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Figure 1: Starting from a common layout (Left), the user’s objective is inferred from placement of three primitives (push pins), leading to a
layout organized vertically by size (Middle) and after a different placement additionally by brightness horizontally (Right).

Abstract

We propose an approach to “pack” a set of two-dimensional graph-
ical primitives into a spatial layout that follows artistic goals. We
formalize this process as projecting from a high-dimensional feature
space into a 2D layout. Our system does not expose the control
of this projection to the user in form of sliders or similar inter-
faces. Instead, we infer the desired layout of all primitives from
interactive placement of a small subset of example primitives. To
produce a pleasant distribution of primitives with spatial extend, we
propose a novel generalization of Centroidal Voronoi Tesselation
which equalizes the distances between boundaries of nearby primi-
tives. Compared to previous primitive distribution approaches our
GPU implementation achieves both better fidelity and asymptoti-
cally higher speed. A user study evaluates the system’s usability.
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1 Introduction

Arranging sets of primitives into a pleasing spatial packing layout
that tightly fills in 2D is tedious and requires expert skills (Fig. 2).
While arrangements can serve for recreation and aesthetic purposes,
they often seek to convey an underlying message concerning the
relation between primitives and serve a didactical purpose. In this
work, we propose a system to automate artistic layouts, by inferring
the user’s high-level intentions from the interaction performed. The

interactive exploration of different artistic layouts and primitive
relations enabled by our system goes beyond static print or display
layouts and helps to improve general layouts, such required for
Mind maps [Buzan 1976], tag clouds [Bateman et al. 2008] or any
arrangement of graphical 2D primitives.

Fig. 1 shows three steps of a typical interaction using our system: Af-
ter loading a set of primitives, our system presents a general-purpose
layout (Fig. 1, left). To change this layout, a simple solution would
be to expose many sliders that control what importance to what
weight quality would be given. Such high-dimensional parameter
spaces are hard to navigate for colloquial users and hamper creative
exploration. Our system takes a different approach: We offer the
user to move primitives to new positions (Fig. 1, middle) and by that
to infer the user’s intention, leading to a new layout, in this case,
where primitives are organized vertically by size. After a second
manipulation (Fig. 1, right) the layout is organized by brightness
horizontally and by size vertically.

To allow such operations we make the following contributions:

• An interactive inverse layout approach to infer a user’s packing
layout intention from a small number of examples.

• A layout algorithm to evenly distribute primitives with spatial
extend in real-time using a GPU.

• A study of packing layout task performance of novice users.

2 Previous Work

Properly distributing primitives in a domain has been a challenge
in computer graphics for both, technical and aesthetical reasons.
Seeking to place samples that evaluate a function such that aliasing
is minimized, Mitchell [1987] argued that samples should have
“blue noise” characteristics, that is: the distance to the neighbors
should not be smaller than a threshold. Placing primitives for artistic
purposes in 2D is widely used for non-photorealistic rendering,
e. g., for stippling [Deussen et al. 2000; Hiller et al. 2003], mosaics
[Hausner 2001; Kim and Pellacini 2002] or texture synthesis [Lagae
and Dutré 2005]. In particular Hiller et al. [2003] who distributes
primitives in the plane such that they follow a prescribed density, is
a similar case of our system that produces distributions that follow
rules inferred from the users’ interaction with the distribution itself.
Placing primitives in the plane, the usage of Voronoi tessellation is
popular to avoid collision [Dalal et al. 2006] and achieve pleasant
(temporal) distributions.

http://doi.acm.org/10.1145/2508363.2508409
http://portal.acm.org/ft_gateway.cfm?id=2508409&type=pdf
http://resources.mpi-inf.mpg.de/ConstrainedPacking/
http://resources.mpi-inf.mpg.de/ConstrainedPacking/ConstrainedPackingVideo.avi
http://resources.mpi-inf.mpg.de/ConstrainedPacking/ConstrainedPackingData.zip


Figure 2: Examples: a): G. Grohmann: “Recueil de dessins” (1805). b): Bulliard: “La Flore Des Environs de Paris” (1776). c): U. Gorter:
“Whales of the World” (2003) d): J. Brickwil: “Natural history of North-Carolina” (1712). e): Schweizerbart: “Evolution der Tiere” (2001).

