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Interactive Cell Segmentation Based on
Active and Semi-Supervised Learning

Hang Su*, Zhaozheng Yin, Seungil Huh, Takeo Kanade, and Jun Zhu

Abstract—Automatic cell segmentation can hardly be flawless
due to the complexity of image data particularly when time-lapse
experiments last for a long time without biomarkers. To address
this issue, we propose an interactive cell segmentation method
by classifying feature-homogeneous superpixels into specific
classes, which is guided by human interventions. Specifically, we
propose to actively select the most informative superpixels by
minimizing the expected prediction error which is upper bounded
by the transductive Rademacher complexity, and then query for
human annotations. After propagating the user-specified labels
to the remaining unlabeled superpixels via an affinity graph, the
error-prone superpixels are selected automatically and request
for human verification on them; once erroneous segmentation is
detected and subsequently corrected, the information is propa-
gated efficiently over a gradually-augmented graph to un-labeled
superpixels such that the analogous errors are fixed meanwhile.
The correction propagation step is efficiently conducted by intro-
ducing a verification propagation matrix rather than rebuilding
the affinity graph and re-performing the label propagation from
the beginning. We repeat this procedure until most superpixels
are classified into a specific category with high confidence. Ex-
perimental results performed on three types of cell populations
validate that our interactive cell segmentation algorithm quickly
reaches high quality results with minimal human interventions
and is significantly more efficient than alternative methods, since
the most informative samples are selected for human annota-
tion/verification early.

Index Terms—Active learning, cell segmentation, label propaga-
tion, microscopy image analysis, verification propagation.

I. INTRODUCTION

L IGHT microscope has been manipulated to help biolo-
gists understand underlying principles of specimens' life

at cellular level ever since its development. Although analysis
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of microscopy images can be conducted manually, it is always
time-consuming and labor-intensive due to large volumes
of image data captured from the long-term high-throughput
biological experiments. Therefore, computerized techniques
become essential such that the tasks can be performed au-
tomatically. Among the components in the computer-aided
microscopy imaging system, cell segmentation referring to lo-
cate and detect cells in microscopy images is a central problem,
since it is a cornerstone for lots of subsequent analysis, e.g.,
cell tracking, intercellular processes, etc. Although great efforts
have been made in developing reliable cell segmentation tech-
niques, it still offers a great challenge to develop automated
computer vision and pattern recognition algorithms aiming at
perfect accuracy, especially when staining methods are not in-
volved in monitoring live cells. The challenge is ascribed to the
heterogeneity and complexity of the data generated in modern
imaging experiments. Therefore, it motivates us to allow users
to participate and guide the segmentation procedure, which is
called interactive cell segmentation [1], [2].

A. Related Work

1) Interactive Image Segmentation: Interactive image seg-
mentation has been extensively studied during the past decades.
Different types of user intervention are expected to incorporate
with photometric features of images to generate an improved
result with minimal amounts of human efforts. One category
of algorithms is recognized as boundary-based approaches. It
requires users to specify an initial contour to approximate the
target's boundary that will be evolved towards the desirable re-
sults. Rother [3] proposed a GrabCut method that models the
color distribution within a box surrounding the intended seg-
mentation targets, which are consequently segmented by itera-
tive graph cut. However, its performance heavily relies on the
global color model, and is often unsatisfactory for the object
regions that share some similar color distributions with back-
ground. Recently, bounding box is further used to impose a pow-
erful prior, e.g., tight shape prior [4] or high-level (semantic)
knowledge of the intended target [5]. Nevertheless, the box-
driven approaches require great attentions to the boundary spec-
ifications, e.g., the areas and shapes of the boxes. The perfor-
mance undergoes a significant degeneration if the boundary box
is rough, especially for targets with complex shapes. As another
category, the region-based algorithms are also studied inten-
sively, e.g., the graph-based segmentation [6], [7]. In particular,
images are treated as a weighted graph, and identities of the
unlabeled pixels are propagated from the neighboring labeled
pixels on the affinity graph, e.g., graph cut [8] and random walk
[9], [10]. Yilmaz et al. [11] further improved the graph-based
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Fig. 1. Sample results of interactive segmentation. (a) An input image with
user-supplied seeds for label propagation; (b) Foreground segmentation based
on random walk [9]; (c) An input microscopy image; (d) Seed annotation (red
cross markers on each cell) for cell segmentation.

approaches by partitioning an image into superpixels [12] in ad-
vance and constructing an affinity graph by measuring the pair-
wise similarity among the superpixels rather than among pixels.
Label propagation can also be implemented from the initiated
seeds along the gradients of an image in watershed [13]. Re-
cently, Couprie et al. [14], [15] proposed a framework to unify
the aforementioned region-based algorithms in terms of power
watershed, and also pointed out the limitation of these tech-
niques, namely, small over-segmented regions due to the small
cut phenomenon. Addressing the detection of massive objects,
Lin et al. [16] propose to decompose scenes into meaningful se-
mantic parts with coherent motions and facilitate the analysis of
complex and dense scenarios.

