
Interactive Configuration with Regular String Constraints

Esben Rune Hansen1 and Henrik Reif Andersen1

1 IT University of Copenhagen,
Rued Langgaards Vej 7, DK-2300 Copenhagen S, Denmark

{esben,hra}@itu.dk

Abstract

In this paper we present a generalization of the problem of
interactive configuration. The usual interactive configuration
problem is the problem of, given some variables on small fi-
nite domains and an increasing set of assignment of values
to a subset of the variables, to compute for each of the unas-
signed variables which values in its domain that participate
in some solution for some assignment of values to the other
unassigned variables.
In this paper we consider how to extend this scheme to han-
dle infinite regular domains using string variables and con-
straints that involves regular-expression checks on the string
variables. We first show how to do this by using one sin-
gle DFA. Since this approach is vastly space consuming, we
construct a data structure that simulates the large DFA and
is much more space efficient. As an example a configuration
problem on n string variables with only one solution in which
each string variable is assigned a value of length k the former
structure will use Ω(kn) space whereas the latter only need
O(kn). We also show how this framework can be combined
with the recent BDD techniques to allow both boolean, inte-
ger and string variables in the configuration problem.

Introduction

Interactive configuration is a special Constraint Satisfaction
Problem (CSP), where a user is assisted in configuration
by interacting with a configurator – a computer program.
In configuration the user repeatedly chooses an unassigned
variable and assigns it a value until all variables are assigned.
The task of the configurator is to state the valid choices for
each of the unassigned variable during the configuration.
The set of valid choices for an unassigned variable x is de-
noted the valid domain of x (Hadzic et al. 2004) .

As an example consider the problem of assigning values
to the variables x1, x2 and x3 where x1 ∈ {1, . . , 5} and
x2, x3 ∈ {1, . . , 10} with the requirement that x1 = 1∨x1 =
2 ∨ x2 = 2 and x2 = x3. Initially the user can choose to
assign a value from {1, . . , 5} to x1 or assign a value from
{1, . . , 10} to x2 or x3. Suppose now the user assigns 3 to
x3. In this case the valid domain of x2 is {3} and the valid
domain of x1 is {1, 2}.

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The valid domain of each unassigned variable has to be
updated every time a value is assigned to a variable as the
assignment might make other assignments invalid as in the
example above. The user interaction with the configurator
has to be real-time which in practice means that the con-
figurator has to update the valid domains within 250 mil-
liseconds (Raskin 2000). Calculating the valid domains is
NP-hard since it can be used to solve 3SAT. However if we
have constructed a binary decision diagram (BDD) (Bryant
1986) that represents the constraints, we are able to keep the
computation time polynomial in the size of the BDD. The
BDD constructed can be exponentially large, but in practice
BDDs have proved themselves to be far from exponential in
size for many configuration problems (Hadzic et al. 2004).

As BDDs use binary variables to encode the domains of
the variables they rely on, that these domains are small. In
this paper we will consider the case of variables that take
strings as their values, which implies that their domains
might not be finite. Therefore the standard BDD approach
will not be able to handle the problem.

As an example on the functionality we want to provide,
suppose that a user has to fill in a form where there is a lot of
constraints on the input. Consider a CSP with the variables
phone, country, zip and district along with the following
constraints:

I The prefix of phone is “+45” ⇐⇒ country = “Den-
mark”

II country = “Denmark” =⇒ zip has four digits
III zip = “2300” ∧ country = “Denmark” ⇐⇒ district =

“Copenhagen S”

Suppose in the CSP above that the user entered district =
“Copenhagen S”. This restricts the valid domain of zip to
the singleton set {“2300”} and the valid domain of country
to {“Denmark”} by (III). The valid domain of phone is de-
creased to the set of strings which has “+45” as a prefix by
(I).

Suppose instead that the user has entered phone = “+45
23493844”. This decreases the valid domain of country to
{“Denmark”} by (I), and the valid domain of zip to strings
consisting of 4 digits. Actually this restriction will be per-
formed as soon as the user have entered “+45”, since every
completion of phone achieved by appending additional let-
ters at the end of phone still will have “+45” as a prefix.

217

Related Work

As mentioned in the introduction, interactive configuration
of variables with finite integer domains can be done by com-
piling a BDD prior to the user interaction (Hadzic et al.
2004). It can also be done by compiling an acyclic DFA
(Amilhastre, Fargier, & Marquis 2002), but since this solu-
tion is very similar to the solution using a BDD we will, for
simplicity, in this paper only refer to interactive configura-
tion based on BDDs.