The parameters for primitive placement can be difficult to control
as noted by Hurtut et al. [2009] and Öztireli et al. [2012], who pro-
posed to transfer the statistics from a source to a target distribution
of primitives. Our approach is not based on distribution statistics.
Instead, we infer high-level rules that describe the intended embed-
ding of a high-dimensional feature space into a low dimensional
medium from the user input instead of spatially-invariant statistics
of items that cannot express all of the user’s intention. Exploration
of high-dimensional spaces of visual features were described by
Lasram et al. [2012]. Beyond distribution statistics, grouping for
stylization was described by Bezerra et al. [2008]: A layout of a
scene is given, and the style of items is made coherent according
to an observed grouping. A subset of our approach performs the
inverse: We are given primitive features (e. g., brightness, shape,
size) and want to find a layout.

Optimally placing a set of spatially extended objects into a con-
straining container (bin packing), such as 3D shapes into another
3D shape [Gal et al. 2007] or text into a 2D contour [Xu and Kaplan
2007; Maharik et al. 2011] is an NP-hard problem, but can be solved
with sufficient approximate solutions in practice. Packing into a
container can be one constraint among many in our system. Packing
UV charts [Lévy et al. 2002] is a common technical challenge for
surface parametrization. Closest to our objective is the approach of
Yu et al. [2011] that arranges furniture in a room according to rules
learned from exemplars in a forward procedure, without assistance
for the user to change the layout or to learn from his feedback.

One of the most classic layout problems is desktop publishing and
user interfaces [Lok and Feiner 2001; Jacobs et al. 2003]. Here,
the state of the art is based on systems that exploit the regular,
grid-structure of text layout, which does not generalize to arbitrary
items. In information visualization, graph drawing [Harel and Koren
2002] and specifically word clouds [Bateman et al. 2008; Strobelt
et al. 2012] share challenges such as collision avoidance with our
approach. Placement of textual labels by example was considered
by Vollick et al. [2007]. For the word clouds, user input has only
been included in a forward manner in the ManiWordle system [Koh
et al. 2010], where a user can fixate individual word primitives to
specific locations. Different from such off-line systems, we account
for visual features of the primitives themselves (and not only abstract
word frequency), learn layout from user feedback and present new
layouts, all on-line, with interactive performance.

Inferring a layout from sparse user constraints is an instance of
semi-supervised learning [Chapelle et al. 2006], in particular semi-
supervised dimensionality reduction [Zhang et al. 2007] where some
primitives are labeled (i. e., placed by the user) and most are not. In
the most general setting, our problem can be regarded as (inverse)
procedural modeling, that can be solved with amazing results by
approaches such as Metropolis [Talton et al. 2011], which is likely
too costly to deliver timely response to the users interaction.

3 Overview

Conceptually, our system consists of an infinite loop: First, a forward
layout step places primitives according to some rules (Sec. 4). If
user interaction occurs, an inverse layout step (Sec. 5) refines the
rules for the forward layout and the loop repeats.

A typical use case of the system is as follows (Fig. 1): Initially,
the user is presented some generic layout of graphical primitives in
2D. This layout maps primitives with certain similar features (e. g.,
brightness, shape, etc.) to similar locations (Sec. 4.1). Primitives
are placed in such a way, that the average distance of the boundary
of nearby primitives (the “gap” between them) has a similar value
everywhere (Sec. 4.2). Next, users interactively manipulate this
layout by constraining a small number of primitives to particular
locations (Sec. 5). This is depicted by a push-pin icon shown next to
the constrained primitive. The system infers what features are to be
used in the forward layout from these constraints.

4 Forward layout

Primitives are n objects represented as images with a possibly con-
cave boundary Ωi. A typical number of primitives is between 10 and
200. The next input to our approach is a per-primitive feature vector
f ∈ R

m representing m ∈ N different features. Features capture
visual properties, such as size, shape, brightness, texture, etc. (auto-
matically extracted from the input primitive by image processing) as
well as semantic quantities like age, strength, etc. (acquired from a
database). The sequence of the feature vectors of all primitives is
denoted as F = {f1, . . . , fn ∈ R

m}. A typical number of features
is 10. Output of our system is a sequence X = {x1, . . . ,xn ∈ R

2}
which contains locations at which primitives are to be placed in the
two-dimensional layout space R

2 (Fig. 3).
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Figure 3: a): Notations of our formalization. b): Isolines of first
parameter dimension for different layout functions φ.

