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ABSTRACT

A discrete model involving a limited number of degrees of freedom is pre-
sented, for analyzing the interaction between overall lateral-torsional
buckling and local flange buckling qualitatively. The results are com-—
pared with experiments and show a good gualitative agreement. The results
suggest that a guantitative numerical apralysis based on Koiter's

asymptotic approach may have a wide range of validity.

NOTATION

Local buckling amplitude in the experiments

Aij Second order coefficients in V
Aijk Third order coefficients in ¥
Ay, Fourth order coefficients in V
ijkl
b Flange width
d Length of link
E Spring stiffsess
h Yeb height
k 5tiffness of precompressed spring
i Length
P Congervative load
PL Critical leoad for local buckling
P Critical load for overall buckling
Ql Rotation representing torsion
4, Rotaticn representing incremental deflection
Qz Rotation representing vertical defliection
Q3 Rotation representing lateral deflection
Q4 Shortening of eoriginal neutral axis

QS' Qﬁ Local buckling amplitudes in the discrete model
5 Torsional stiffness

u Precompression of spring




LIV I Axial displacenents

v Lateral deflection in experiments
v Potential energy

W Vertical deflection

A Half wavelength of local buckle

¥ Midspan rotation in experiments

1. INTRODUCTION

The detrimental effect that an interaction between local and overall buc-
kling of structural members may have, is well knownl_z. After recognizing
its symptoms, this phenomenon was investigated thoroughly for structural
members under uniform compression, including stiffened plat953 and
shells4, and thin walled columnss. The interaction between local buckling
and lateral torsional buckling as a result of bending6 has been given
less attention, but it is an area of practical importance, because
thin-walled built-up girders are used extensively and the use of cold--
formed and extruded nenbers is increasing. Moreover, the wall-thickness

of extruded members is becoming thinner all the time.

We investigated this interaction problem in three different ways:
1. By analysing a simple discrete model which had only a few degrees of
freedor in order to learn more about this type of buckling.

2. By performing interactive lateral-torsional buckling experiments, be-

cause little has beepn done on this

ulyi Some researchers
8,

8 e¢t. Someé researchers even
mention the scarcity of experiments?' 9.

3. By developing a spline finite-strip computer progran for simulating
the interactive buckling behaviour of prismatic heams with arbitrary

. 10,11
cross-sections .

The latter way is basged on the asymptotic approach described by Koiterlz;
in fact, it only applies in the case of coincident or nearly coincident
puckling loads. One of the aims of the experiments was to get a better
insight into its range of applicability. Since the first two ways showed
a remarkably good qualitative agreement, this paper reports scme of the

results obtained.



2. TEE DISCRETE MODEL

It is a well-known fact that many buckling features can be gimulated qua-
litatively by means of simple discrete models. Budiansky and Hutchinson13

presented a good example that illustrated the interaction bstween long

4 short wavelenoth {(local buckiing)

L Lo 1 =)

bhuck

wavalen

gth {(overal
modes using a two-link model. Hunt and Williamsl4 investigated a slightly
modified version in order to improve physical interpretability. This led
us to simulate the interactive lateral-torsional buckling behaviour of a
T-gection in bending with the model shown in Fig. 1. We confined our
attention to a perfect model. The lefthand support allowed the model to
rotate about its axis, counteracted by a torsional spring which simulated
the torsicnal stiffness. The three linear springs, each having a
stiffness of E, provided the model with vertical and lateral stiffness;
however, in the flanges, each spring was in series with a precompressed
gpring. The precompression was achieved by means of the rigid links. The
nodel was loaded at its righthand end with a conservative lead P. If this
load increased, the spring link assembly would be compressed which could
equal the precompréession in the springs and cause the links to buckle.
The overal lateral-torsional buckling was characterized by the rotation

9 and the lateral bending Q3- The angles Q. and Q. characterized the
lecal buckling of the flanges; angle Qz being the vertical deflection of
the beam, and displacement 94 a shortening of the neutral axis similar to

that caused by local buckling.

In order to make this model susceptible to lateral-torsicnal buckliing,

like a real beaw, its parameters had to be chosen in such a way that:

1. the lateral and torsional stiffnesses were much smaller than the ver-
tical stiffness,

2. the pre-buckling deflection could be neglected,

3. the overall lateral-torsional buckling was neutral in the absense of
local buckling

4. in the the post-huckling region, the spring link assemblies behaved
like a flat plate.