The idea of using regular expressions as constraints on
variables has been considered from two different perspec-
tives by (Pesant 2004) and (Golden & Pang 2003)

In (Pesant 2004) regular expressions are applied as a
global constraint to the variables in the constraint network
where each variable is considered as a letter and the alphabet
corresponds to the domains of the variables. Hence Pesant
is considering regular expression constraints applied to one
string of some fixed size where a subset of the characters in
the string are assigned to values. In our case we are consid-
ering a set of strings unbounded in length, that is updated by
appending characters at the end of a string. In short we are
considering a much more expressive constraint language on
variables with infinite domains.

In (Golden & Pang 2003) the domains of string variables
are being specified by regular string constraints. In this pa-
per the length of the strings is not bounded. However they
are only considering whether or not the string variables satis-
fies a set of regular constraints. They do not consider mixing
regular constraints and logic as we do in the current paper.

Preliminaries

Consider a CSP stated as C = (X , Σ,F). By X =
{x1, x2, . . , xn} we denote the variables of the problem. By
Σ we denote an alphabet. By F = {f1, . . , fd} we denote
formulas written using the syntax

f ::= f ∨ f | ¬f | match(x, α)

where α is a regular expression over Σ and x ∈ X . The
expression match(x, α) is true iff x ∈ L(α), where L(α)
is the language defined by the regular expression α. We use
f ∧g, f ⇒ g and f ⇔ g as shortcuts for ¬(¬f ∨¬g),¬f ∨g
and (f ⇒ g) ∧ (g ⇒ f) respectively.

Regular expressions are written using the syntax

α ::= αα
∣∣ α|α ∣∣ α ∗ ∣∣ w

listed in increasing order of strength of binding, where w ∈
Σ.

We denote by ρ = {(x1, w1), . . , (xn, wn)} a complete
assignment of the values w1, . . , wn ∈ Σ∗ to the variables
x1, . . , xn that is all the variables in X . The set of solutions
to C is the set of assignments to X that satisfy all formulas
in F , that is:

sol(C) = {ρ | ρ |= f for all f ∈ F}.

Definition 1 (Valid Domains). The valid domain of a vari-
able xk ∈ X relative to an assignment ρ, denoted V ρ

xk
, is the

set of values w ∈ Σ∗ for which appending w to the current
assignment to xk can be extended to a solution to C by ap-
pending appropriate words from Σ∗ to the values assigned
to the remaining variables X \ {xk}. Stated formally:

V ρ
xk

=
{
w ∈ Σ∗ | ∃ρ′ : ρ′(xk) = w ∧ ρρ′ ∈ sol(C)}

where ρ and ρ′ are assignments to X and
the concatenation ρρ′ is defined by ρρ′ =
{(x1, ρ(x1)ρ′(x1)), . . , (xn, ρ(xn)ρ′(xn))}.
Theorem 1. For any x ∈ X and any assignment ρ to X it
holds that V ρ

x is a regular language.
We will prove this theorem by showing how we for any

given variable xk ∈ X and assignment ρ can construct a
deterministic finite automaton (DFA) that decides V ρ

xk
.

Before we do this we define a DFA as M =
(Q,Σ, δ, s, A), where Q is a finite set of states, δ : Q ×
Σ → Q is a transition function, Σ is some alphabet,
s ∈ Q is the starting state (or source) and A ⊆ Q is a
set of accepting states. We use δ̂(s, w) as a shorthand for
δ(· · · δ(δ(q, w1), w2), . . , wl), where (w1, . . , wl) are the let-
ters of a word in Σ∗. A word w ∈ Σ∗ is accepted by M iff
δ̂(s, w) ∈ A. We use δ̂(w) as a shortcut for δ̂(s, w). Further
we say that a state in a DFA q is reachable from a state p,
denoted p � q iff there exists a word w ∈ Σ∗ such that
δ̂(p, w) = q.

For any given F we number the regular expressions
such that αi

j is the regular expression in the jth of
the match-expressions on the variable xi, and denote
by mi the number of match-expressions on the variable
xi, hence the regular expressions that appears in F are:
α1

1, . . , α
1
m1

, , αn
1 , . . , αn

mn
. We denote by M i

j =
(Qi

j , Σ, δi
j , s

i
j , A

i
j) the DFAs that decides L(αi

j) and hence
evaluates the jth match-expression on xi.

We define ci
j = δ̂i

j(ρ(xi)) for all 1 ≤ i ≤ n, 1 ≤ j ≤ mi.
Hence if the assignment ρ changes then some of the ci