Forward layout is performed in two main steps to be explained next:
feature mapping (Sec. 4.1) and distributing primitives with spatial
extent (Sec. 4.2).



4.1 Feature mapping

Feature mapping reduces high-dimensional features f ∈ R
m to their

low-dimensional 2D layout coordinates x ∈ R
2 as

x = φ(Pf + t), (1)

where P is a feature projection matrix, t is a parameter translation
and φ is a layout function, all explained in the next paragraphs.

Feature projection and parameter translation is performed by
a tuple (P, t) as a projection matrix P ∈ R

2×m and a translation
vector t ∈ R

2 that map feature vectors f ∈ R
m to parameter vec-

tors p ∈ R
2 as p = Pf + t. P is non-zero only at position k, l

if feature l is mapped to dimension k. The value at Pk,l gives the
factor by which the feature is scaled to create the parameter vector
dimension. Per dimension/row only one non-zero element/feature
scaling-factor is present, i. e., only one feature is used per param-
eter vector dimension. As an example given three features (size,
brightness, anisotropy)

P =

[

0 0 1
0 0.2 0

]

would select the third feature (anisotropy) with unit scaling as the
first dimension and the second feature (brightness) as the second
dimension, scaled by 0.2. t is used to shift the parameter vector
along the parameter axis, and can be used for example to move the
primitives along the axes in layout space in a Cartesian layout.

Layout function The parameter vector p serves as input to differ-
ent layout functions φ(p) ∈ R

2 → R
2. Such functions map e. g.,

the first parameter to the x-axis and the second one to the y-axis in
a Cartesian layout, or the first parameter to angle and the second
to radius in a radial layout function. In practice different layout
functions can be used (Fig. 3). The only requirement for φ is that the
inverse mapping φ−1 needs to exist in order to perform the inverse
layout (Sec. 5).

Incomplete case We also support to select only one, or no feature
at all, i. e., where P does not have full rank with rows of only zeros.
In this case, the missing dimensions in p are created using Multi-
dimensional scaling (MDS) [Cox and Cox 2000] of all remaining
features, i. e., the features with columns that have zeros in P. The
resulting parameter vector p can then be fed into φ as before.

4.2 Distributing primitives with extent

Preserving a balanced distance to all adjacent primitives is a key to
a good layout. The output layout of the feature mapping however
can be arbitrary with possibly overlapping primitives, that do not
necessarily occupy the given layout space evenly. Further feature
mapping only operates on points and has no concept of spatial
extent. To distribute primitives with extent we equalize the distance
between the boundaries of nearby objects. For primitives of complex
shape and varying size, this leads to more pleasant distributions,
yet resulting in simple computations that allow for a real-time GPU
implementation.

Boundary Voronoi tesselation For point primitives, Centroidal
Voronoi Tesselation (CVT) [Lloyd 1982] has proven to produce
layouts that yield balanced point distances. For our purpose, one
option would be to use the extension of Hiller et al. [2003] for general
shapes. We implemented this approach but observed unsatisfying
results: All but almost ellipsoidal shapes produce unbalanced results

that drift (see Fig. 4). This drift arises from that fact, that CVT does
not explicitly state boundary distances in its objective function but
aligns the centroids of the primitive and its Voronoi region.
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Figure 4: Results for CVT [Hiller et al. 2003] (upper row) and our
relaxation (lower row). Adjacent to the layouts the values of the
CVT residual and our residual (Eq. 3). CVT relaxation results in
unbalanced layouts and its residual in each column is lower for CVT
relaxation. In contrast our residual is lower for the more balanced
layouts, indicating that only our residual measures the quality.