The exact potential energy expression, V (Ql, Qz, 93, 94, Q5, QG}’ was

expanded in the displacements and truncated after the quartic terms. The



incremental deflection a, and the shortening Q4 would always be passive
{dependent}, consequently, they were eliminated. Since both Ql and 93
were non-zero components of the overall buckling mede, we chose 93 as the
amplitude and treated Ql as the passive coordinate. After eliminating
these three coordinates, the potential energy expression looked like {see

also the Appendix):

1

1 2 2
BogQp + 7 Rgglp ¥

_ a

B 4

1 2 1 2
t g Bagp@y0p * 3 Bygelalp ¥

1 4.1, 22 .1 P
o1 25555 95 T T Resec% t 37 Bagess (1)

where 3 A.. and A_,_ are the buckling coefficients:

337 “s5 66
2,2
a2, PEY
A33 = (2b°E ~§——J
t
_ - {4 _
Agg = (P = P) == 2
The other coefficients are:
Rygg = 2hAE = = Ay0p
- _10\121511_:_}(}_‘5
Agggg = +40 iz BT T 26666
a2
Borgg = -~ 20 E

As a result of the choices 3} and 4), conly the local buckling amplitudes
QS and Q6 appeared up to and including the fourth order in the potential

ensrgy expression. This expression included the symmetry-breaking coef-

ficients A355 and A366

buckling regionz.

that might cause destabilization in the post-

Firding the equilibrium paths from (1)} was not linited to coimcident or

nearly coincident buckling loads, like the continucus and discretized

3.5,10

continuous models based on the asyvmptotic approach . ¥e focussed on



the situation where the local critical load PL was least;

A=A _=0<3 3 In that case, there would be three equilibrium

55 66 3
paths:

- an uncoupled path, involving local buckling only:
93 =0, Q5 = 96 #0, {2)
~ two coupled paths, involving interactive buckling:

0, #0, 05 #0, 0 =0, (3)
0, $0, 0, =0, 9 #0. (4)

The two coupled paths are equivalent, due to the symmetry of the nodel.

Now, we will confine ourselves to the path with Qs = 0, i.e. when the

local buckling load has been reached, the overall buckling is triggered
off in such a way that the pertinent lateral bending prevents the
posterior "flange" from buckling, while buckling of the anterior "flange"

is increased. For this case the potential energy expression becomes:

1 2 .1 2 1 2 1 4
ViQ3,0g) = 3 R340y ¥ 7 Bpply * 5 AygpQ0n * 57 Aggsls (5)

This is precisely the same expression as that for the so-called para
umbilic catastrophe which is a characteristic of many interactive
buckling problems that have been analyzed by other investigators. There-
fore, couparable behaviour could he expected.

In order to decide whether path (2} or path (3) would be followed, we
compared the respective petential energies in the vicinity of the bifur-

cation point for local buckling: 555 = 366 = §. Then the overall buckling

aerplitude Q3 could alsc be eliminated from (1), as it would be passive.

From the requirement that 5V/§Q3 = 0 we obtained:

A A

355 2 366 .2

9 = - 3 % " 7 %- &)
3 2A33 5 2A33 6



The respective potential energies becanme:

- in the case of loczl buckling alone:

) 4
ViQg) = 33 (Agpps + 3 Bggpe) Qp

[

{7

- in the case of interactive buckling:

A.pe?
21 _ 355 4
V{Q5} = 57 (35555 3 _i;;_} 95 {8)
: . 2 2 . .
For this amodel, 35555 = 8 Ed7, A5566 = - 2 Ed” and the buckling coeffi-

cient A,, is positive as long as the load is smaller than the overall

33
buckling load; therefore it followe that interactive buckling will mini-
mize the potential energy more than local buckling alone. Thus, inter-—
active buckling will dominate. In Section 4, figures of the eguilibrium
paths are presented diagrammatically. In the calculations, we chose

h = %b.

3. INTERACTIVE BUCKLING EXPERIMENTS

In the experiments, a simply supported prismatic T-beam was loaded in
pure bending (Fig. 2} in such a way that, as with the discrete model, the
flanges were in compression. The beam was built up from a thiam flange,
carefully machined from sheet metal and glued to a relatively stiff web
(Fig. 3).

Ir our opinion, this was a good way of providing the flange with a prac-

tically uniform thickness. It was verified experimentally that the glue

had no influence on the bending stiffness. The material was aluminium.

The variables measured were:

~ the overall buckling coamponents that were the lateral desplacement, v,
of the centre of gravity of the cross-section, and the rotation, p, of
the relatively stiff web; as well as:

- the amplitude, a, and half the wavelength, i, of the local buckles.