Although the aforementioned interactive approaches have
gained success in lots of scenarios, there still exist limitations.
Firstly, most of them can be recognized as foreground/back-
ground image segmentation, i.e., the images contain a dominant
or a small number of foreground objects on the background
(See Figs. 1(a) and (b)). If a large number of targets are scat-
tered widely in an image, e.g., cells in microscopy
images, specifying the boundary or labeling seeds for each
object is labor-intensive (See Fig. 1(c) and (d)). Moreover,
although the segmentation performance is greatly dependent
on the information provided by users, it is not easy for an user
to decide the most informative interventions under the present
passive strategies, i.e., the users specify the intervention subjec-
tively. An active strategy that can suggest a more informative
intervention is desirable, since it will improve the performance
and reduce the user's efforts at the same time. Finally, most of
the current approaches do not provide a verification paradigm,
namely, if there exist false segmentation results, the users have
to re-initialize the annotation, and re-perform the segmentation
from the scratch. Nevertheless, it is expensive or impossible
to recollect the initial labeling set , because it requires a lot
of human annotations or special devices/experiments to obtain
the ground truth.
2) Cell Segmentation: The society of cell image analysis has

witnessed the growing efforts in automatic cell segmentation
during the past years. Thresholding [17], which segments cells
out of background via a pre-defined threshold, may fail to sep-
arate cells of low contrast compared to the culturing medium.
House et al. [18] proposed to segment cells by locating edges
of them, but this work also suffers from low contrast or fuzzy
boundaries. Cell segmentation is also challenged by the dis-
similarity between different subcellular structures. Watershed-
based method [19] segments cells based on the assumption that
the intensity gradient inside cells is small while large around
boundaries between cells and the background, but it often re-
sults in over segmentation due to regional minima. The de-

formable model, including active contour [20], [21] and level
sets [22]–[24], attains the boundary by minimizing an energy
function using intensity variance inside and outside contours.
However, the result is sensitive to the initialization since the
contour energy function is non-convex and there exists local
minima. Therefore, it requires a sufficiently perfect initializa-
tion to obtain a high quality result. To cope with cells that ap-
pear almost transparent in the images, Zhang et al. [25] propose
to train a classifier to detect (partial) cell boundaries, which is
applicable to different modalities and cell types. In [26], the au-
thors introduce a tree-structured discrete graphical model that
is used to select and label a set of non-overlapping regions in
the image such that overlapping and clustered cells are detected
automatically. In [27], [28], Yin et al. propose to estimate a
cell-sensitive camera response function by taking multiple ex-
posures of phase contrast microscopy images on the same petri
dish, which responds to cells' irradiance signals but generates a
constant on non-cell background signal. To address the issue of
mitosis event segmentation in large-scale time-lapse phase con-
trast microscopy image sequences of stem cell populations, the
authors propose to recognize the mitosis based on semi-Markov
model [29], [30] and sparse coding [31], [32]. In [33], [34],
the authors propose a general algebraic framework for precon-
ditioning microscopy images, which transforms an image that
is unsuitable for direct analysis into an image that can be ef-
fortlessly segmented using global thresholding. More recently,
Yin et al. [35] and Su et al. [36] studied the optical properties
of phase contrast microscope, and developed imaging models
to approximate the image formation process of microscopy im-
ages, based on which the optics-related features are obtained. In
[48], the authors propose to co-restore phase contrast and differ-
ential interference contrast (DIC) microscopy images captured
on the same cell dish simultaneously. However, it still needs to
further study how to utilize these features to realize a more ef-
fective cell segmentation.

To surpass the limits of fully automated cell segmentation
methods, we recently proposed a semi-supervised learning
based cell segmentation method [2]. In the work, we presented
cell segmentation as a superpixel classification problem, and
performed it by propagating the labels of seed superpixels
annotated by a human to unlabeled superpixels. Nevertheless,
in this framework, the interventions are specified by users
subjectively, but it is not easy for the users to decide the most
informative interventions, thereby may require more human
efforts in annotation. Moreover, although this approach was
shown to be effective in cell segmentation, it was still not
error-free during the long-term cell proliferation. Therefore, it
is worth to consider how to further incorporate human guidance
to boost the results, which leads to the following two questions:

• How to determine the most informative superpixel(s) that
should be annotated as seed(s) for consequent cell seg-
menatation, i.e., the query strategy during the interactive
scenario?

• How to fix the analogous errors efficiently by verifying or
correcting a small amount of error-prone superpixel(s)?

B. Our Proposal

In this paper, we propose an interactive cell segmentation
scheme by answering the aforementioned questions based
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Fig. 2. A general framework of our proposed interactive cell segmentation scheme. For specific image sequences, we first partition an image into feature-homo-
geneous superpixels [2] in module I, and then select the most informative examples for annotations actively in module II. The step is conducted by minimizing the
expected prediction error on the unlabeled superpixels, which is upper bounded by the transductive Rademacher complexity [37]. The human specified labels are
then propagated to the unlabeled superpixels via an affinity graph in module III, which characterizes the pairwise similarity among the superpixels. In case that
the segmentation is not reliable, we measure the uncertainty of each superpixel with entropy, and choose the most uncertain superpixels to query for verification.
Human interventions are then systematically propagated to other unlabeled superpixels to fix the analogous misclassified state via a gradually-augmented affinity
graph in module IV. Cell segmentation is realized until most of the unlabeled superpixels are classified into specific classes with high confidence.

on active and semi-supervised learning. Specifically, (1) the
most informative superpixels are selected automatically by
minimizing the expected prediction error, and (2) the human
verifications are systematically propagated over a gradully-aug-
mented affinity graph by introducing a verification propagation
matrix, such that superpixels undergoing analogous misclas-
sification are fixed meanwhile. The general framework of our
proposed approach is illustrated in Fig. 2 with four major
modules:

1) Superpixel generation by clustering neighboring pixels
[2]. As the first step, we partition microscopy images
into feature-homogeneous superpixels by clustering
neighboring pixels with similar visual features, thereby
eliminating the local redundancy of images.

2) Active annotation by drawing samples that minimize
the expected prediction error. In order to reduce the
human efforts in annotation, we seek to select the most
informative superpixels early and annotate them first such
that the expected prediction error is minimized after label
propagation. Specifically, we use the tool of transductive
Rademacher complexity [37] as a surrogate to guarantee
a small expected prediction error. Consequently, human
efforts are greatly reduced without impairing the perfor-
mance of segmentation.