To achieve an even distance between primitives, the boundary dis-
tances need to be explicitly included in our objective function. The
deviation of a layout X from this equilibrium can be measured by
summing the squared distances between each primitive’s boundary
and its Voronoi region boundary:

c(X) =

n
∑

i=1

∫

ΩV

i

distancei(ω,xi)
2dω, (2)

where ΩV
i is the boundary of the

closesti 

ω

x
i

distancei 

ΩV i
Ω
i
 

i-th primitive’s Voronoi region and
distancei(ω,xi) : R

2 ×R
2 → R gives

the shortest Euclidean distance between
ω, a point on the Voronoi region bound-
ary, and the i-th primitive’s boundary
Ωi positioned at xi. The minimum of
this cost function X ′ = argminX c(X)
yields the optimal solution. This formulation is very similar to Eq. 1
in Dalal et al. [2006], except that we only consider the boundary of
the Voronoi region and not its interior (we also omit the rotational
parts as we are explicitly only interested in a translation). In practice,
we perform all calculations on a discretized grid, i. e., Eq. 2 becomes

c(X) =

n
∑

i=1

∑

ω∈ΩV

i

distancei(ω,xi)
2
. (3)

As minimizing Eq. 3 is NP-hard, finding the global optimum is
infeasible. Moreover, we are explicitly not interested in the global
optimum of Eq. 3 as it possibly shuffles all primitive positions to new
places, whereas we seek to find a solution, that is similar to the one
produced by the forward mapping (Sec. 4.1), but balances primitive
distances. Hence the global optimization of Eq. 3 is replaced by a
local iterative one, that tries to find a small offset for each primitive
position individually, given a static Voronoi diagram per iteration.
The formula then becomes

ci(xi) =
∑

ω∈ΩV

i

distancei(ω,xi)
2
. (4)

This equation could be minimized using image correlation, as done
by Dalal et al. [2006], whose complexity is O(na log a) where n is



the number of primitives and a is the total number of pixels of the
domain. This complexity is prohibitively expensive for our realtime
needs. Hence Eq. 4 should be replaced by an approximation.

A first idea could be to replace distancei(ω, xi) by a Taylor poly-
nomial [Pottmann and Hofer 2003] of degree one and solve this
approximated objective ĉi instead of Eq. 4. However ci is only
poorly approximated by ĉi and the error between both can be arbi-
trarily large (see Fig. 5). Furthermore Taylor polynomials require
derivatives, whereas distancei(ω, xi) is not necessarily continu-
ously differentiable.
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Figure 5: a): In this 1D example the primitive at x is shifted by δ.
The distance function c and its approximations ĉ and c̃ measure the
shortest distance to ω. b): The distance functios are plotted for an
approximation at x. For all values δ ≤ h the approximations ĉ and
c̃ exactly conform with c. For values δ > h both functions deviate
from the correct function, but the error of c̃ is bounded by e.

We can reformulate Eq. 4 by expanding distancei as

ci(xi) =
∑

ω∈ΩV

i

‖closesti(ω,xi)− ω‖22

where closesti(ω,xi) : R
2 × R

2 → R
2 gives the point clos-

est to ω on the boundary Ωi of the i-th primitive at position xi.
closesti(ω,xi) can be approximated for a point xi + δi as

closesti(ω,xi + δi) ≈ closesti(ω,xi) + δi, (5)

i. e., the closest position to ω on Ωi at position xi + δi is approxi-
mately the closest position on Ωi at position xi with the added offset
δi. This approximation does not involve a derivative and always
gives a point on the primitive’s boundary. The maximal error is
therefore bounded by the maximal distance of two points on the
primitive’s boundary (see Fig. 5). Using Eq. 5 the cost of an offset
δi is given for the primitive positions xi as

c̃i(xi + δi) =
∑

ω∈ΩV

i

‖closesti(ω,xi) + δi − ω‖22 .

The optimal δ′i is found by setting its derivative to zero as:

δ
′
i = argmin

δi

c̃i(xi + δi) =
1

|ΩV
i |

∑

ω∈ΩV

i

ω − closesti(ω,xi).

As an intuition behind this solution, finding the minimum can be
regarded as a set of springs located at the Voronoi region boundary
that try to push or pull the primitive into the correct place in its
Voronoi region. A single step in our iteration has a complexity of
O(n|ΩV|) where |ΩV| is the total length in pixel of all Voronoi
region boundaries.

