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ABSTRACT 

A discrete model involving a limited number of degrees of freedom is pre- 

sented, for analyzing the interaction between overall lateral-torsional 

buckling and local flange buckling qualitatively. The results are com- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
pare 6  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwith zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAexperii i ien ts  and show a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgoo6 qüalltatlve âgreeneììt. The reaìilta 

that a qUantïtative ìì.dK*eï-jeal ailiilysis bassd Kc;iter'; 

asymptotic approach may have a wide range of validity, 
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uaP Ub zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI  uc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
V Lateral deflection in experiments 

Y Potential energy 

W Vertical deflection zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A Half wavelength of local buckle 

P Ridspan rotation in experiments 

Axial displacements 

The detrimental effect that an interaction between local and overall buc- 

kling zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo f  structural members may have, is well Af ter recognizing 

its symptoms, this phenomenon was investigated thoroughly for structural 

members under uniform compression, including stiffened plates3 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 shells , and thin walled columns5. The interaction between local buckling 

and lateral torsional buckling as a result of bending6 has been given 

less attention, but it is an area zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof practical importance, because 

thin-walled built-up girders are used extensively and the use of cold-- 

formed and extruded members is increasing. Horeover, the wall-thickness 

of extruded members is becoming thinner all the time. 

We investigated this interaction problem in three different ways: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1. By analysing a simple discrete model which had only a few degrees of 

freedom in order to learn more about this type of buckling. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.  By performing interactive lateral-torsional buckling experhents, be- 

ë a w e  little has been done on this zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs ü b j w t ,  Sûrie researchers ssen 

mention the scarcity o f  experiments 

3.  By developing a spline finite-strip computer prograxt €or simulating 

the interactive buckling behaviour of prisaatic beams with arbitrary 

7,8,9 

10,11 cross-sections 

The latter way is based on the asymptotic approach described by Kolterla; 

in fact, it only applies in the case o f  coincident or nearly coincident 

buckling loads. One of the aims of the experhents was to get a better 

insight into its range o f  applicability. Since the first two ways showed 

a remarkably good qualitative agreement, this paper reports some of the 

results obtained. 
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2 .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATHE DISCRETE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPIODEL 

It is a well-known fact that many buckling features can be simulated qua- 
13 litatively by means of simple discrete models. Budiansky and Hutchinson 

presented a good example that illustrated the interaction between long zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
w ~ y ~ ~ a n g t ~  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE, ~ v e r ~ , l l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb~c :Kl i n g )  moder and short wavelength (local buckling) 

mocies using a two-link model. Hunt and Kiinliarns investigated zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa slightly 

modified version in order to improve physical interpretability. This led 

us to simulate the interactive lateral-torsional buckling behaviour of a 

T-section in bending with the model shown in Fig. 1. #e confined our 

attention t o  a perfect model. The lefthand support allowed the model to 

rotate about its axis, counteracted by a torsional spring which simulated 

the torsional stiffness. The three linear springs, each having a 

stiffness of E, provided the model. with vertical and lateral stiffness; 

however, in the flanges, each spring was in series with a precompressed 

spring. The precompression was achieved by means of the rigid links. The 

model was loaded at its righthand end with a conservative load P. If this 

load increased, the spring link assembly would be compressed which could 

equal the precompression in the springs and cause the links to buckle. 

The overal lateral-torsional buckling was characterized by the rotation 

Q, and the lateral bending Q3. The angles Q, and Q, characterized the 

14 

local buckling of the flanges; angle Q2 being the vertical deflection of 

the beam, and displacement Q4 a shortening of the neutral axis similar to 

that caused by local buckling. 

In order to make this model susceptible to lateral-torsional buckling, 

like a real beam, its parameters had to be chosen in such a way that: 

1. the lateral and torsional stiffnesses were much smaller than the ver- 

tical stiffness, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2. the pre-buckling deflection could be neglected, 

3. the overall lateral-torsional buckling was neutral in the abssnse of 

local buckling 

4. in the the post-buckling region, the spring link assemblies behaved 

like a flat plate. 

