
Interactive Continuous Collision Detection between Deformable Models using

Connectivity-Based Culling

Min Tang †∗ Sean Curtis ∗ Sung-Eui Yoon ‡

http://gamma.cs.unc.edu/CBC/

Dinesh Manocha ∗

Abstract

We present an interactive algorithm for continuous collision detec-
tion between deformable models. We introduce two techniques to
improve the culling efficiency and reduce the number of potentially
colliding triangle candidate pairs. First, we present a novel formu-
lation for continuous normal cones and use these normal cones to
efficiently cull large regions of the mesh from self-collision tests.
Second, we exploit the mesh connectivity and introduce the con-
cept of “orphan sets” to eliminate almost all redundant elementary
tests between adjacent triangles. In particular, we can reduce the
number of elementary tests by many orders of magnitude. These
culling techniques have been combined with bounding volume hi-
erarchies and can result in one order of magnitude performance im-
provement as compared to prior algorithms for deformable models.
We highlight the performance of our algorithm on several bench-
marks, including cloth simulations, N-body simulations and break-
ing objects.

CR Categories: I.3.5 [Computing Methodologies]: Compu-
tational Geometry and Object Modeling—Geometric algorithms;
I.3.7 [Computing Methodologies]: Three-Dimensional Graphics
and Realism—Visible surface algorithms, animation, virtual real-
ity;

Keywords: Continuous collision detection, deformable models,
continuous normal cone, orphan set, self-collision

1 Introduction

Interactive simulations with deforming or non-rigid objects are
widely used in physically-based simulations, CAD/CAM, computer
graphics and robotics. In order to generate physically realistic
or plausible motions, these systems enforce non-penetration con-
straints and need to detect all collisions between the primitives. The
collision queries on deformable models can be classified into inter-
object collisions between disjoint objects and self-collisions on a
single object.

Most of the prior work in deformable collision detection has been
limited to discrete collision detection. These algorithms check for
overlaps at a given time step in the simulation, and may miss col-
lisions between the time steps. In order to resolve these prob-
lems, many researchers have proposed algorithms for continuous
collision detection (CCD) [Redon et al. 2002; Redon et al. 2004].

∗University of North Carolina at Chapel Hill, USA

† Zhejiang University, China

‡ Korea Advanced Institute of Science and Technology (KAIST), South

Korea

CCD techniques model the motion between the discrete time in-
stances using continuous paths and check these paths for colli-
sions. The continuous algorithms are also used to perform time-of-
contact computations for dynamic simulation and haptic rendering
as well as local planning for sample-based motion planning algo-
rithms [Foskey et al. 2001; Zhang and Manocha 2008].

In this paper, we address the problem of fast and accurate CCD
between deformable models. Accuracy is very important feature
for various applications including cloth simulation, where a single
missed collision can result in an invalid simulation or noticeable
artifacts [Bridson et al. 2002; Baraff et al. 2003]. However, per-
forming CCD between complex deformable models at interactive
rates still remains a major challenge [Hutter and Fuhrmann 2007].
Prior algorithms for interactive CCD are mainly limited to rigid and
articulated models. Many fast algorithms based on bounding vol-
ume hierarchies and GPU-based accelerations have been proposed
for deformable models, but they are not fast enough for interactive
applications.

Main Results: We present an interactive algorithm for CCD com-
putation between complex deformable models including breaking
objects. Our approach is applicable to all triangulated models and
exploits the connectivity information between adjacent triangles in
a mesh-based representation. We utilize this connectivity informa-
tion to perform high-level and low-level culling to significantly re-
duce the number of elementary tests between triangle primitives.
Specifically, we introduce two novel concepts:

1. Continuous Normal Cone test for self-collisions: We extend
the well-known normal cone test for discrete collision detection
[Volino and Thalmann 1994; Provot 1997] to CCD. Our formu-
lation computes a tight bound on the range of normals for triangles
under a wide variety of continuous motions. We represent con-
tinuous normal cones using Bernstein basis functions. We use the
convexity properties to construct normal cone efficiently. Further-
more, we also present a fast continuous contour test method along
with the Continuous Normal Cone.

2. Orphan Set: We decompose potentially colliding triangle pairs
into two sets: non-adjacent and adjacent, to perform the elementary
tests between the primitives. We provide an optimal bound on the
maximum number of elementary tests required between adjacent
triangle pairs. We introduce the notion of an orphan set of a mesh
based on the connectivity between the triangles and show that only
the primitives in the orphan sets need to be checked for exact col-
lision detection among all adjacent pairs. In our benchmarks, the
”Orphan Set” formulation reduces the number of elementary tests
between adjacent triangle primitives by almost three orders of mag-
nitude.