js will
change. We note that ρ ∈ sol(C) iff f [match(xi, α

i
j) ←

(ci
j ∈ Ai

j)] = true for all f ∈ F , where we by
f [match(xi, α

i
j) ← (qi

j ∈ Ai
j)] denote the formula f where

all match-expressions on the form match(xi, α
i
j) for any

i, j are replaced with the truth value of the expression (qi
j ∈

Ai
j). Further we note that wk ∈ V ρ

xk
if and only if there

exists some words w1, . . , wk−1, wk+1, . . , wn ∈ Σ∗ such
that f [match(xi, α

i
j) ← δ̂i

j(ρ(xi)wi) ∈ Ai
j] = true for all

f ∈ F . We will assume that Mβ
γ = (Qβ

γ , Σβ
γ , δβ

γ , sβ
γ , Aβ

γ)
for any superscript β and any or no subscript γ. Further
when we mention qβ

γ we will implicitly assume that it is
contained in Qβ

γ . For instance we might introduce a DFA
M i

j and refer to qi
j without explicitly stating that M i

j =
(Qi

j , Σ
i
j , δ

i
j , s

i
j , A

i
j) and that qi

j is some state contained in
Qi

j . We will also make use of the shortcut γ1
1 , . . , γk

hk
=

γ1
1 , . . , γ1

h1
, . . , . . , γk

1 , . . , γk
hk

, where h1, . . , hk ∈ N.

Outline of the Paper

The goal of this paper is to construct a data structure that,
based on a CSP C = (X , Σ,F), supports three operations:

218

BUILD(C) that constructs a data structure based on C and
ρ = {(x1, ε), . . , (xn, ε)} ,
APPEND(xk, w) that updates ρ by setting ρ(xk) to
ρ(xk)w and updates the data structure accordingly.
VALIDDOMAIN(xk) that uses the data structure to return
a finite automaton that decides V ρ

xk
.

The BUILD operation is to be run during preprocessing prior
to the user interaction. Hence the goal is to make BUILD
construct a data structure that supports the operations AP-
PEND and VALIDDOMAIN as fast as possible without using
too much space.

A Solution based on a single DFA

In this section we will present a construction of a DFA that
for any xk ∈ X and any assignment ρ to the variables in X ,
can be turned into a finite automaton deciding V ρ

xk
. This will

prove that V ρ
xk

is a regular language (Theorem 1). However
the data structure that will be presented in this section is too
space consuming to be of any practical use.

The DFA we want to construct we denote MC , which is
the DFA deciding a language we denote LC . The basic prop-
erty of LC is that:

w ∈ LC ⇐⇒ ρw ∈ sol(C) (1)

where w is a word that induces the assignment ρw, where
the meaning of induces will be defined in (2).

Intuitively we make the alphabet of LC , denoted ΣC , con-
sist of all possible APPEND-operations More formally stated
ΣC ⊂ (Σ ∪ {ε})n where each letter in ΣC is a vector of let-
ters from Σ ∪ {ε} that only contains one element different
from ε, in other words:

ΣC =
⋃

1≤k≤n

⋃
w∈Σ

{
(ε, . . , ε︸ ︷︷ ︸

k−1

, w, ε, . . , ε︸ ︷︷ ︸
n−k

)
}

Every word w in LC is a concatenation of letters from ΣC
that is LC ⊆ Σ∗

C . We say that w = w1 · · ·wl induces the
assignment

ρw = {(x1, w
1
1 · · ·w1

l), . . , (xn, wn
1 · · ·wn

l)} (2)

where wi
j denotes the ith element in the letter wj ∈ ΣC .

Note that given a word w = w1 · · ·wl, we have that ρw′ =
ρw for any word w′ that consist of the letters w1, · · · , wl,
permuted in a way that maintains the ordering of the letters
in {wj | wi

j �= ε} for every 1 ≤ i ≤ n.

Example 1. Consider the CSP C = (X , Σ,F) where X =
{x1, x2, x3}, Σ = {a, b} and F is some set of constraints.
In this case

ΣC = {(a, ε, ε), (b, ε, ε), (ε, a, ε), (ε, b, ε), (ε, ε, a), (ε, ε, b)}
and for instance does the word w =
(a, ε, ε)(ε, ε, a)(b, ε, ε)(a, ε, ε) induce the assignment
ρw = {(x1, aba), (x2, ε), (x3, a)}, and so does for
instance w′ = (a, ε, ε)(b, ε, ε)(a, ε, ε)(ε, ε, a) and
w′′ = (a, ε, ε)(b, ε, ε)(ε, ε, a)(a, ε, ε). In the case of
w, (1) becomes:

(a, ε, ε)(ε, ε, a)(b, ε, ε)(a, ε, ε) ∈ LC ⇐⇒

{(x1, aba), (x2, ε), (x3, a)} ∈ sol(C)

Note that for instance w′′′ = (b, ε, ε)(a, ε, ε)(ε, ε, a)(a, ε, ε)
does not induce ρw, since ρw′′′ =
{(x1, baa), (x2, ε), (x3, a)} �= ρw.

