim is to find
by(xs, v,) such that (Flexp(id,})? = I,. To find the
desired phase ¢, we start at the hologram plane with
a random phase ¢, and constant unit amplitude.
Therefore, for the first iteration step, we set

uhyl = exp(id),). (7)

For the first and subsequent iterations, we propagate
the field in the hologram plane to the image space by
taking its Fourier transform, i.e., for the /th iteration:

Ui = @{uhl}. (8)

We then modify the image-space field; we keep the
phase but replace the intensity with the target inten-
sity:
b, = arg(u;), 9
w;;' = I, exp(id;)). (10)
The resulting field is then propagated back to the
hologram plane by taking its inverse Fourier trans-

form:
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un =F ui,'}) (11)

One iteration is finally completed by again keeping
the phase but replacing the intensity with uniform
constant intensity:

bny1 = argluy,,), (12)
Upy1 = €XPEdy 1) (13)

Note that it is possible, and sometimes desirable, to
replace the intensity with a Gaussian profile. Here,
an array of Gaussian traps is produced in the far
field.

After a few iterations, the algorithm converges
such that the argument of the field at the hologram
plane is the phase that is required to produce the
target field in image space,

b, = arg(uy,). (14)

C. Optimized Gratings and Lenses Algorithm

The original Gerchberg—Saxton algorithm was ex-
tended so that three-dimensional arrays of traps
could be generated.l12! It was recognized that the
field in any plane in the image space can be calculated
by applying a kernel to the field at the hologram
plane and then calculating the Fourier transform.
The kernel in this case corresponded to the phase
profile that shifts the plane of interest to the focal
plane of the objective lens, i.e., to the Fourier plane.
As in the 2D case, this algorithm makes use of the
phase freedom in image space.

We have developed a further extension to the above
where the kernel includes the grating calculation as
well as the lens calculation. The initial field in the
hologram plane is a uniform intensity with the phase
distribution in the hologram plane as calculated by
the wedges and lenses algorithm:

Up(Xpy Y1) = exp{i argLﬁl k. p (X, J’h)]}, (15)

where &, ,(x;, y;) is the field in the hologram plane
that corresponds to a bright focus at the pth target
position; this field will be referred to here as the
kernel corresponding to the pth target position. We
then calculate the field at each target position in turn.
This can be done efficiently in the following way. First
we multiply w,,,(x;, ¥,) by ki ,* (x5, y,); this shifts tar-
get position p into the center of the image volume.
Then the field at target position p—now the center of
the image volume—is the field at the center of the
Fourier transform, which can be calculated simply by
integrating (in the computer, summing) over the en-
tire field—kernel combination:

Uilp :JJ doeydyten (X5, YRy, (X, y2).  (16)



Because this is a Gerchberg—Saxton algorithm, we
then replace the intensity at the target positions by
the desired intensities (we assume here that the in-
tensity of all the traps is the same, specifically 1) and
calculate the corresponding field in the hologram
plane. This field in the hologram plane is still going to
be simply the sum of the fields corresponding to
bright foci at the target positions, except that the
fields at the target positions now have phases
arg(u,;,). For the start of the next iteration of the
algorithm the intensity needs to be set to a uniform
distribution across the hologram, so the field at the
hologram plane for the next iteration is simply

N
W1 (X, Y1) = exp(i arg{ 21 kh,p(xh7 i)
e

X expli arg(ui,l,p)]}). a7

This field converges after a number of iterations; its
phase distribution is the desired phase-hologram pat-
tern.

Note that this algorithm is essentially a wedges
and lenses algorithm in which the relative phases of
the traps are iteratively optimized using a
Gerchberg—Saxton-type algorithm. This algorithm
performs slightly better than the wedges and lenses
algorithm when the target intensity is an array of
traps with some degree of symmetry, for example,
points arranged in the corners of a square.

D. Direct Binary Search Algorithm

The direct binary search (DBS) technique to holo-
gram design is a powerful algorithm that allows the
generation of arbitrary light distributions in three
dimensions.'6:17 This is an iterative algorithm where
changes to the phase at the hologram plane are as-
sessed in the image space.

Starting at the hologram plane, we begin with a
two-dimensional array of random phase values, ¢,
= ¢,. This is the starting point for the hologram. This
starting field at the hologram corresponds to some
light distribution u; in the image space, which can be
compared to the desired target field u,. There is no
restriction on the target field; for example, it can be
an array of spots in three dimensions or a line in the
focal plane of the objective lens. By comparing the two
fields, one can define an error function that is an
indicator of the performance of the hologram. As we
are comparing two fields, it is possible to define the
error function on the basis of any property of the field,
the intensity, amplitude, phase, or any combination.
A common choice of error function, €, is the difference
between the modulus of the amplitudes of the two
fields at the target positions:

N
szglllut,nl - |ui,n||' (18)

The next step of the algorithm is to change the
phase of a random pixel at the hologram plane. This

change will manifest itself as a change to the field in
image space. The corresponding new error value can
be compared to the existing error to assess whether
the change in phase resulted in a field closer to the
target field than before. If yes, the pixel change is
accepted; otherwise the pixel phase is returned to its
previous value.