Pig. 4 shows the main features of the test rig. The beam was simply sup-
ported by suspending it from two thin strips; its in-plane rigidity pre-
vented both vertical displacement at the ends and rotation about the lo-
gitudinal axes. On the other hand the bending and torsional flexibility

of the strips permitted the ends of the beam to rotate freely with res-

I
1
=]

heir principal axes. This design was based on the earlier

nect o
lateral-torsional buckling experiments of Cherrle. Mounting a test spe-
cimen in the test rig posed a particular problem, because twisting of the
bean might occur. Therefore, a cylindrical boss made of Araldit was fixed
to each end. Each boss was inserted into the holder attached to one of
the suspension strips. The jaws of the holder were tightened by turning a
tapered nut. A lever was attached to each nut in order to apply the
bernding moment. R simple dead-loading device was used, the consequence
being that descending equilibrium paths could not be followed during the
experiments. Lateral deflections of the specimen were prevented from
becoming too large by means of a hold-up.

The overall buckling componenis were determined by measuring the lateral
deflections of two points on the wek midspan of the beam. The average
gave the lateral deflection; whereas, the difference between then was a
neasure for the rotation of the cross-section.

The elements of local buckling were measured by four light-weight dis-
placement transducers attached to the relatively stiff web, see Fig. 5.
From the four displacements measured, it was possible to determine:

- the amplitude of the local buckle,

~ half the wavelength of the local buckle,

- the phase shift,

- the average transverse displacement of the edge of the flange, =.g.

caused by the Foisson effect.

Fig. 6 shows an example of local buckling alone, it could be obtained
only by preventing lateral bending of the heam. This confirmed our theory
that interactive buckling would dominate over exclusive local buckling.
When the beam was free to deflect laterally, interactive buckling would
occur. Fig. 7 shows a good example of overall buckling and local flange

buckling in combination.



4. A QUALITATIVE COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS

In both the discrete model and the experiment, the prime variable was the
ratio of the overall buckling locad to the leocal buckling load. In the
discrete rodel, the overall buckling load was constant, whereas, the 1lo-

¢zl buckling load could vary by changing the precompression of the rele-

vant springs. In the experiments, the local buckling load was constant,
the cross-sectional dimensions being fixed, but the overall buckling load
was altered by changing the length of the bean.

Fig. 8 shows the overall buckling amplitude versus a dimensionless load,
as obtained from the discrete nmodel. When the overall buckling leoad is
much greater than the local buckling load, the value of the buckling

coefficient & (8} still prevents excessive reduction of the post-

33
buckling stability, sc¢ that the equilibrium paths rise, whilst they
descend when the critical loads approach sach other. Fig. 9 shows the
comparable results from the experiments. The parameters marked on the
curves are the lengths of the beams. For a short beam, the overall
buckling lcad was much greater than the local buckling load. When the
length of the beam increased, the critical loads approached each other
and, as with the discrete model, the slope of the eguilibrium paths de-
creased. The bean with a length of 1250 me showed snap-through buckling,
due to an imperfection, the dead-loading and the buckling loads almost
coinciding. At a heam length of 150G mm, the overall buckling load was

smallest and the post-buckling behaviour was stable again.

With regards to the local buckling behaviour; Pig. 10 shows the local
buckling amplitude versus a dimenszsionless load for the discrete wmodel. If
the critical load for lateral-torsional buckling is much greater than the
local buckling load, a plate-like stable symmetrie bifurcation will
dominate. When the buckling loads approach each other, the slope of the
post-buckiing equilibrium path decreases. The comparable results obtained
from the experiment are shown in Fig. 11.

For the shortest beam, the distance between the overall and local
buckling loads is ¢greatest and, again, the plate-like stable post-
-buckling behaviour is apparent. While most eguilibrium paths show a
rather smooth transition f£rom the unbuckled to the buckled state, which

can be ascribed to imperfections; the local buckle in the longest beanm
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{1500 mm} appears rather suddenly. In that case, overall buckling
precedes local buckling, the latter being caused by a secondary bifur-

cation.