If we can construct a DFA that decides LC this DFA can
be used to decide for any assignment ρ whether ρ ∈ sol(C).
In the following we will construct such a DFA, denoted
MC , and we will show how we based on this construction
for any ρ and xk can obtain a DFA that decides the reg-
ular language V ρ

xk
. We construct the DFA MC by setting

QC = Q1
1× . .×Qn

mn
and δC((q1

1 , . . , qn
mn

), (w1, . . , wn)) =(
δε

1
1(q

1
1 , w1), . . , δε

n
mn

(qn
mn

, wn)
)
, where the notation δε

i
j is

referring to δi
j where self-looping ε-transitions are added to

every state in Qi
j , that is δε

i
j = δi

j ∪ {(qi
j , ε) → qi

j}. We fur-
ther set sC = {s1

1, . . , s
n
mn

}, cC = δ̂C
(
ρ(x1), . . , ρ(xn)

)
and

AC = {(q1
1 , . . , qn

mn
) | f [match(xi, α

i
j) ← (qi

j ∈ Ai
j)] =

true for all f ∈ F}. We observe that many of the states
in QC , will be unreachable from sC , and therefore can be
removed from the DFA.

Constructing an FA deciding V
ρ
xk

If we want to change MC such that it decides V ρ
xk

we set
sC = cC and project the alphabet on xk – that is, we replace
every letter w = (w1, . . , wn) ∈ ΣC by wk ∈ Σ ∪ {ε}.
Note that the second step turn all transitions on w for which
wk = ε into ε-transitions, hence we have made a non-
deterministic automaton on the alphabet Σ, deciding V ρ

xk
. In

Figure 1 we have illustrated the creation of MC and the DFA
deciding V ρ

xk
by an example of three match-expressions on

two variables.

Figure 1: In this example F = {f1, f2} where
f1 = match(x2,“abc”) ∨ match(x1,“ab”) and f2 =
match(x2,“abd∗”). In the top of figure we see M2

1 , M1
1 and

M2
2 , below that we see MC deciding LC . In the bottom we

see the NFA deciding V
{(x1,“a”),(x2,“ab”)}
x2 to the right and

the corresponding DFA to the left.

219

The size of MC
Though updating the values assigned to variables in X will
be very fast using this solution, the size of MC will be too
large for the solution to be of any use for real-life problems.
As an example, a problem on n variables containing a sin-
gle solution {(x1, w1), . . , (xn, wn)} where wl are words of
size m for all 1 ≤ l ≤ n The corresponding DFA MC will
contain Ω(ln) states. The construction that we will achieve
at the end of this paper will model the same problem using
only O(ln) states.

Decomposing MC into smaller DFAs

In this section we separate the DFA MC from last section
into smaller DFAs in order to make a less space consuming
construction. To be more specific we, instead of joining all
the match-DFAs M1

1 , . . , Mn
mn

into one large DFA as in last
section, only join match-DFAs on the same variable. We
construct the DFAs M1, . . , Mn in a way very close to the
way we constructed MC . We set Qi = (Qi

1, . . , Q
i
mi

) and set
δi((qi

1, . . , q
i
mi

), w) = (δi
1(q

i
1, w), . . , δi

mi
(qi

mi
, w)) for all

1 ≤ i ≤ n and all w ∈ Σ. Further we set si = (si
1, . . , s

i
mi

)
and by setting ci = (ci

1, . . , c
i
mi

) we get ci = δ̂i(ρ(xi)).
The alphabets in the new DFAs are Σ since following a tran-
sition in M i corresponds to following a transition on the
same letter in each of the DFAs M i

1, . . , M
i
mi

. Since each
position in M i only corresponds to a subset of the posi-
tions in all M1

1 , . . , Mn
mn

we are not able to encode whether
ρ ∈ sol(C) into the set of accepting states, as we did when
we constructed MC . This is the case because we may have
assignments ρ, ρ′ for which δ̂i(ρ(xi)) = δ̂i(ρ′(xi)) for some
1 ≤ i ≤ n even though ρ ∈ sol(C) ∧ ρ′ /∈ sol(C) caused
by some difference in the values assigned to X \ {xi} by ρ
and ρ′ respectively. As an alternative to the concept of the
set of accepting states we introduce the concept of an accep-
tance value, that will be used to compute what corresponds
to AC when the DFAs deciding valid domains have to be
constructed during the interactive configuration. We denote
the acceptance value of M i for any 1 ≤ i ≤ n by ai and
define it by ai(qi) = (qi

1 ∈ Ai
1, . . , q

i
mi

∈ Ai
mi

)
By specifying ai instead of Ai we have deviated from

the definition of a DFA. We therefore define a Multi-DFA
(MDFA) by: M = (Q,Σ, δ, s, a) as a DFA that has no set of
accepting states A, but instead has a function a : Q → Bk.
Observe that if k = 1 the MDFA can be translated into a
standard DFA by replacing the function a by the set A =
{q | a(q) = true}.