The exact potential energy expression, V (Q,, Q2, Q3, Q4, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ, f  Q,) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI  was 

expanded in the displacements and truncated after the quartic terms. The 
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incremental deflection q2 and the shortening Q4 would always be passive 

(dependent), consequently, they were eliminated. Since both Q, and Q3 

were non-zero components of the overall buckling mode, we chose Q3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas the 

amplitude and treated Q, as the passive coordinate. After eliminating 

these three coordinates, the potential energy expression looked like isee 

also the Appendix): 

2 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA' i A355Q3Q5 ' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz A366Q3Qi ' 
2 2  1 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

+ - A  1 ' A  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA24 5555 Q5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 5566'5'6 i- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA24 A6666Q6' (1) 

where A33, A55 and A66 are the buckling coefficients: 

2 P212 = (2b E- -) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S+ 

The other coefficients are: 

'366 
A355 = 2bdE = - 

u5555 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA' 2  .- '6666 

A5566 

= l i d 2  t 1  E + k) - 

= - 2 d E  2 

As a result of the choices zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 )  and 41,  only the local buckling amplitudes 

Q and Q, appeared up to and including the fourth order in the potential 

energy expression. This expression included the symmetry-breaking coef- 

ficients A355 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA3 Q6  that might cause destabilization in the post- 

buckling region . 
Finding the equilibrium paths from (1) was not limited to coincident or 

nearly coincident buckling loads, like the continuous and discretized 

continuous models based on the asymptotic approach 3 r 5 f 1 0 0  we focussed on 

5 

2 
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the situation where the local critical load PL was least; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
AS5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= A6 6  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO < A3 3 .  In that case, there would be three equilibrium 

paths: 

- an uncoupled path, involving local buckling only: 

- two coupled paths, involving interactive buckling: 

Q3 # 0, Q, # 0, Q6 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 ,  

The two coupled paths are equivalent, due to the symmetry of the model, 

Mowf we will confine ourselves to the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApath  with Q, = O,  i.e. when the 

local buckling load has been reached, the overall buckling is triggered 

off in such zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa way that the pertinent lateral bending prevents the 

posterior ''fflange" from buckling, while buckling of the anterior "flange" 

is increased. For this case the potential energy expression becomes: 

1 2 1  2 1  2 1  4 
V(Q Q ) = - A  Q + - A  50 + - A  

3 '  5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 33 3 2 55 5 2 355Q3Q5 i- zzs A5555Q5 
(5 )  

This is p re c is e ly the same expression as t h a t  for" the so=câlld pcrïcrbûlic 

umbilic catastrophe which is a characteristic o f  many interactive 

buckling problems that have been analyzed by other investigators. There- 

fore, comparable behaviour could be expected, 

In order to decide whether path (2) o r path ( 3 )  would be followed, we 

compared the respective potential energies in the vicinity of the bifur- 

cation point for local buckling: A55 = W66 = O. Then the overall buckling 

amplitude Q3  could also be eliminated from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(11, as it would be passive. 

From the requirement that &/ dg, = O we obtained: 

A3 5 5  2 A3 6 6  2 
Q 3 = - -  2 A3 3  Q5 - Q 6 e  

(6) 
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The respective potential energies became: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- in the case of local buckling alone: 

- in the case of interactive buckling: 

2 = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 Ed and the buckling coeffi- 2 For this model, A5555 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 8  Ed A5566 

cient zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAS3 is positive as long as the load is smaller than the overall 

buckling load; therefore it follows that interactive buckling will mini- 

mize the potential energy more than local buckling alone. Thus, inter- 

active buckling will dominate. In Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 ,  figures of the equilibrium 

paths are presented diagrammatically. In the calculations, we chose 

h = 9b. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.  ~ ~ T E ~ A C T I V E  BUCKLING E X P ~ ~ I ~ E N T ~  

In the experiments, a simply supported prismatic T-beam was loaded in 

pure bending (Fig. 2)  in such a way that, as with the discrete model, the 

flanges were in compression. The beam was built up froa a thin flange, 

carefully machined from sheet metal and glued to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa relatively stiff web 

(Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3) .  

In our opinion, this was a good way of providing the flange with a prac- 

tically uniform thickness. It was verified experiaentally that the glue 

had no influence on the bending stiffness. The raateria1 was aluminium, 

The variables measured were: 

- the overall buckling components that were the lateral desplacement, v ,  

of the centre o f  gravity of the cross-section, and the rotation, p, of 

the relatively stiff web; as well as: 