3) Superpixel classification by propagating labels over the
affinity graph. In order to implement the label propaga-
tion, we construct an affinity graph that characterizes the
pairwise similarity between the superpixels. Afterwards,
the superpixels are classified into specified classes by prop-
agating the human specified-labels to the unlabeled super-
pixels. Cell segmentation is consequently performed by
grouping neighboring superpixels with similar identities
[2].

4) Active verification to fix misclassifications. In case that
the segmentation result is not reliable, we seek to measure
the uncertainty of each unlabeled superpixel using entropy
[38], and select a batch of error-prone superpixels to query
for verification. Once errors are detected and corrected,
the information is systematically propagated over an aug-
mented affinity graph to the unlabeled superpixels. This

step is efficiently conducted by introducing a verification
correction propagation matrix rather than re-performing
the label propagation from the beginning. We repeat this
procedure until most superpixels are classified into a spe-
cific category with high confidence.

Compared with the previous approaches for cell segmenta-
tion based on label propagation on random annotation [2], we
propose to actively select the most informative samples such
that the human efforts in annotation are reduced significantly
(module II in Fig. 2). Moreover, most of the previous algorithms
do not provide a strategy that boosts the results incrementally
when misclassification is detected, which is common in many
real-world scenarios when the characteristics of samples change
gradually. In this paper, we propose a verification paradigm such
that a batch of uncertain samples are actively selected for human
verifications, whose correction will be propagated to the other
unlabeled samples to correct similar misclassifications (module
IV in Fig. 2).

As an empirical study, we conduct cell segmentation in phase
contrast microscopy images in this paper, which still remains as
a challenging task in computer-aided cell image analysis due
to the low contrast and artifacts resulted from the particular
optics of phase contrast microscope [35]. Specifically, we re-
store the phase feature vector of each pixel and then partition
the images into phase-homogeneous superpixels [2], which are
used as elementary units for subsequent cell segmentation. Note
that other superpixel segmentation methods can also be used
for other types of microscopy. Afterwards, cell segmentation is
realized by classifying the superpixels into specific classes via
our interactive procedure. Experimental results validate that our
proposed interactive framework is effective and efficient for cell
segmentation.

The remainder of this paper is organized as follows. In
Section II, we elaborate the active annotation algorithm for
interactive image segmentation, and we propose the verifi-
cation propagation algorithm that fixes analogous errors in
Section III. The experimental setup and results with discussions
are presented in Section IV. Finally, the paper is summarized
in Section V.



SU et al.: INTERACTIVE CELL SEGMENTATION BASED ON ACTIVE AND SEMI-SUPERVISED LEARNING 765

II. CELL SEGMENTATION WITH ACTIVE ANNOTATION

In this section, we first present the graph model of our
previous cell segmentation based on label propagation; then
we elaborate the active annotation criterion by minimizing
the expected prediction error using the tool of transductive
Rademacher complexity; finally, we propose a sequential
optimization algorithm to solve the problem.

A. Overview of Cell Segmentation Through Label Propagation
In our previous work [2], segmentation is performed by par-

titioning a microscopy image into superpixels and classifying
them into several predefined categories, such as bright cell, dark
cell, and background regions. Mathematically, we define the set
of annotated superpixels as where is the
number of annotated superpixels; is a feature vector that de-
scribes the visual characteristics of the th labeled superpixel;
and is a binary indicator corresponding to the identity of the
th superpixel, i.e., means that the th superpixel is

labeled to belong to the th class. In the same way, we define
with being the number of unlabeled

superpixels and being the feature vector of the unlabeled
superpixels. The label vectors of unlabeled superpixels are
going to be inferred via the label propagation procedure.

Firstly, we construct an -nearest neighboring graph [39] to
characterize the pairwise similarity between superpixels. The
adjacency matrix of the weight graph is denoted as ,
which is an nonnegative and symmetric matrix with

being the number of total superpixels. To imple-
ment label propagation, the Laplacian matrix that corresponds
to , i.e., with being the diagonal degree
matrix, is rearranged by splitting it into labeled and unlabeled
sub-matrices as

(1)

where is the Laplacian sub-matrix that characterizes the rela-
tionship between labeled superpixels; denotes the sub-ma-
trix corresponding to the unlabeled superpixels; is a sub-
matrix which interrelates the labeled and unlabeled superpixels;
and . Then, the problem of label propagation is for-
mulated in a matrix form [2] as

(2)

where tr is the trace operator; and are binary indicator
matrices corresponding to the labeled and unlabeled super-
pixels, respectively. Specifically, the indicator matrices and

are constructed by stacking up the binary row indicators
in rows correspondingly, namely, for the labeled

superpixels , and for unlabeled superpixels
.

Based on the work in [39], label propagation is solved by
Gaussian fields harmonic Functions (GFHF), and the solution
is given by a hypotheses as

(3)

where is a diagonal degree matrix with
; and is the inverse of the Laplacian

matrix , i.e., . Note that the elements of are
not binary but real numbers, thus can be considered as soft
label results. The hard label vector can be obtained simply by
converting the maximum value in each into 1 and the others
into 0.