Constructing an MDFA

We might build an MDFA by slightly modifying the con-
struction of the DFA MC . However this might make the
intermediate structure very large. Instead we use a sim-
ple approach making a simultaneous DFS in the DFAs that
has to be joined as described in the pseudocode below.
We let μ, Qk, δ, sk, ak, mk and Mk

j = (Qk
j , δk

j , sk
j , ak

j), for
1 ≤ j ≤ mk be globals.

REC(qk
1 , . . , qk

mk
)

1 if μ(qk
1 , . . , qk

mk
) is defined

2 then return μ(qk
1 , . . , qk

mk
)

3 create a new state qk /∈ Qk

4 Qk ← Qk ∪ {qk}
5 μ(qk

1 , . . , qk
mk

) ← qk

6 ak(qk) ← (
(qk

1 ∈ Ak
1), . . , (qk

mk
∈ Ak

mk
)
)

7 for each w ∈ Σ
8 do δk(qk, w) ← REC(δk

1 (qk
1 , w), . . , δk

mk
(qk

mk
, w))

9 return qk

CONSTRUCTMDFA(Mk
1 , . . , Mk

mk
)

1 Qk ← δk ← ak ← μ ← ∅
2 sk ← REC(sk

1 , . . , sk
mk

)
3 return (Qk, δk, sk, ak)

For instance the constraint match(x1, “abc”) ∧
match(x1, “abd ∗ ”) on x1 will result in the MDFA
drawn in Figure 2.

�1 �a �2 �b �3
���
c

�4

���d �5

�
�

� �
� d

Acceptance values

1 : (false, false)
2 : (false, false)
3 : (false, true)
4 : (true, false)
5 : (false, true)

Figure 2: The MDFA deciding L(“abc”) and L(“abd∗”)

By defining minimization by the straight forward gener-
alization as minimization of DFAs, we can prove a further
property of the algorithm CONSTRUCTMDFA.
Definition 2. A MDFA is minimized if all states in the MDFA
are reachable from the source and no pair of states in the
MDFA are equivalent. In an MDFA M , any pair of nodes
p, q ∈ Q : p and q are equivalent iff for all words w ∈ Σ∗ :
a(δ̂(p, w)) = a(δ̂(q, w))).
Lemma 1. If the DFAs given as input to CONSTRUCT-
MDFA are minimized then the constructed MDFA will be
minimized.

Proof. We first note that all states in Qk are reachable from
sk. This is due to the fact that every state created ex-
cept sk will be a result of a recursive call made at line 8.
Hence every created state in the MDFA will be assigned to
a δk(qk, w), where sk � qk and w ∈ Σ.

We then prove that no pair of states in the constructed
MDFA Mk is equivalent if the DFAs M1, . . , Mmk

is min-
imal. Consider any pair of distinct nodes pk, qk ∈ Qk.
Suppose μ(pk

1 , . . , pk
mk

) = pk and μ(qk
1 , . . , qk

mk
) = qk.

Since pk �= qk we know by the initial check on line 1-
2 that (pk

1 , . . , pk
mk

) �= (qk
1 , . . , qk

mk
). Hence for some

1 ≤ j ≤ mk we have pk
j , qk

j ∈ Qk
j for which pk

j �= qk
j .

Since Mk
j is minimized we know that pk

j is not equiva-
lent to qk

j which implies that there exists a w ∈ Σ∗ for

220

which a(δ̂k
j (pk

j , w)) �= a(δ̂k
j (qk

j , w)). This implies that

ak(δ̂k(μ(pk
1 , . . , pk

mk
), w)) �= ak(δ̂k(μ(qk

1 , . . , qk
mk

), w))
which is the same as ak(δ̂k(pk, w)) �= ak(δ̂k(qk, w)).
Hence pk and qk are not equivalent.

Constructing a DFA deciding V
ρ
xk

Suppose for some MDFAs M1, . . , Mn on F and some as-
signment ρ of values to the variables in X , that we want
to construct the DFA M ′ = (Q′, Σ′, δ′, s′, A′) deciding
V ρ

xk
for some xk. To attain this we first set s′ = ck and

Q′ = {q ∈ Qk | s � q}. Further we set δ′ = δk and
Σ′ = Σ. We now only need to compute the set of accepting
states A′. We will devote the rest of this section to construct
an auxiliary data structure that will provide an efficient com-
putation of A′.