- the amplitude, a, and half the wavelength, A ,  of the local buckles. 
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Fig. 4 shows the main features of the test rig. The beam was simply sup- 

ported by suspending it from two thin strips; its in-plane rigidity pre- 

vented both vertical displacement at the ends and rotation about the lo- 

gitudinal axes. On the other hand the bending and torsional flexibility 

of the strips permitted the ends zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the beam to rotate freely with res- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
pect af their principal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaxes' Th i s  riesiyn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw a s  Dased on the eáriier 

iatesai-torsionai buckling zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Cherry15. î$ountinY test sFe- 

cimen in the test rig posed a particular problem, because twisting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo f  the 

beam might occur, Therefore, a cylindrical boss made of Araldit was fixed 

to each end, Each boss was inserted into the holder attached to one of 

the suspension strips, The jaws of the holder were tightened by turning a 

tapered nut. A lever was attached to each nut in order to apply the 

bending moment. A sitnple dead-loading device was used, the consequence 

being that descending equilibrium paths could not be followed during the 

experiments. Lateral deflections of the specimen were prevented from 

becoming too large by means o f  a hold-up. 

The overall buckling components were determined by measuring the lateral 

deflections of tso points on the web midspan of the beam. The average 

gave the lateral deflection; whereas, the difference between them was a 

measure for the rotation of the cross-section. 

The elements of local buckling were measured by four light-weight dis- 

placement transducers attached to the relatively stiff web, see Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 ,  

From the four displacements measured, it was possible to determine: 

- the amplitude of the local buckle, 

- half the wavelength of the local buckle, 

- the phase shift, 

- the average transverse displacement o f  the edge of the flange, e.g, 

caused by the Poisson effect. 

Fig. 6 shows an example of local buckling alone, it could be obtained 

only by preventing lateral bending of the beam. This confirmed our theory 

that interactive buckling would dominate over exclusive local buckling. 

When the beam was free to deflect laterally, interactive buckling would 

occur. Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 shows a good example of overall buckling and local flange 

buckling in combination. 
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4.  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQUALITATIVE COHPARISON OF THEORETICAL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAND E X ~ E R ~ H E N T ~ L  RESULTS 

In both the discrete model and the experiment, the prime variable was the 

ratio of the overall buckling load to the local buckling load. In the 

discrete model, the overall buckling load was constant, whereas, the lo- 

rul bwk l i ng  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIQ.8 ciiild vary by changing th e  precoripression of th@ reie- 

vant springs. In the experiments, the I m a i  Buckliiiy lûad was constaïit, 

the cross-sectional dimensions being fixed, but the overall buckling load 

was altered by changing the length of the beam. 

Pig. 8 shows the overall buckling amplitude versus a dimensionless load, 

as obtained Prom the discrete model. #hen the overall buckling load is 

much greater than the local buckling load, the value of the buckling 

coefficient zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA3 3  (8 )  still prevents excessive reduction of the post- 

buckling stability, so that the equilibrium paths rise, whilst they 

descend when the critical loads approach each other. Fig. 9 shows the 

comparable results drom the experiments. The parameters marked on the 

curves are the lengths of the beams. For a short beam, the overall 

buckling load was much greater than the local bu~kling load. Vaen the 

length of the beam increased, the critical loads approached each other 

and, as with the discrete model, the slope of the equilibrium paths de- 

creased. The beam with a length of 1250 min showed snap-throcgh buckling, 

due to an imperfection, the dead-loading and the buckling loads almost 

coinciding. At zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa beam length of 1500 mm, the overall buckling load was 

smallest and the post-buckling behaviour was stable again. 

With regards to the local buckling behaviour; Fig. 10 shows the local 

buckling amplitude versus a dimensionless load for the discrete model. If 

the critical load for lateral-torsional buckling is much greater than the 

local buckling load, a plate-like stable symmetric bifurcation will 

dominate. When the buckling loads approach each other, the slope of the 

post-buckling equilibrium path decreases. The comparable results obtained 

from the experiment are shown in Fig. ll. 

For the shortest beam, the distance between the overall and local 

buckling loads is greatest and, again, the plate-like stable post- 

-buckling behaviour i5 apparent. While most equilibrium paths show a 

rather smooth transition from the unbuckled to the buckled state, which 

can be ascribed to imperfections; the local buckle in the longest beam 
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(1500 mm) appears rather suddenly. In that case, overall buckling 

precedes local buckling, the latter being caused by a secondary bifur- 

cation. 

Pig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA12 shows the relationship between the amplitudes of local and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
o...erull j.?ucbring. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlorig 2s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlocal bg ckl i n r; lQEd is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt h e  smaller, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt h e  

equilibrium paths  have a vertical tangent at the origin, indicating tha t ,  

in the limiting case of vanishing displacements, only the local buckling 

mode occurs. In the post-buckling region, however, the overall component 

appears progressively zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( see (6)). Fig. 13 S ~ O W S  the relationship between 

the local and overall buckling amplitudes that was obtained experi- 

mentally. For a very short beam, local buckling dominated, but the equi- 

librium path was not entirely free of lateral deflection, which confirms 

that there is always some interaction between them, The broken lines 

connect the last equilibrium point, that was observed while increasing 

the load, with the equilibrium point pertaining t o  the situation where 

buckiing was arrested by the hold-up and, thus, indicates snap-through. 