B. Active Annotation by Minimizing Expected Prediction Error
In interactive cell segmentation, it is always the case that data

are abundant but labels are scarce or expensive to acquire. This
motivates us to select the most informative superpixels for anno-
tation to reduce the labeling efforts. In this section, we propose
an active annotation criterion that minimizes the expected pre-
diction error on the unlabeled superpixels using the tool of trans-
ductive Rademacher complexity [37], since it outperforms other
bounds based on combinatorial dimensions [40] and can reflect
the properties of the particular probability distribution [41]. As
the first step, we generalize the transductive Rademacher com-
plexity [37] to a multi-class version as
Definition (Transductive Rademacher Complexity): For a

sample set with ,
if is a class of real-valued function on , the transductive
Rademacher complexity of is defined as

(4)

where is the number of classes, is a matrix by col-
lecting the feature vectors ;

is a column vector of hypothesis func-
tions for the th class, and is a row vector
of i.i.d. random variables such that is equal to 1 or-1 with
the probability for each, or 0 with the probability

.
It has been proved that minimizing the bound of transductive

Rademacher complexity is a proxy for minimizing a prediction
error [42]. In the following, we derive the upper bound of the
transductive Rademacher complexity in Theorem 1. It has been
empirically proved that the upper bound of Rademacher com-
plexity is close to the true Rademacher complexity as more sam-
ples are drawn from the dataset [42] and serves as the theoretical
foundation of our proposed active annotation algorithm.
Theorem 1. (Bound of Transductive Rademacher Com-

plexity): The transductive Rademacher complexity of label
propagation based on in (3) is upper bounded by

(5)

where is the label propagation matrix , and
is a constant.

Proof: In (3), the label propagation is given by

(6)

By definition 1, the transductive Rademacher complexity for
label propagation is computed as

(7)
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where is the th column of , i.e., indi-
cates that the th sample belongs to the th class, otherwise

. Therefore, indicates the probability of cor-
responding samples belonging to the th class. By applying the
Cauchy-Schwarz inequality, we obtain

(8)

Since there are labeled samples, . Using the
property of inner product, we have

(9)

Using the Jensen inequality, (9) is upper bounded by

(10)

(11)

where . Note that (10) is obtained by the expecta-
tion of Rademacher variables in definition 1. Hereby, we obtain
the upper bound of the transductive Rademacher complexity as

(12)

By ignoring the constant scalar and square root function
in Theorem 1, the active annotation can be implemented
equivalently by minimizing the upper bound of transductive
Rademacher complexity as

(13)

After some mathematical derivations, we propose the following
active annotation criterion in Theorem 2.

Theorem 2 (Active Annotation Criterion): The active anno-
tation can be implemented by solving the problem as

(14)

where is the Laplacian matrix.
Proof: According to the cyclic property of trace, it can be

proved that

(15)

Eq. (15) holds due to the fact that . Additionally, we
can obtain that

(16)

By substituting (16) into (15), we obtain

(17)

Therefore, the problem in (13) is equivalent to

C. Sequential Annotation of Samples

Since the active annotation criterion in Theorem 2 is a com-
binatorial optimization problem, it is a NP-hard problem to find
the global optimal solution. In order to solve it, we propose a
sequential annotation scheme as follows. First, we introduce a
matrix to indicate the unselected samples, which is
defined as with

if the sample in is corresponding
to the sample in
otherwise.

(18)

Therefore, the problem in Theorem 2 can be rewritten using
matrix as

(19)

Using eigenvalue analysis, the Laplician matrix is decom-
posed as

(20)
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where and are corresponding to the eigenvector and eigen-
value matrices, respectively. Therefore, the problem in (19) can
be rewritten as

(21)

Once is determined, the selected samples for annotation are
obtained by excluding the samples corresponding to in . By
denoting , the problem can be reformulated as

(22)

Since the eigenvectors are orthogonal, it can be proved that
. Thus,

(23)

where . Therefore, we can obtain

(24)

In order to solve the NP-hard problem, we proposed a sequen-
tial minimization algorithm to find the global optimization of .
Specifically, suppose samples have been selected, then the
subsequent th sample can be selected by solving the following
optimization problem

(25)

where with being the column vector,
which is obtained by transposing the row vector of corre-
sponding to the sample selected in the th iteration; and

. Since is to select the
corresponding column vectors in the matrix that is removed
in th iteration, we initialize as . The problem can
be solved sequentially by searching a sample in which results
in the minimum increment of the trace once samples are de-
termined (i.e., is determined). The corresponding vector

is removed from when the th sample is selected for
annotation.

It is noted that only the diagonal entries contribute to the final
result when conducting a trace calculation, hence the problem

in (25) can be solved in a more efficient manner as follows.
According to the definition of , we have

(26)

Note that for due to the orthogonality of
row vectors in the normalized eigenvector matrix, (26) can be
rewritten as

(27)

By substituting (27) into (25) iteratively, we transform the
trace calculation into a multiplication of vector-matrix-vector
problem. By denoting , the optimization problem
can be solved by sequentially selecting the sample that results
in the minimal trace increment as

(28)
where ;
with ,

and ;
with ; and

(We detail the proof in Appendix A). Note that
by transforming the trace calculation in (25) to a vector-matrix-
vector multiplication in (28), only the trace-related rather than
all the entries in (25) are calculated to solve the problem, and
thus the computation cost is reduced significantly.

Additionally, once the th sample is selected, can be up-
dated based on using the Binomial inverse theorem as

(29)

Hence, can be computed by matrix (vector) multiplication
and addition, which is much more efficient than matrix inverse.
In summary, we detail the active sample selection algorithm in
Algorithm 1.

III. FIXING ERRONEOUS SEGMENTATION BY ACTIVE
VERIFICATION PROPAGATION

Although we have actively selected informative superpixels
for annotation, it is not realistic to expect the result is error-free
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especially for the long-time high-throughput images. Therefore,
it is worth to consider how to further incorporate human guid-
ance to achieve better results. In this case, it needs to figure
out which samples are error-prone and should be validated; and
propagate the human verifications to unlabeled samples to fix
analogous errors.