Except for only considering the Voronoi boundary, for the special
case of point primitives CVT is equivalent with our problem state-
ment in Eq. 3. The Voronoi diagram for overlapping primitives with
spatial extend is not well-defined. To overcome this, we compute
the Voronoi diagram using a two-sided distance to the boundaries
of the primitives, such that distances increase inside and outside of
the boundary, leading to well-defined Voronoi diagrams. The prim-
itives might have interior boundaries (e. g., the circular cutout of

the circles in Fig. 4, b), that should not influence the relaxation. By
iterating over the Voronoi boundary the closest point on the primitive
boundary by definition is on the outermost boundary. Due to our
approximations, in rare cases the converged distributions might still
have overlapping primitives.

Implementation We use a GPU to accelerate our relaxation. Two
maps are pre-calculated for each primtive: The first one contains the
distance of every pixel to the primitive boundary, the latter holds
the location of the closest position on the boundary. At runtime, we
use rasterization [Hoff et al. 1999] in combination with the distance
map to create a Voronoi diagram holding the index of the closest
primitive at each pixel and an additional map giving the closest
position on the primitive’s boundary. The calculation of δi then
becomes a parallel summation over all Voronoi region boundary
pixels with a single diagram lookup per pixel to acquire the closest
point on the primitive’s boundary. The resulting relaxation is at least
as efficient CVT: Typically, we use 30 relaxations in every frame
and achieve more than 10 fps for more than 200 primitives including
drawing in HD resolution on a Nvidia GTX 680 GPU.

Extensions Arbitrary global boundaries, such as the shape of the
butterfly in Fig. 8, can be handled by removing the pixels of the
Voronoi regions that are outside of the global boundary. Parts of the
primitives might fall outside of the global boundary. Therefore for
each pixel of primitive i outside of the global boundary an offset
is added to δi in the direction of the closest point on the global
boundary, pushing the primitive back in.

5 Inverse Layout

The user can define primitive constraints, i. e., force certain primi-
tives with indices C = {c1, . . . , co ∈ (1, n)}, o ∈ N to be located
exactly at position xci . The inverse layout computes a new feature
projection matrix P, a parameter translation vector t and a new
layout function φ (as defined in Sec. 4.1) that best “explain” the
placement of the o constrained primitives, i. e., given the primitive
positions X , their features F and constraints C we try to find φ and
(P, t) (cf. Eq. 1) minimizing

∑

a∈C

‖Pfa + t− φ
−1(xa)‖. (6)

Before any user interaction, P is set to zero and φ to the identity. Af-
ter a user changed the constraints we try to minimize Eq. 6. Solving
this task is split into two parts: enumeration of all plausible layout
functions ψ and computation of the optimal feature mapping for it.
Finally we choose the layout hypothesis and feature mapping for
which a residual function r(ψ) is minimal (layout selection). We
will explain both steps in the following paragraphs.
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Figure 6: Inverse layout: Input are the primitives and their positions
X , constraints C and features F . From C several layout hypotheses
ψi are build and the best feature-dimension mapping A and its
residual r are calculated. Output is the ψi with the lowest cost, its
projection matrix P and the translation vector t (ψ1, black border).



Layout functions We restrict our enumeration to a plausible sub-
set of all possible layout functions (the bijections on R

2), which we
call layout hypotheses. The Cartesian and radial layout hypotheses
are build independently as follows.

A Cartesian layout function hypothesis is defined by two axes. We
assume one axis is the connection between two constraint positions,

i. e., for each a, b ∈ C with a 6= b the first axis is u = xa−xb

‖xa−xb‖2
.

The second axis is then chosen orthogonal, i. e., v = (−uy,ux)
T

and the layout function becomes ψ(p) = (< u,p >,< v,p >)T,

resulting in
o(o−1)

2
layout hypotheses.

A radial layout function hypothesis is defined by a center position u.
Our hypothesis assume that the center position is either located at one
of the constraints, i. e., u = xa with a ∈ C or that its position is the
centroid, i. e., u = 1

o

∑

a∈C xa, or the center of the bounding box of

all constraints, i. e., u = 1
2
(mina∈C xa +maxa∈C xa). The lay-

out function then is ψ(p) = (u1 + p1 sinp2,u2 + p1 cosp2)
T

,
resulting in o+ 2 different layout hypotheses.