Fig. 12 shows the relationship between the amplitudes of local and
As long as the Incal buckling load is the sma
equilibrium paths have a vertical tangeant at the origin, indicating that,
in the limiting case of vanishing displacenments, only the local buckling
mode occurs. In the post-buckling region, however, the overall component
appears progressively {sse (6}). Fig. 13 shows the relationship between
the local and overall buckling amplitudes that was obtained experi-
mentally. For a very short beam, local buckling dominated, but the equi-
librium path was not entirely free of lateral deflection, which confirms
that there is always some interaction between them. The broken lines
connect the last equilibrium point, that was observed while increasing
the load, with the eguilibrium pcint pertaining to the situation where

buckling was arrested by the hold-uvp and, thus, indicates snap-through.

Fig. 14 shows the relationship between the two displacements of the
overall buckling mode. Strictly speaking, the buckling mede only refers
to vanishing displacements at the critical load. The figure shows, how-
ever, that an overall mode is roughly maintained even though overall
buckling is relegated to the post-buckling range, and the displacenents

are finite. If we compare the relationship hetween Ql and Q3 {see Aii}
with the buckling mode {see ﬁlsi, it can be seen that they are nearly the

same, provided that the load remains in the vicinity of the overall

buckling loads. The experiments shown in Fig. 15 confirm this behaviour.
5. CONCLIISIONS

From an analysis of the simple discrete wodel, and from the preliminary

experiments, it can be concluded that:

- dinteractive lateral-torsional buckliag belongs to the class of para-
bolic umbilic catastrophes, according to the discrete model studied;

- there is a good qualitative agreement between the results obtained

from the discrete model and those cbtained from the experiments;
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theoretically, interactive buckling will always occur when the local
buckling load is smaller than the overall huckling load;

both the shape of the egquilibrium paths in the postbuckling region and
the continuation of a buckling mode at finite deflections suggests
that the asynptotic approach to the analysis of buckling behaviour may

or interactive laterai-~
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ARPPEHDIX
The potential energy of the discrete model;

The model is composed of linear elastic springs, together with rigid
it wag agsumed thai during deformation all springs
remained parallel to the original axis of the beam. The overall
lateral-torsional buckling and vertical deflection are represented by

the rotations, Qi' 93 and Qz, respectively. Local buckling may cause a
shertening of the origiral neutral axis, Q4. The compression of the

spring simulating the web behaviour, u,, and the displacenents of the

A

spring-link assemblies simulating the flange behaviour, u, and u.. are

B
expressed in the overall rotations. We used a description in Euler

angles to obtain thess expressions, the rotation vector 93 remaining
along OA. The sequence of rotations being Qz, 93, Ql' The righthand

displacements of the springs are:

=
1l

A Q4 - 2a sin Qz

=
H

94 + 2 sin Qz - b cos Qz sin Q3

[=
n

94 + a sin Qz + b cos 92 sin Q3

The displacement of the vertical load is:

up = fleos Ql oS Q3 gin Qz - sin Qi sin 93}’

Local (flange) buckling is simulated by means of the spring-link
assemblies. TPhe springs having a stiffness of k are precompressed over

a distance U, by neans of the links. If the external load causes a
compression smaller than U the stiffness of each assembly will re-

main E. However, if the compression exceeds the pre-conmpression, the
links will buckle and the springs become in geries, so that a smaller
overall stiffness is produced.

The local buckling is represented by QS and QG'
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If local buckling occurs, the full compression of the precompressed

springs becomes:

. =1u

K + 24 {1 - cos Qi} with i = 5, 6.

0

In that case, the compression of the springs having a stiffness E will '

become:

=
i

BB = uB - 24 {1 - cos QS)

Ir

) - 24 {1 - cos 96}

ec - Yc
The expression for the potential energy now becomes:

b2 1o o2 1. o2
V(Qil sz Qst Qgr Qst QGJ - E st Ql + E E uA"i' E E{uB Zd(}. ade ] 95)} +

L 2
kuks--z-ku

B3] b=

+ %E{uC—ZQ{l—cos QG}}Z + - Pu {a1)

- Expansion of the potential energy expression arcund the fundamental

state:

The fundamental state is represented by the deflection Qz S Qg. He
assumed a linear elastic behaviour prior to buckling: QE((I. The rele-

vant potential energy expression is:

2
V{Qz} - %- 52°E Qg + %-2k ug - p{ Qg

Stationarity with respect to Qg gives the fundamental path:

QZ = e {AZ)
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The potential energy increment, caused by displacements relative to
the fundamental path, can be obtained from (A1)} by splitting Qz into:

_ AT
92 _Qz +q2:

where: 45 represents the incremental vertical deflection. The

follovwing assumptionsg are made:
- the cross-gection is slender: b2<(h2 (A3)

- the incremental deflection is very swmall: q2<<1 (Ad)