Let Y = y1
1 , . . yn

mn
be a set of boolean variables, and

define yi = (yi
1, . . , y

i
mi

) for 1 ≤ i ≤ n. We want to set
some constraints on the variables in Y that are satisfiable
iff ∀1≤i≤n : yi = ai(δ̂i(ρρ′(xi))) for some ρ′ for which
ρρ′ ∈ sol(C) where ρ is the current assignment to X in the
interactive configuration. This can be attained by two con-
straints: We first say the value of yi has to correspond to
some acceptance value of some state in M i that is reachable
from the source of M ′ that is:

gρ =
∧

1≤i≤n

∨

ci�qi

yi = ai(qi) (3)

Further evaluating the match-expressions by the y-values
has to make F true, that is:

gF =
∧

f∈F
f [match(xi, α

i
j) ← yi

j] (4)

Using these two constraints we can attain for any w ∈ Σ∗
that w ∈ V ρ

xk
iff gρ∧gF ∧(

yk = ak(ρ(xk)w)
)

is satisfiable.
Hence we get for the DFA deciding V ρ

xk
that:

A′ = {qk ∈ Qk | gρ∧gF ∧yk = ak(qk) is satisfiable} (5)

�1
���
a

�2

���b �4 �
c

�a �3

�5

�
�

� �
� a Acceptance values

1 : (false, false)
2 : (true, false)
3 : (false, true)
4 : (false, false)
5 : (false, true)

Figure 3: MDFA deciding L(“a”) and L(“(a∗)|(bc)”)

Example 2. Suppose for the CSP C = (X , Σ,F) that X =
{x1, x2} and F = {f1, f2} where f1 = match(x1, “a”) ∨
match(x2, “def”) and f2 = match(x1, “(a∗)|(bc)”). The
MDFA evaluating the match-expressions on x1 is showed in
Figure 3.

Since we initially want the compute the DFAs deciding the
valid domains of the variables x1 and x2 given the assign-
ment ρ = {(x1, ε), (x2, ε)}, we will have to use (5) in order

to compute the set of accepting states A′ for each of these
DFAs. In order to use (5) we have to compute the set of
assignments to the Y -variables that satisfy gρ ∧ gF .

We start out by computing the constraints gρ and gF .
By (3) we get gρ =

(
y1 = (false, false) ∨ y1 =

(false, true)∨y1 = (true, false)
)∧(

y2 = (false)∧y2 =
(true)

)
. By (4) we get gF = (y1

1 ∨ y2
1) ∧ y1

2 .
We now impose the constraints gρ∧gF on the values of the

variables in Y . By gρ, we get that y1 �= (true, true) and by
gF we get that y1

2 = true. By y1 = (y1
1 , y1

2) �= (true, true)
and y1

2 = true we imply that y1 = (false, true). Since
we now have y1

1 = false the value assigned to y2
1 has

to be true in order for gF to be satisfied. Therefore the
only assignment to the variables in Y that satisfies gρ ∧ gF
is {(y1

1 , false), (y2
1 , true), (y1

2 , true)}. If we construct the
DFA that decides V

{(x1,ε),(x2,ε)}
x1 then only the states num-

bered 3 and 5 n Figure 3 are accepting states according to
(5), hence V

{(x1,ε),(x2,ε)}
x1 = {“a ∗ ”, “bc”}. We can also

infer that V
{(x1,ε),(x2,ε)}
x2 = {“def”}

Computing reachable acceptance values

In order to prevent that we have to visit all states reachable
from ci in every M i each time we have to check gρ for satis-
fiability we will introduce the notion of the set of reachable
acceptance values. We define the set of reachable accep-
tance values by

Ri(pi) = {ai(qi) | pi � qi}
and we define the notation yi ∈ Bi as

∨
bi∈Bi

yi = bi. Us-
ing this we can rewrite gρ as gρ =

∧
1≤i≤n yi ∈ Ri(ci)

Instead of recomputing the constraint gρ every time ρ (and
thereby some of the c1, . . , cn) changes we will compute
Ri(qi) for every qi ∈ Qi and all 1 ≤ i ≤ n during pre-
processing.

In the computation of the reachable acceptance values we
use the fact that every strongly connected component will
have the same set of reachable acceptance values. A strongly
connected component (SCC) in an (M)DFA M we define as
a set of states C ⊆ Q for which it for any p ∈ C holds that
p � q and q � p iff q ∈ C. Calculating the SCCs in an
MDFA be done by making two DFS in the MDFA (Cormen
et al. 2001). In the following algorithm we assume that M
is an MDFA:

REACHABLEACCEPTANCEVALUES(M)
1 let C ′ be the set SCCs in Q
2 for each C1, C2 ∈ C ′
3 do if δ(p, w) = q for some p ∈ C1, q ∈ C2, w ∈ Σ
4 then Γ(C1) ← Γ(C1) ∪ {C2}
5 for each C ∈ C ′
6 do R′(C) ← {a(q) | q ∈ C}
7 for each C1 ∈ C ′ in reverse topological order
8 do R′(C1) ← R′(C1) ∪ {R′(C2) | C2 ∈ Γ(C1)}
9 for each C ∈ C ′

10 do for each q ∈ C
11 do R(q) ← R′(C)
12 return R

221

The Algorithms in Pseudocode

In this section we will present the three algorithms
BUILD(C), APPEND(xk, w) and VALIDDOMAIN(xk). The
first algorithm BUILD constructs the data structure the sec-
ond algorithm APPEND updates the data structure when ρ is
updated and the third algorithm VALIDDOMAIN(xk) returns
a DFA deciding V ρ

xk
.