Feature mapping For a fixed layout hypothesis ψ its residual r
and its optimal feature projection matrix P are found as follows: All
constraint positions are mapped back to parameter space as pi =
ψ−1(xi), i. e., the inverse of the layout function. Next, we need
to find how well a common scalar Sk,l of the k-th dimension-wise
difference of the parameter vector could “explain” the differences
of the l-th feature. For example, we would like to know how well a
common scaling of all butterfly size differences can “explain” the
differences of the second layout parameter, which again could be
the radii of a radial layout or the vertical coordinates in a Cartesian
layout. We combine the cost of “explaining” parameter dimension
k and feature l using the scaling matrix S

′ ∈ R
2×m as the residual

matrix functional R ∈ R
2×m → R

2×m defined as

Rk,l(S
′) =

∑

a,b∈C

(

S
′
k,l(fa − fb)l − (pa − pb)k

)2
.

For each dimension k and feature l the optimal scaling factor is
found by setting its derivatives to zero as

Sk,l = argmin
S′

Rk,l(S
′) =

∑

a,b∈C(pa − pb)k(fa − fb)l
∑

a,b∈C(fa − fb)2l
.

Using these scaling factors yields the minimal residual matrix T =
R(S). Now the assignment of features to dimensions can be found
as a solution to the general assignment problem [Martello and Toth
1987], such that every dimension is assigned to exactly one feature,
using the costs from matrix T. The result is an assignment matrix
A ∈ {0, 1}2×m where Ak,l = 1, if feature l is mapped to dimension
k, and Ak,l = 0 otherwise. As T is small, enumerating allm(m−1)
possible partial assignments is feasible. The residual of ψ is then
given by

r = ‖A ◦ T‖1, (7)

where ◦ denotes the component-wise (Hadamard) product of two
matrices. In other words the product keeps only the elements of T
where A is non-zero. The 1-norm of the resulting matrix then gives
the total absolute residual for all dimensions as a single scalar value.

Layout selection A unique best solution to the inverse layout
problem can be found for o ≥ 3. For the hypothesis ψ with the
smallest residual r we set φ = ψ and P = A ◦ S, i. e., we keep the
best layout function with the best feature projection. The optimal
parameter translation vector can then be found as the offset of the
centroids, i. e., t = 1

o

∑

a∈C pa − Pfa.

Incomplete case It might not be possible to reliably infer the
intended layout from the user constraints, because either not enough
constraints are provided (o < 3), they are contradicting or they are
non-unique. If the residual for all layouts is too high, we repeat the
above procedure for a single dimension only, producing a matrix
with a zero second row. As explained in Sec. 4.1, MDS will then
be used to create the second parameter coordinate. If the residual
for a single component-explanation is still too high or no hypothesis
could be build, change MDS is used for both dimensions.

6 Results

Example Layouts In our main result, a user constraints a set of
primitives. Starting from the initial distribution she can manipulate
the layout and the system tries to infer her layout idea (see Fig. 7
and caption). The special case of packing into a particular container,
can be combined with additional constraints and layout functions,
as seen in Fig. 8. Finally, our system can be used to interactively
explore multi-dimensional datasets, such as the countries in Fig. 9.

Figure 8: a) Layout of butterflies inside the boundary of a butterfly.
b) A radial layout: radius maps to size and hue to angle.

Figure 9: Semantic layouts: a): Layout by infant mortality rate from
the World Fact Book. b): Now by population size. c): A remix of

“The Descent of Men” by Ernst Häckel (1834–1919) seen in (d). e):
A remix of another layout by Häckel (f).

User Study To design a user study, we first conducted a pilot
questioning of two professional artists with a special expertise in
producing packing layouts. The full questionnaire with the artists’
answers can be found in the supplemental material. According to the
artists, besides legal and research issues, the most time-consuming
steps are the generation of graphical primitives itself and the final lay-
out. They say, that achieving a balanced primitive distance (Sec. 4.2)
is a major challenge. Here the artists wish to have “an automated
layout tool creating a spatial boundary between primitives” and that
these tools were “easier to work with” than the currently available
software. According to the artists, the position of the primitives is
governed by their “taxonomic relationship” and by visual features
such as brightness, texture or drawing style but also by arranging



Figure 7: Results of our approach (layout feature in brackets). a–d): Butterflies (brightness, size, shape anisotropy, shape anisotropy plus
brightness). e): Fishing baits (hue). f,g): African carnivores (brightness and variance plus orientation). h): Frogs (brightness plus variance). i):
Dinosaurs (brightness). j): Bat layout by (shape anisotropy). j): Sea moluscae (size plus brightness). k): Whales (brighness). k): Beetles (size).

them in a “visually pleasing way”. The programs used by artists
seem to be Adobe PhotoShop, Illustrator, InDesign and Corel Draw
which all do not offer tools to generate balanced primitive distance
in two dimensions.