In this section, we propose a verification scheme such that
the false segmentations are corrected efficiently. First, we mea-
sure the uncertainty of the predicted label on each unlabeled
superpixel using entropy [38], and actively select the most un-
certain superpixels to query for verification. Once errors are
detected and corrected, the information is systematically prop-
agated over a gradually-augumented affinity graph to the un-
labeled superpixels. This step is efficiently conducted by in-
troducing a verification propagation matrix rather than re-per-
forming the label propagation from the beginning. We repeat
this procedure until most of superpixels are classified into a spe-
cific category with high confidence. The procedure is detailed in
the following section.

Fig. 3. An augmented graph example where blue and green nodes indicate dif-
ferently labeled samples and gray nodes are unlabeled samples. Human labels
are given on the most confusing samples by adding auxiliary nodes named vir-
tual supervisors and connecting them to the samples with an infinite weight.

A. Active Sample Selection for Verification
Although it is expected that there exist misclassifications after

label propagation, it is not easy for the user to determine the
most effective intervention such that human interventions are
minimized and the resultant performance is maximized. Re-
cently, sample selection based on active learning [43] has pro-
vided a promising direction to help the user select the most in-
formative samples to be corrected.

Given the segmentation results acquired through label propa-
gation, we measure the uncertainty of the predicted label of each
unlabeled sample with entropy [38]. After normalizing the indi-
cator of the unlabeled sample to [0, 1] as ,
the entropy of prediction is thus

(30)

A larger entropy implies that the label is more uncertain. During
each iteration of the interactive segmentation, we actively select

samples with the largest entropies out of , the set of
which is denoted by , and request human validation on them.

B. Verification Propagation Over Graph
Once a user recognizes some errors during verification and

corrects them, it is desirable to search for similar errors that
can be fixed based on the given human intervention. The sim-
plest way to conduct this task would be to rebuild or modify the
affinity matrix in (1) and re-perform label propagation. How-
ever, this scheme is too inefficient for the verification to be inter-
active because the inverse of the Laplacian matrix in (3) needs
to be recalculated.

Instead, we propose a verification propagation scheme by
extending the augmented graph method introduced by [44] to
handle a batch of samples at each round for more effective and
efficient interaction. We build an augmented graph by adding
auxiliary nodes, which are called virtual supervisors and de-
noted by with being the number of virtual su-
pervisors and being the human label given on the th sample,
and connect them to the corrected samples with weight such
that , as shown in Fig. 3. Then the adjacency matrix
of the augmented graph can be built by adding some rows and
columns to the original adjacency matrix as follows:

(31)

where , and are zero submatrices with appropriate
sizes, and and where

and are binary indicator matrices indicating which vir-
tual supervisor is connected to which unlabeled sample.
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The label propagation over this augmented graph can be ob-
tained by minimizing the following objective function [45]:

(32)

where is the Laplacian matrix of ; and is the label
matrix of virtual supervisors. Minimizing this objective yields
a closed form solution:

(33)

where denotes the Laplacian submatrix of the augmented
graph corresponding to the unlabeled samples; is its in-
verse; and .

In the rest of this section, we will show how to efficiently
compute and . The diagonal submatrix of the aug-
mented graph corresponding to the unlabeled samples is
computed as

(34)

We can easily prove that with
the fact that is a binary indicator matrix. Note that
is a diagonal matrix.

Then, can be computed as

(35)

and accordingly can be calculated using the Binomial in-
verse theorem as

(36)

where is an identity matrix, and , , and
are submatrices of such that

; ;
and where is a
set of selected samples among for human verification.

By substituting (36) into (33), we obtain

(37)

Since , the first term in (37) can be computed as

(38)

The second term in (37) can be calculated as

(39)

Substituting (38) and (39) into (37) yields

(40)

where is a submatix of that is constructed by stacking
the rows of that correspond to queried samples.

We denote as the verification propagation matrix.
By propagating the human verification information through this
matrix, the segmentation results can be incrementally improved.
Note that we compute the inverse of which is an
matrix, rather than which is an matrix. As a result,
verification propagation can be efficiently performed, leading to
the efficient interactive segmentation.

Since the parameter is essential, we select an empirical
which should be efficient and user-friendly in this paper. On the
one hand, if is set to be small, e.g., only one query is selected
at a time as in [44] and the classifier has to be retrained accord-
ingly, the user has to wait until the classifier is updated which is
apparently very slow and making the method impractical.

On the other hand, if is set to be large, the user has to
verify/correct too many instances simultaneously, which is not
user-friendly. Moreover, it will also require user to correct some
analogous misclassification, which is inefficient and should be
fixed with correction propagation.

IV. EXPERIMENTAL RESULTS

We validate our approach on three time-lapse phase contrast
microscopy images that capture different types of cells. The de-
tailed specifications of each sequence is illustrated in Table I.
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TABLE I
IMAGE DATA SPECIFICATIONS

From each sequence, we select image frames with a certain
time interval and manually label the cells in the frames. The
number of cells in each frame varies from 50 to 800.1 Although
the number of images is relatively small, each image contains
a large number of cells (from tens to hundreds) yielding more
than cells with more than cell pixels in total. Moreover,
we annotated various cells undergoing different cell stages, e.g.,
inter-mitosis, mitosis, apoptosis. In this case, the results ob-
tained in our experiments are therefore statistically significant.
In this section, we show the visual results of cell segmentation
based on active annotation and verification propagation algo-
rithm, and also quantitatively evaluate the performance in terms
of rate of convergence and Tanimoto coefficient, which is de-
fined as

(41)

where and are the detected and annotated dark cell re-
gions, respectively, and and are the detected and anno-
tated bright cell regions, respectively.