Fig. 14 shows the relationship between the two displacements of the 

overall buckling mode. Strictly speaking, the buckling mode only refers 

to vanishing displacements at the critical load. The figure shows, how- 

ever, that an overall inode is roughly maintained even though overall 

buckling is relegated to the post-buckling rangeF and the displacements 

are finite. If we compare the relationship between Q1 and Q, (see Afi ) 

with the buckiing mode (see Alo ),  it can be seen that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthey a re  nearly the  

saae, provided that the load remains in the vicinity of the overall 

buckling loads. The experiments shown in Fig, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA15 confirm this behaviour. 

From an analysis o f  the simple discrete model, and from the preliminary 

experiments, it can be concluded that: 

- interactive lateral-torsional buckling belongs to the class of para- 

bolic umbilic catastrophes, according to the discrete model studied: 

there is 2 good qualitative agreement between the results obtained 

from the discrete model and those obtained from the experiments: 

- 
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- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtheoretically, interactive buckling will always occur when the local 

buckling load is smaller than the overall buckling load; 

both the shape of the equilibrium paths in the postbuckling region and 

the continuation of a buckling mode at finite deflections suggests 

that the asymptotic approach to the analysis o f  buckling behaviour may 

hase zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8  relatively si& range of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAapp l i cat i m s  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf o r in te ra c tive  Iaterai- 

-torsional. buckling. 
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APPENDIX zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

- The potential energy of the discrete model: 

The model is composed of linear elastic springs, together with rigid 

links .Ed barse zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI t  WA_- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAass1med zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt h a t  during d@éormatisn a l l  springs 
parailei to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe originai axis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL L -  L--- rnL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- - - - . - - - I 7  

L i l f i  I J e d I I l .  LI l e  U V f i l b i i  

lateral-torsional buckling and vertical deflection are represented by 

the rotations, Q1, Q3 and Q,, respectively. Local buckling may cause a 

shortening of the original neutral axis, Q4. The compression of the 

spring simulating the web behaviour, uA, and the displacements of the 

spring-link assemblies simulating the flange behaviour, uB and uc, are 

expressed in the overall rotations. Ve used a description in Euler 

tain these expressions, the rotation vector Q, remaining 

along CI A. The sequence of rotations being Q,, Q,, Q,. The righthand 

displacements of the springs are: 

U = Q, - 2a sin Q, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3 U = Q B a  

U = Q + a sin Q + b cos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ, sin $2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
c 4  2 

-P a sin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9, - b COS Q, sin Q 

The displacement of the vertical load is: 

= k(cos Q, cos Q3 sin Q, - sin Q sin Q,) - u P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

Local {flange) buckling is simulated by Beans of the spring-link 

assemblies. The springs having a stiffness of k are precompressed over 

a distance u. by means o f  the links. If the external load causes a 

compression smaller than uo , the stiffness of each assembly will re- 

main E. However, if the compression exceeds the pre-compression, the 

links will buckle and the springs become in series, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso that â smaller 

overall stiffness is produced. 

The local buckling is represented by Q5 and Q,. 
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If local buckling occurs, the full compression of the precompressed 

springs becomes: 

Uk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= u* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2d (1 - cos Q . )  with i = 5 ,  6 .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I 

In that case, the compression of the springs having a stiffness E will 

become : 

?\ = U - 2d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1 - COS Q,) EB B 

U = U - 2d ( 1  - COS Q,) EC C 

The expression for the potential energy now becomes: 

- Expansion of the potential energy expression around the fun~amental 

state: 

F The fundamental state is represented by the deflection Q2 = Q2. We 

assumed a linear elastic behaviour prior to buckling: Q 2 < < 1 .  The rele- 

vant potential energy expression is: 

F 

V ( Q 2 )  F 1 2  = 6a E Q: 2 1  d- ui - Pi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA12, F 

F Stationarity with respect t o  Q2 gives the €unaa~enta~ path: 

F Pt 
Q2 = 22 -h E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3 
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The potential energy increment, caused by displacements relative to 

the fundamental path, can be obtained from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( A l l  by splitting Q 2 into: 

where: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq2 represents the incremental vertical deflection. The 

following assumptions are made: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- the cross-section is slender: b <<h 