This is one iteration of the DBS and it is repeated
many times. However, due to the iterative approach
where each pixel is addressed in turn, in general the
calculation time for DBS is much longer than for the
other algorithms. A hologram of dimensions (M,, M,)
pixels requires M, X M, iterations before each pixel
has had a chance of being altered, and it takes a
number of visits to each pixel until a satisfactory
hologram is found. The consequence of this is that the
calculation time is very long; for example, depending
on the error function, a 512 X 512 hologram can take
minutes to calculate.

E. Decreasing the Hologram Calculation Time

For particular applications, it is desirable to have
interactive control of multiple optical traps. Cur-
rently, the limiting factor in interactive control is the
calculation of the required holograms. The update
rate of commercial SLMs is between 20 and 60 Hz
(Hamamatsu and HoloEye), whereas the calculation
rate of a hologram of 512 X 512 on a Pentium 4
dual-processor machine using the gratings and lenses
algorithm is between 3 and 5 Hz. Clearly, optimizing
the algorithms to generate holograms more effi-
ciently is desirable.

The first step to increasing the calculation rate is to
perform checks on the trap positions to determine
whether it is necessary to recalculate a new holo-
gram. As an example, let us assume there are three
traps (target points) in the image space. The holo-
gram required to generate this field can be calculated
using the gratings and lenses algorithm. From Eq.
(6), the algorithm first calculates each of the u, , field
components in the hologram plane corresponding to
each target point. The phase of the required beam is
the argument of the sum of all the fields. If one of the
trap positions was to move, it was necessary to gen-
erate a new hologram, but it was not necessary to
recalculate all the u,, field components. The only
field component that has to be recalculated is the one
that corresponds to the new trap position. Performing
a check on the trap position before summing the fields
clearly saves computation time and speeds up the
calculation rate. This is particularly important as the
number of traps increases. This technique is imple-
mented within the gratings and lenses and the opti-
mized gratings and lenses algorithms.

The second procedure that we use saves computa-
tion time by not calculating a full 2D Fourier trans-
form when field values are only required at discreet
points rather than in a plane. This is discussed in the
previous section. Using the Fourier transform ap-
proach, the field at a single point in image space
would be calculated as
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Fig. 5. Using our software to generate a 3 X 3 X 3 array of 1 pm
silica spheres from a two-dimensional grid of 3 X 9 trapped
spheres.

wix;, y;) = F{un}

S k
=f j w(xp, yh)exp{i[f (en” + 312

+ alx,x; + yhyi)] }dxhdyh. (19)

For a pixelated hologram implemented with a SLM,
Eq. (19) simplifies as

M, M,
u(x;, y;) = 2 E ui,p,q(xi’ ¥i), (20)
p=1 g=1

where u;, ,(x;,y;) are the contributions from each
pixel in the hologram plane to the total field at (x;, y;).
If the field can be assumed to be uniform over a single
pixel, u;, ,(x;, y;) will be sinc functions corresponding
to the Fourier transform of a single square pixel po-
sitioned at (x, y;), where (x, y,) is the center coordi-
nate of the pixel with index (p, g). If the pixels are
small and the point (x;, y,) is sufficiently close to the
optic axis, the magnitude of the sinc function can be
ignored and only the pixel phases have to be taken
into account in the summation. In practice, the cal-
culation speed can be further improved by setting up
lookup tables to avoid the recalculation of the pixel
contributions. This allows us to calculate the field at
a particular point without beam propagation and the
calculation of a full Fourier transform and greatly
reduces the overall calculation time.

4. Example

Figure 5 shows an example of this technique. A
3 X 3 X 3 array of 1 um silica spheres is generated
from an initial two-dimensional grid of 3 X 9 trapped
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spheres. The coordinates of the trap positions had
been calculated beforehand and then loaded in se-
quence. The optimized gratings and lenses algorithm
was used to generate the corresponding hologram.
There were 50 intermediate steps between the start-
ing and finishing positions, and the time between
each was 4 s.

5. Conclusions

Our software provides a simple user-friendly inter-
face that can be integrated within holographic optical
tweezers. It gives the user three-dimensional control
of trap positions by using simple cursors controlled by
the computer mouse or joystick—or in terms of pre-
defined trajectories. We believe that our software has
the potential to become a standard part of holo-
graphic optical tweezers.

One of the most powerful features of our software is
that one can load in a series of coordinates corre-
sponding to trap positions. The engine will then cal-
culate the required holograms, and these can be
displayed on the spatial light modulator. With this
technique, complex three-dimensional arrays of
trapped particles can be generated starting from
much simpler trap positions, for example, lines of
traps in two dimensions.
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