In all algorithms we assume that
g,M1, . . , Mn, R1, . . , Rn, a1, . . , an, c1, . . , cn, Σ and
ρ are globals. We further assume that initially
ρ ← {(x1, ε), . . , (xn, ε)} and m1, . . , mn = 0

BUILD(C)
1 for i ← 1 to n
2 do for each match(xi, α

i
j) occurring in F

3 do mi ← mi + 1
4 Build a DFA M i

j on L(αi
j)

5 yi ← (yi
1, . . , y

i
mi

)
6 M i ← CONSTRUCTMDFA(M i

1, . . , M
i
mi

)
7 ci ← si

8 Ri ← REACHABLEACCEPTANCEVALUES(M i)

9 gρ =
∧

1≤i≤n yi ∈ Ri(ci)
10 gF =

∧
f∈F f [match(xi, α

i
j) ← yi

j]
11 g ← gρ ∧ gF
12 if g is unsatisfiable
13 then error “No feasible solutions to C”

Line 1-8 constructs the MDFAs on the match-expressions in
F . Line 9-11 computes g as gF ∧ gρ. Line 12-13 checks
whether sol(C) �= ∅ by checking whether g is satisfiable.

VALIDDOMAIN(xk)
1 A′ ← ∅
2 for each qk ∈ Qk

3 do if g ∧ (
yk = ak(qk)

)
is satisfiable

4 then A′ ← A′ ∪ {qk}
5 M ′ ← (Qk, Σ, δk, ck, A′)
6 return M ′

This algorithm construct a DFA deciding V ρ
xk

based on the
MDFA on xk. The set of accepting states A′ in Line 2-4 is
done by using (5).

APPEND(xk, w)
1 if g ∧ (

yk ∈ Rk(δk(ck, w))
)

is unsatisfiable
2 then error “invalid append to variable in X ”
3 ρ(xk) ← ρ(xk)w
4 ck ← δk(ck, w)
5 Qk ← {qk ∈ Qk | sk � qk}
6 g ← g ∧ (

yk ∈ Rk(ck)
)

The algorithm APPEND updates ρ by appending w to the
value assigned to xk by ρ. This update entails that ck has to
be updated and thereby Qk can be pruned by removing states
that are unreachable by the new ck. We update g to conform
with the new ck by setting g ← g ∧ (

yk ∈ Rk(ck)
)
.

Implementation

In the pseudocode from last section the main issue is to de-
cide whether g is satisfiable in Line 3 in VALIDDOMAIN.
This can be done by using the DPLL-algorithm (Davis, Lo-
gemann, & Loveland 1962), however in the setting of inter-
active configuration, where fast decisions on whether g is
satisfiable have to be available, encoding g as a BDD seems
to be the obvious choice as we can decide whether g is satis-
fiable in linear time in the size of the BDD-representation of
g by using a specialization of the valid domains computation
mentioned in (Tarik Hadzic 2006).

In standard interactive configuration as in (Hadzic et al.
2004) where the variables, say Z , have small finite domains
and a constraint, say e, are compiled into the BDD Ge, prior
to the interactive configuration, the only way that Ge is up-
dated during the interactive configuration is by restriction,
that is by assigning values to variables in Z . Since apply-
ing a restriction on a BDD takes time linear in the size of
the BDD and since a restriction for the purpose of valid do-
mains computation can be done without increasing the size
of the BDD, it is known at compile time that, during the en-
tire interactive configuration, the size of Ge and the running
time of each restriction on Ge will be linear in the size of
the initial BDD-representation of e that was compiled prior
to the interactive configuration.

In our approach things are different since we need to
set Gg ← Gg ∧ Gyi∈Ri(ci) during the interactive config-
uration. The size of the BDD-representation of G1 ∧ G2

is O(|G1||G2|) in the worst case (Bryant 1986). How-
ever since the constraints y1 ∈ R1(q1), . . , yn ∈ Rn(qn)
share no variables the size of GV

1≤i≤n yi∈Ri(ci) is bounded
by O

(∑
1≤i≤n max

{|Gqi∈Ri(qi)|
∣∣ ci � qi

})
, hence we

can bound the size Ggρ
=

∧
1≤i≤n Gyi∈Ri(ci) by the sum

of largest BDD representation of the reachable acceptance
values in each of MDFAs. To bound the size of Gg =
GgF ∧ Ggρ we take the product of the size of Ggρ and the
size of the BDD representation of F , hence we get:

|Gg| = O
(|GF |

∑
1≤i≤n

max
{|G{yi∈Ri(qi)}|

∣∣ qi ∈ Qi
})

The bound on the size of Gg is a very pessimistic one, in
most practical cases the result of computing the and of two
BDDs will be much smaller than stated by the bound.