- the incremental deflection is very small: q2C<l 

2 2  

- the wavelength of the local buckle is of the same order of magnitude 

as the flange width: 

d = O (b ) ,  

- the pre-compression of the relevant springs is relatively 

small: uo<<d (A5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

- the additional compression of these springs is of the sa-ne order of 

magnitude as the displacements of the flange tips: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
dQ5 = Q(bQ3) and dQi  = Q(bQ3) (A61 

bd Q, Qg < <  h2 

Successively, the trigonometric terms can be expanded about the fun- 

damental state, we subtract the potential energy of the €un~ame~ta l  

state, and we utilize the aforementioned assu~pt~ons and the equili- 

brium equation for the fundamental state. 

The resulting fourth order potential energy expression is: 

+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP i  Q, Q3 
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- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe critical loads: 

The critical loads can be obtained by making the quadratic part of the 

potential energy stationary. This results in the following stability zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a..- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArnafrix: "- - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

o  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP 1  O 

O zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Pi O 2b2E O 

3E O O 

This gives the overall buckling load: 

= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ-G zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

O 2ku0 -h Pt o 
O 2ku0-r P l  

O 

together with two identical local buckling loads of magnitude: 

2ku0h 

pL = -7- 

The oyerall buckling mode contains two non-zero parameters; Q, and Q,, 

where, the relationship between them is: 

Q 1 = - -  St Q3 

- Adaptation of the model and confirmation of some assumptions: 

Since the postbuckling stiffness of flat plates is about half the 

original stiffness, depending on the boundary conditions, the discrete 

model has been adapted to it to be by taking k = E. 

If the critical loads are available, see (A81 and (As), the ~agnitude 

of the pre-buckling deflection can be checked when the overall 

buckling load will be attained: 
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F 

2 2  2 "  (Q2) P=Po (yh E) 

2 Since both the lateral stiffness (2b E) and the torsional stiffness 

(St) are assumed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt o  be small when compared with the vertical stiffness 

($h2E), the prebuckling deflection is indeed srnall. 

The pre-buckling deflection at the local critical load is: 

3 u ~  = -  F 
(Q2) P=PL h '  

and since the precompression zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu. is assuined to be small, this pre-- 

buckling deflection will also be small. 

The fact that a plate-like postbuckling behaviour of the flanges has 

been combined with a nearly neutral overall post-buckling behaviour, 

it implies that the former will be dominant. In that case, the Q,-term 

in the potential energy (AY) can be oBitted. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 

- Elimination of passive coordinates: 

Inspecting the stability matrix shows that there are at least three 

passive coordinates [2]; they are: the incremental deflection, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq2, the 

shortening, Q, and one of the parameters o f  the overall buckling mode. 

We have chosen Q, as the passive coordinate, leaving Q, as the 

amplitude of the overall buckling mode, From the stationarity o f  the 

potential energy, we obtain: 

(All) 
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It can be seen that only local buckling can give rise to increments in 

the deflection and shortening. 

Interactive buckling of beams in bending, 

<apti^nS 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 
Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 

Fig. 3 

Fig. 4 

Fig. 5 

Fig. 6 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 

Fig. 9 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10 

Fig, 11 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA12 

Fig. 13 

Fig. 14 

Fig. 15 

The Giscreie aodei. 

The T-beam as used in the 

Cross-section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo€ the test specimeD. 

The test rig. 

xperiment 

Displacement transducers for neasuring the properties of the 

local buckles. 

Local buckling alone. 

Overall buckling and local buckling in combination. 

Discrete model: overall buckling aaìplitude versus dimensionless 

load. 

Experiments: overall buckling amplitude versus dimensionless 

load. 

Discrete model: local buckling amplitude versus dimensionless 

load. 

Experiments: local buckling aBplitude versus dimensionless 

load. 

Discrete model: relationship between the amplitudes of local 

and overall buckling. 

Experiments: relationship between the amplitudes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo€  local and 

overall buckling. 

Discrete model: relationship between the displacements zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo f  the 

overall buckling mode. 

Experiments: relationship between the displacements o f  the 

overall buckling mode. 
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Fig. 6. Local buckling alone. 
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Fig. 7. Overall buckling and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlocal- 

buckling in combination. 
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Overat1 buckling amplitude zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ3 

F I G  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 

-Laieral displacement h m l  

F I G  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 
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- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B 
\ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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FIG 12 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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