~ the wavelength of the local buckle is of the same order of magnitude
as the flange width:
= 0(b),
~ the pre-compression of the relevant springs iz relatively

smali: u9<<d {35}

- the additional compressicn of these springs is of the same order of
magnitude as the displacements of the flange tips:
2 2 _
dQS = 0(b93) and d96 = 0(bQ3} [A8)

From {3} and 25}, 1t appears that:
2 2
bd QS QS {{ h

Bd Q, Qg ¢ nl

Successively, the trigonometric terms can be expanded ahout the fun-
damental state, we subtract the potential energy of the fundamentsal
state, and we utilize the aforementioned assumptions and the eguili-

brium equation for the fundamental state.

The resulting fourth order potential energy expression is:

= i . 2.2 1.2 4
1_.2
+ :,}EO4 - ad E(Q5 + Qs} (ﬁ— + CIZ) + bhdE {QS - QG) Q3 +
§a g

021 4 L 42 4 4
- dE(Q5 + Qs} 9t ku d(Q5 6 t3 d°(E + k}(Q5 + 95} +

+ B{ Q1 Qs (BT}
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The critical loads:

The critical loads can be obtained by making the guadratic part of the

potential energy stationary. This results in the following stability

matriz:

S 0 -4 0 0 0 0

T oas 1
o FE 0 0 0 4, 0
pJ o 2b°E 0 0 0, 0
0 3E 0 0 2y ~ o

P!

0 0 0 2ku, ~+— O 0 0

0 & bl 5
i 0 0 0 0 2kugz= | o] 10l

This gives the overall buckling lcad:

By = % J 2Est (A8)

together with two identical lecal buckling loads of magritude:

Zkuﬁh
?L = _T (A9}

The overall buckling mode contains two non-zero parameters: Qi and Q3,

where, the relationship between them is:

P L
0

Ql = F Q3 {(A10)

Adaptation of the model and confirmation of some assumptions:

Since the postbuckling stiffness of flat plates is about half the
original stiffness, depending onp the boundary conditions, the discrete
model has been adapted to it to be by taking k = E.

If the critical loads are available, see (A8) and (A%), the nmagnitude
of the pre-buckling deflection can be checked when the overail

buckling load will be attained:



17

2_......_._

F [352ET 5t

ofy = J122E) St
2'P=P, (%thyz

Since both the lateral stiffness (ZbZE} and the torsional stiffness
{8t) are assumed fto be small when compared with the vertical stiffness

(%th}, the prebuckling deflection is indeed small.

The pre-~buckling deflection at the local critical load is:

3uD

F
(0.}, o = =
2 P—PL h
and since the precompression Uy is assumed to be smpall, this pre—-

buckling deflection will alse be small.

The fact that a plate-like postbuckling behaviour of the flanges has
been combined with a nearly neutral overall post-buckling behaviour,
it implies that the former will be dominant. In that case, the Qg—term

in the potential energy (A7) can be omitted.
Elimination of passive coordinates:

Inspecting the stability matrix shows that there are at ]least three

passive coordinates [2]; they are: the incremental deflection, 4, the
shortening, Q4 and one of the pesrameters of the overall buckling mode.
We have chosen QI as the passive coordinate, leaving Q3 as the

amplitude of the overall buckling mode. From the stationarity of the

potential energy, we obtain:

ﬁv/ﬁgl =0 Q =~ 5% 9 {a11)
- .4 2. .2

WO, =0 =gy = = = (0 + Q)

N _ 4 ,.2 2
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It can be seen that only local buckling can give rise to increments in

the deflection and shortening.

Interactive buckling of beams in bending,

Fig.
Fig.
Fig.
Fig.

Fig.

Fig.

Fig.

Fig.

10

11

12

13

14

15

The discrete model.

The T-beam as used in the experiments.

Cross-section of the test specimen.

The test rig.

Displacement transducers for measuring the properties of the
local buckles.

Local buckling alone,

Overall buckling and leocal buckling in combination.

Discrete model: oversll buckling amplitude versus dirensionless
Ioad.

Experiments: overall buckling amplitude versus dimensionless
load.

Discrete model: local buckling amplitude versus dimensionless
load.

Experiments: local buckling amplitude versus dimensionless
load.

Dizcrete nodel: relstionship between the amplitudes of local
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Fig. 5. Displacement transducers for measuring

the properties of the local buckles.
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Fig. 6. Local buckling alone.



Fig. 7. Overall puckling and local-

buckling in combination.
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