To assess the usefulness of our system, we conducted a user study,
in which 15 naı̈ve subjects were asked to produce a layout with three
different user interfaces. The interfaces presented were a commercial
software (“commercial interface”, interface #1), an interface of
our software with relaxation (“relaxation interface”, interface #2,
Sec. 4.2) and an interface with relaxation and inverse layout step
(Sec. 5) (“our interface”, interface #3). For the commercial interface,
we let the subjects choose from either Adobe Illustrator CS6 or
Microsoft PowerPoint 2010 and rate their expertise in these programs
for the presented task after the user study on a scale from 1 (novice)
to 5 (expert). The task was, to produce a layout, where primitives
are organized by specific features and have a balanced distance to
each other. The initial layout always was identical: a fully relaxed
MDS layout (Sec. 4). Every session was self-timed until the subject
was either satisfied with the generated layout or gave up because
of fatigue. The order in which the interfaces were presented to the
subjects was randomized for each trial. For every session we logged
the time spend to produce it and the final layout image. For the
relaxation interface and for our interface we additionally logged
the cost (Eq. 7) of the final layouts. For the following analysis we
excluded cases in which the subjects gave up due to fatigue. Three
users chose Adobe Illustrator CS6 and rated their expertise with
3.67 on average, the other twelve users chose Microsoft PowerPoint

2010 with an average expertise rating of 3.5. The layout generation
took 16:32 minutes on average for the commercial interface with
a standard deviation of 8:07 minutes, for the relaxation interface
7:24 minutes on average with a standard deviation of 2:18 minutes
and for our interface 1:49 minutes with a standard deviation of 0:52
minutes. We conclude with statistical significance (p < 0.0001,
ANOVA) that our interface results in a speedup of approximately
one order of magnitude. In a second user study we asked a second
group of 19 subjects to rate the layouts produced by the subjects
of the first user study. The three layouts of each subject of the first
user study were presented to the new subjects and they had to pick
the layout which they found best accomplished the task at hand.
We found that in 62.63 % of the cases the layout produced by our
interface was the preferred one, while 27.37 % preferred the one
generated with the relaxation interface and 10 % were in favor of
the layout of the commercial interface. We conclude with statistical
significance (p < 0.0004, binomial between all pairs), that results
from our interface are preferred over all alternatives at least by a
factor of two. In 69.59% of the cases the subjects’ choice correlates
with the residual value of the first study.

7 Discussion and Conclusion

This paper presented an approach to perform artistic primitive lay-
outs. Technically, we stated the problem as a projection from the
space of visual and semantic features into a lower-dimensional lay-
out space combined with a GPU-based relaxation to achieve an



equal distance between primitive boundaries. The parameters of this
projection were learned from user feedback.

The feedback received from artists, as well as both parts of the user
study show that producing packing layouts is challenging and bene-
fits from computational support. Specifying the underlying model
by hand involves selecting the layout function (e. g., linear layout),
the feature dimensions (e. g., axis direction), a feature mapping (e. g.,
size to axis-0), a feature scaling factor and a fitting of the specified
layout to the user constraints. Our widget-free interface can not
replace professional data analysis. It could, however, be used by
novice users, e. g., children in a museum: Such users might not
be willing to participate in a formal user dialog involving concepts
like “sorting”. However they might play around and manipulate
butterflies and get insight from how our system reacts, without a
particular goal in mind, maybe even without knowing they perform
man-machine interaction in the first place.

Our system faces the same challenge as other system making sug-
gestions to users: it might provide undesired suggestions. Also, it
is not yet able to infer high-level layout, such as the symmetry in
Fig. 2, which would require a more sophisticated search for φ. Using
a general combination of different features for the layout, instead
of only two distinct features, also remains future work. Finally,
we would like to complement the system by active learning: If a
user organizes bright small eggs (Fig.1) along the horizontal line,
the system could ask if the feature that was meant was “bright” or
“small” or both by displaying different suggestions.
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