A. Cell Segmentation Based on Active Annotation
1) Qualitative Results: Fig. 4 shows sample results based

on active annotation, which demonstrates that high quality cell
segmentation is realized with only a small amount of human
annotations. In order to eliminate the local redundancy of an
image and reduce the computational cost, we first partition the
phase contrast microscopy images into phase-homogeneous su-
perpixels by aggregating the neighboring pixels with similar
phase retardation features [2], which are used as elementary
units for cell segmentation and shown in column (c). In this
paper, we investigate the variance of intra-superpixel features
to determine the number of superpixels to partition as in [2].
It is desirable to end up with a small number of superpixels to
reduce the complexity of classification problem while preserve
the local structures, i.e., visual features in a superpixel should
remain homogeneous.

Afterwards, we actively select the most informative phase-
homogeneous superpixels by minimizing the prediction error
in Algorithm 1, and annotate them as seeds for the subsequent
label propagation. In column (c), we mark the superpixels as red,
green and blue regions if the corresponding superpixels are an-
notated as bright cells, dark cells and background, respectively.
Column (d) shows the soft segmentation results by propagating
the human annotation to the unlabeled superpixels, in which the

1We build a large dataset of phase contrast microscopy images to evaluate
our algorithm, which is a public benchmark. All data can be downloaded at
http://www.celltracking.ri.cmu.edu/downloads.html.

red, green and blue channel values indicate the likelihoods of the
superpixel belonging to bright cell, dark cell and background
regions, respectively. Each soft segmentation result was con-
verted into a hard segmentation result by finding the label with
the maximum likelihood, and grouping neighboring superpixels
with the same labels, as is shown in column (e). As the results
demonstrate, high quality segmentation is realized based on the
informative superpixel annotation and label propagation. As a
comparison, we also implemented cell segmentation based on
unsupervised spectral clustering [46], as is shown in column (f).
The results demonstrate that there exist false cells detections for
some challenging cases, as marked with yellow circles. Halos
are recognized as cell regions in Seq1 when cells form as clus-
ters, and some bright cells with low contrast to the background
are also missed in Seq2. It is observed that some bright cells or
bright regions in apoptotic cells are also missed in Seq3, which
is due to the inconsistence of phrase retardation feature when
cells undergo apoptotic process [47]. Oppositely, the results are
improved by incorporating guided human annotations to handle
the challenging cases.
2) Quantitatively Evaluation: In this section, we quantita-

tively evaluate the performance against the unsupervised spec-
tral clustering [46] in terms of TC, which is reported in Table II.
The results demonstrate that our proposed algorithm outper-
forms the unsupervised spectral clustering, since human inter-
ventions can indeed facilitate cell segmentation to handle chal-
lenging cases when the characteristic of visual features is com-
plex, e.g., cells form clusters, or the inconsistence of visual char-
acteristics within apoptotic cells. Additionally, it is not easy to
determine the optimal cluster number in advance for the un-
supervised spectral clustering which greatly affects the final
results.

Obviously, the supervised method is time-consuming or te-
dious since a user has to annotate lots of cell regions manu-
ally. In this case, we propose to implement cell segmentation
by propagating human annotation to the unlabeled regions. In
addition to comparing with unsupervised clustering, we also
compare our active annotation with random annotation in [2]
which randomly selects and annotates superpixels as seeds for
label propagation. Fig. 5 demonstrates the Tanimoto coefficient
curves with respect to the percentage of different annotation
samples among all the superpixels, in which the curves are av-
eraged over 10 trials. As is seen and expected, TC generally
increases as more labeled information is provided, and our pro-
posed active annotation algorithm converges to high quality re-
sults much more quickly than the random annotation. The main
reason is because the most informative superpixels are actively
selected early and annotated first. In this case, human efforts are
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Fig. 4. Sample results of cell segmentation based on active annotation in Seq1 (top), Seq2 (middle), and Seq3 (bottom). (a) Input phase contrast microscopy
images; (b) Zoom-in sub-images; (c) Active sample selection and annotation over the phase-homogeneous superpixels, where the red, green and blue annotations
indicate the corresponding superpixels are annotated as bright cells, dark cells, and background, respectively; (d) Soft classification results based on label prop-
agation with human annotations. The red, green and blue channel values in the soft classification results indicate the likelihoods of the superpixels belonging to
bright cell, dark cell, and background regions, respectively. (e) Cell segmentation by finding the labels with the maximum likelihood, and grouping the neighboring
superpixels with the same labels. (f) Cell segmentation based on unsupervised spectral clustering [46] as comparison.

TABLE II
COMPARISON WITH UNSUPERVISED CLUSTERING

reduced significantly by guiding human interventions with ac-
tive paradigm.

B. Cell Segmentation Based on Active Verification Propagation
In practice, a classifier learned from initial labeling tends to

result in more and more misclassifications when the datasets ex-
pand over time with more and more unseen data. However, it is
expensive to rebuild a classifier from scratch using newly col-
lected training data, because it requires a lot of human annota-
tions. It would be nice to re-use the previous labeled data and

Fig. 5. Comparison with random annotation [2].

incorporate subsequent human verifications or corrections. In
order to validate our proposed algorithm, we actively annotate
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Fig. 6. Erroneous segmentation fixing examples with verification propagation on three images from Seq1 (top), Seq2 (middle), and Seq3 (bottom). (a) Input phase
contrast microscopy images; (b) Zoom-in sub-imgs; (c) Soft segmentation based on label propagation using annotation acquired in the first frame; (d) Hard based
on the corresponding soft segmentation; (e) Actively selected superpixels for verification marked by yellow color. (f) Improved soft segmentation after verification
propagation; (g) Improved hard segmentation based on the improved soft segmentation.