The asymptotic running time of APPEND is dominated
by the update of g in Line 6. We can therefore bound the
asymptotic running time of APPEND(xk, w) by:

O(|G{yk∈Rk(sk)}||Gg|)
The time complexity of VALIDDOMAIN(xk) is dominated
by the time, in Line 3, used to check for each state whether it
is should be an accepting state in the DFA that is whether or
not g∧(yk = ak(qk)) is satisfiable. We note that the asymp-
totic time complexity of deciding whether g∧(yk = ak(qk))
is satisfiable is linear in the number of variables in Y . If we
use dynamic programming on the computation of ak(qk) we
only need to compute Gg ∧ Gyk=ak(qk) once for each dif-
ferent acceptance value. Hence the asymptotic worst-case

222

running time of VALIDDOMAIN(xk) is:

O(|Y ||ak| + |Qk|)
where |ak| = |{ak(qk) | qk ∈ Qk}| and Qk is the set of
states reachable from sk in the MDFA on xk.

As a guarantee on the space usage of the data structure
we have the size of Gg , the size of each of the MDFAs, and
the size of the BDD-representation of all different sets of
reachable accepting states, that is:

O
(|Gg| +

∑
1≤i≤n

|M i| +
∑

R∈R′
GR

)

where O(|M i|) is the set of transitions in M i and R′ =
{Ri(qi) | qi ∈ Qi ∧ 1 ≤ i ≤ n}.

Combining regular and finite domains

Roughly stated we can encode a set of constraints H on a set
of integer variables Z with discrete finite domains by adding
the Z to Y and adding H to gF . For instance the constraint
country = “Denmark” =⇒ vat = 25, where coun-
try is a string variable and vat is an integer on the domain
{0, . . , 100}, will be encoded as ¬match(x1, “Denmark”)∨
x2 = 25, hence we get Y = {y1

1 , y2
1 , . . , y2

7} and gF =
¬y1 = (1) ∨ y2 = (0, 0, 1, 1, 0, 0, 1) where 0011001 is the
binary encoding of 25. If e.g. the user chooses vat = 10
the constraint gρ =

(
y2 = (0, 0, 0, 1, 0, 1, 0)

)
is added to g

which implies y1 = false and thereby L(“Denmark”) �
V ρ

x1
. Note that in this case gρ is a restriction. Hence if

all variables are integer variables we have an instance of a
standard interactive configuration problem as described in
(Hadzic et al. 2004), and the computations of valid domains
will be computed in exactly the same way.

Conclusion

In this paper we have introduced a data structure that is able
to handle interactive configuration on string-variables by us-
ing a combination of regular expressions and boolean logic.
We have shown that this can be modeled by a single large
DFA and argued that the size of this DFA is too large be
of any practical use. Further we have made a data structure
that simulates the large DFA by a combination of DFAs (or
Multi-DFAs to be precise) and a BDD.

We consider the work in this paper as the first step in a
new path in the area of interactive configuration. In this first
step the primary goal has been to provide a general and solid
framework that will serve as the starting point for future re-
search.

Acknowledgement

We would like to thank Rasmus Pagh for useful discussions
during the making of this paper and Peter Tiedemann for
thorough and insightfull readings of the paper, that resulted
in many important suggestions and corrections.

References

Amilhastre, J.; Fargier, H.; and Marquis, P. 2002. Con-
sistency restoration and explanations in dynamic CSPs-
Application to configuration . Artificial Intelligence 135(1-
2):199–234. bb modif 28/02/02.
Bryant, R. E. 1986. Graph-based algorithms for boolean
function manipulation. IEEE Transactions on Computers
35(8):677–691.
Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; and Stein,
C. 2001. Introduction to Algorithms. McGraw-Hill Higher
Education.
Davis, M.; Logemann, G.; and Loveland, D. 1962. A
machine program for theorem-proving. Commun. ACM
5(7):394–397.
Golden, K., and Pang, W. 2003. Constraint reasoning over
strings. In CP, 377–391.
Hadzic, T.; Subbarayan, S.; Jensen, R. M.; Andersen,
H. R.; Hulgaard, H.; and Møller, J. 2004. Fast backtrack-
free product configuration using a precompiled solution
space representation. In Proceedings of the International
Conference on Economic, Technical and Organizational
aspects of Product Configuration Systems, 131–138. DTU-
tryk.
Pesant, G. 2004. A regular language membership con-
straint for finite sequences of variables. In Proceedings
of the Tenth International Conference on Principles and
Practice of Constraint Programming (CP 2004), 482–495.
Springer.
Raskin, J. 2000. The Humane Interface. Addison Wesley.
Tarik Hadzic, Rune Møller Jensen, H. R. A. 2006. Cal-
culating valid domains for bdd-based interactive configu-
ration. arXiv.

223