the most informative superpixels in the first frame of each se-
quence, which are used as seeds during label propagation. Af-
terwards, we implement cell segmentation in each image of a
sequence, and examine the results frame-by-frame. Once the re-
liability of segmentation is below a threshold or obvious erro-
neous segmentations are detected, the system queries for active
verification actively. Then, the user will examine the results, and
correct misclassifications by clicking the corresponding regions
with a mouse. Human correction will be propagated to the un-
labeled samples to fix analogous misclassifications.
1) Qualitative Results: In the following, we conduct image

segmentation by propagating the labels obtained in the first
image of each sequence to the sub-sequential frames. Although
the images are acquired at different moments, the annotated
samples can be reused for others since the cells show similar
visual properties and thus with similar phase retardations.
Nevertheless, there also exist cells with different phase retar-
dation features from the initial annotations due to proliferation
processes of live cells, and thus may lead to erroneous segmen-
tation. In this case, we fix these misclassifications based on our

proposed verification propagation method. In this paper, we set
which is an empirically efficient and user-friendly in

practice.
Examples of the cell segmentation results for the subsequen-

tial frames are shown in Fig. 6. In columns (c) and (d), we
demonstrate the soft and hard segmentation results based on
label propagation of the initial human annotation from the first
image. As can be seen in column (d), there contain several er-
rors in the segmentation result, i.e., some dark cells are missed
and bright halos are misclassified into cells in Seq1; bright cells
with low contrast are missed in Seq2; and some dark-adjacent
superpixels are classified into dark cells in Seq3. These errors
are ascribed to inadequate or unbalanced human labels, since
the phase retardation features of some cells are different from
the first frame in the sequence. Some of the superpixels con-
taining errors were automatically selected by our algorithm to
be verified and corrected by human, as is shown in column (e).
In columns (f) and (g), we demonstrate the improved soft and
hard segmentation results after human correction and its propa-
gation. As shown in column (g), in addition to the errors of su-
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Fig. 7. Sample results of verification propagation on three images from Seq1 (top), Seq2 (middle), and Seq3 (bottom). (a) Input phase contrast microscopy images.
(b, c, d) The sub-images in red rectangles are corresponding to the zoom-in images that are corrected after the first verification propagation. Fig. (1) Zoom-in
sub-images; (1.0) Actively selected superpixels for verification marked by yellow color; (1.1) Segmentation result based on initial label propagation; (1.2) Improved
cell segmentation after the 1st verification propagation iteration; (2.1) and (2.2) are corresponding to the initial cell segmentation and the improved results, which
demonstrates that similar misclassification are corrected via verification propagation. (e, f, g) Similarly, sub-images in the green rectangles are corresponding to
results based on human verification (3.0, 3.1, 3.2) and verification propagation (4.1, 4.2). The results in Fig. 4(a) and Fig. 4(b) demonstrate that segmentation
results are not influenced by subsequent human correction if there is no misclassification.

perpixels selected by active superpixel selection, similar errors
of other superpixels are also effectively fixed. It is also noted
that if there is no misclassification, the previous label propa-
gation results are not influenced by subsequent human correc-
tion, as is shown in columns (d) and (g) corresponding to the
sub-image (2) of Fig. 6(a).

In Fig. 7, we demonstrate the step-by-step results of active
verification propagation procedure, in which the sub-images in
the red and green rectangles are corresponding visual results
after the first and second verification propagation procedures.
After human verifications in Fig. 7(b), the erroneous segmenta-
tions in Fig. 7(c) are corrected in Fig. 7(c). Simultaneously, the
analogous misclassifications in Fig. 7(d) are corrected by propa-
gating the human verification. Similarly, it is observed that erro-
neous segmentations in Fig. 7(f) are corrected after human veri-
fication in Fig. 7(e), resulting in an improved result in Fig. 7(f).

However, the valid results in Fig. 7(g) are not influenced by
human verification, as is shown in Fig. 7(g).
2) Quantitative Evaluation: To verify the effectiveness of

our active verification propagation in cell segmentation, we
compare our method against alternative learning algorithms
quantitatively. First, we implemented two cell segmentation
algorithms solely based on the initially annotated samples
without subsequent human verification:

• Random annotation and no verification [2]: Random an-
notation performs uniform sampling on the first frame of
each sequence to select samples for initial labeling. Cell
segmentation is implementation by (3) without the verifi-
cation step, which acts as the baseline method.

• Active annotation and no verification: We apply the
same label propagation algorithm by using the most in-
formative samples as seeds that are drawn actively in
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Fig. 8. Comparison between different segmentation algorithms. Figs. 8(a), (b) and (c) are corresponding to the results of Seq1, Seq2 and Seq3, respectively.
The blue, red and green curves are corresponding to the schemes of annotation without verification, annotation along with verification and re-annotation on the
unseen frames, respectively. The curves with triangle and cross markers are corresponding to the active sample selection and random sample selection scheme,
respectively.

Algorithm 1 in the first frame, but without any human
verification.

We also implemented two algorithms that apply the verifica-
tion mechanism on top of active annotation at the beginning:

• Active annotation and random verification: We select a
portion of the most informative samples via the active an-
notation algorithm in the first frame of each sequence as
initial labeling, then randomly select samples for human
verification in each sub-seqential frame. Manual interven-
tions are propagated to the unlabeled samples following
(40).

• Active annotation and active verification: After ob-
taining a portion of samples via active annotation, we
actively check the results based on our proposed sample
selection and verification propagation algorithms.

Additionally, we implement the segmentation task by ig-
noring the labeled data in the first frame as

• Active re-annotation: We re-annotated each frame ac-
tively, and then utilize them to conduct cell segmentation
during the label propagation.

In order to reduce the bias, the result is averaged over 10 trials on
the entire dataset by randomly selecting samples, either applied
during annotation or correction.

The quantitative evaluation is reported in Fig. 8. As the figure
shows, no matter whether the initially annotated samples are se-
lected randomly or actively, cell segmentation without correc-
tion (blue curves) is not comparable to the paradigm when sub-
sequent correction is involved. The main reason is that the char-
acteristics or phase retardation features of cells change gradu-
ally over time due to the mitosis and apoptosis of cells or in-
teraction of them. If human verification and correction are per-
formed after the label propagation from the initial annotation,
the performance is improved greatly as more information is pro-
vided by a user, since cells with different features that are not
included in the first frame are identified, and well segmented.
The human examination of the first 2% of samples results in
more than ten percentage points of accuracy improvement, as
shown in the very early stage of human correction (beginning of
red curves with triangle markers). This implies that the samples
initially selected have typical errors, so correction on them can
fix a lot of similar cases, thereby significantly reducing human
efforts in refining the results. In particular, verification guided

by active sample selection converges more quickly than random
verification, since more error-prone samples are selected early
and corrected first.

As the experiments show, high quality segmentation can be
obtained via both annotation and verification. One may be inter-
ested in that why we need verification since we could annotate
each frame in a sequence. We implement the scheme by ignoring
the previous human labeling and re-annotating each frame (Ac-
tive Re-Annotation in Fig. 7). As is observed, the performance
converges to a comparable performance with active annotation
and active verification eventually. However, human need to an-
notate more samples to achieve high quality results since it does
not leverage the information from the previous labeled exam-
ples. Therefore, re-using the annotated sample reduces human
efforts in annotation or verification greatly.

Base on the aforementioned results, we propose to actively
annotate the most informative superpixels in the first frame and
re-use them as seeds during label propagation for the subsequent
frames. Once false segmentation is detected, we proposed to se-
lect the error-prone superpixels automatically, and propagate the
human verification to the remaining superpixels to fix analogous
misclassifications for the subsequent frames in each sequence.
The scheme is effective and more efficient compared with alter-
native algorithms in practice.
Cell-Wise Evaluation: The pixel-wise evaluation based on

Tanimoto coefficient is useful for some biomedical applications,
e.g., cellular structure and morphology analysis. In lineage anal-
ysis, users are only interested in the centroid of cells to conduct
cell tracking, in which a cell-wise evaluation is preferable. In the
following, we also include a cell-wise evaluation to demonstrate
the effectiveness of the proposed algorithm for cell tracking as

(42)

where is the total number of cells, and is the
successful detected cells, in which the distance of centroid
between the detected cells and ground truth satisfy ,
as is shown in Fig. 9. The quantitatively evaluation is demon-
strated in Table III, which demonstrates that more than 98%
cells are detected successfully with proper human verification
harnessed, which can be applied for lineage analysis.
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Fig. 9. Illustration for cell-wise evaluation. A segmentation is defined as a suc-
cessful detection when the distance of centroid between the detected cells (blue
circle) and ground truth (yellow circle) is below threshold .

TABLE III
CELL-WISE EVALUATION BASED ON VERIFICATION PROPAGATION

Fig. 10. Time cost evaluation.

TimeCost Analysis: The bottleneck of time cost in label prop-
agation is the inverse matrix computation with a rough time
complexity . For building everything from scratch, we
need to compute the inverse of a huge matrix, the size of which
is the number of unlabeled samples (1000 to 10000 in our exper-
iments), whereas our incremental correction propagation only
computes the inverse of a small matrix, the size of which is the
number of queries (approximately 10 in our experiments). All
experiments are implemented in MATLAB R2014 and run on
a 3.2 GHz, 8 GB RAM Core 2Duo PC. We show the result is
illustrated in Fig. 10, which demonstrates the computation cost
saving is orders of magnitude.

V. CONCLUSION

In this paper, we propose an interactive cell segmentation al-
gorithm based on active annotation and verification propaga-
tion. After partitioning the frames into feature-homogeneous su-
perpixels, we actively select the most informative samples that
minimize the expected prediction error on the unlabeled super-
pixels. After performing the initial classification through label
propagation, we actively check the most error-prone superpixels
and correct the false segmentation. The correction is propagated
to the remaining unlabeled samples through our proposed veri-
fication propagation method, which is efficient since it does not
involve reconstruction of the affinity graph, resulting in effec-
tive corrections on similar errors. Experimental results demon-

strate that high quality cell segmentation is realized via the pro-
posed active annotation and verification propagation algorithms
with less human efforts.

APPENDIX A
DERIVATION OF SAMPLE SELECTION IN (28)

Solution: Based on the update of the corresponding matrix
of in (27), we have

(43)

where is the column vector, which is obtained by transposing
the row vector in corresponding to the samples selected in
the th iteration. By denoting and

, and substituting the corresponding items in (25),
we have

(44)

where . Note that the first terms
is from the th iteration, which is a constant when solving
the optimization regarding to , and therefore we focus on the
rest terms. Using (43), the fourth term in (44) can be rewritten
as

(45)

where . Using the

(46)
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By substituting (46) into (47), the second term in (45) can be
rewritten as

(47)

where , and
. We omit the first term since it is from the

th iteration and is a regarding.
The third term in (47) can be rewritten as

(48)

where .
Using (46), the second term in (48) can be rewritten as

(49)

It is easy to prove that both and are symmetric
matrix, since

(50)

and

(51)

Using (50) and (51), we can obtain that the second and third
terms in (49) are equal, since

(52)

Therefore, (49) can be rewritten as

(53)

where .
And thus the (25) can be summed up as

(54)

Let ,
and , the problem can

be rewritten as

(55)
Hereby, we finish the solution.
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