We use a two-level bounding volume hierarchy (BVH) and use it
to handle multiple-object simulations (including breaking objects)
as well as self-collisions. We have applied the algorithm to many
complex deformable models composed of tens or hundreds of thou-
sands of triangles. Our algorithm can compute either the first time-
of-contact or the full set of collisions during the continuous time
domain in tens or hundreds of milliseconds. As compared to prior
approaches, our algorithm offers the following benefits:

• Generality: Our approach is applicable to various kinds
of models and deformable simulations. These include self-
collisions, inter-object collisions between multiple objects
(i.e. N-body collisions), and breaking objects.

• High culling efficiency: We are able to achieve high culling
efficiency and reduce the number of false positives by almost
two orders of magnitude in complex simulations.

• Interactive performance: Our hierarchy update and traver-
sal algorithms have small overhead. As compared to prior
CCD algorithms, we observe considerable performance im-
provement in our benchmarks.

Organization: The rest of the paper is organized as follows: Sec. 2
gives a brief survey of prior work in collision detections. We intro-
duce our notation and give an overview of our approach in Sec. 3.
The culling techniques are described in Sec. 4 and Sec. 5. We
present a two-level hierarchy, overall algorithm, and the results
from our implementation in Sec. 6. We compare its performance
with prior approaches in Sec. 7.

2 Related Work

Collision detection has been widely studied in computer graph-
ics, robotics, and computational geometry literature [Ericson 2004;
Teschner et al. 2005]. In this section, we give a brief overview of
prior work on collision detection between deformable models.

2.1 Bounding Volume Hierarchies

Bounding volume hierarchies (BVHs) have been widely used to ac-
celerate the performance of collision detection algorithms between
rigid and deformable models. Examples of BVHs include sphere
trees [Hubbard 1993; Bradshaw and O’Sullivan 2004], axis-aligned
bounding box (AABB) trees [van den Bergen 1997], hierarchies
based on tight fitting bounding volumes (BVs) such as oriented
bounding boxes [Gottschalk et al. 1996], discretely oriented poly-
topes (k-DOPs) [Klosowski et al. 1998], or hybrid combination of
BVs [Sanna and Milani 2004].

Most algorithms for deformable models typically use simple BVs
such as spheres or AABBs and recompute the BVH during each
frame [Teschner et al. 2005]. Approaches to compute dynamic
BVHs include refitting algorithms to update these hierarchies [Lars-
son and Akenine-Möller 2006; Lauterbach et al. 2006; James and
Pai 2004; Zachmann and Weller 2006], and performing dynamic or
selective restructuring [Otaduy et al. 2007; Yoon et al. 2007].

2.2 Deformable Models

There is considerable literature on efficient collision checking be-
tween deformable models. These include efficient algorithms based
on normal cone culling and GPU-based approaches. [van den
Bergen 1997] presents an early approach using refitting for de-
formable models.

Normal Cone Culling: Volino and Thalmann [Volino and Thal-
mann 1994] proposed a culling technique for efficient self-collision
detection at discrete time steps using bounds on the normals. This
method takes advantage of the topology and connectivity of the
mesh and checks for self-collision by using normal cones and two
dimensional contour tests. They can be combined with hierarchical
approaches to handle highly tessellated models [Mezger et al. 2003;
Provot 1997; Volino and Thalmann 2000]. We extend this normal
cone culling method to continuous collision detection.

GPU-based Algorithms: The rasterization capabilities of com-
modity GPUs have been used for fast collision detection between
deformable models [Heidelberger et al. 2003; Knott and Pai 2003;
Govindaraju et al. 2004]. These include many specialized algo-
rithms for self-collision detection [Heidelberger et al. 2004; Govin-
daraju et al. 2005; Sud et al. 2004; Sud et al. 2006]. Some of these
approaches are limited in terms of handling the type of input models
(e.g. closed objects or fixed mesh connectivity). Furthermore, their
performance can vary based on the support of occlusion queries or
read-backs from GPUs. We perform a detailed comparison with
these approaches in Section 7.

2.3 Continuous Collision Detection

CCD algorithms check for collisions in the continuous time inter-
val between two discrete time steps. These include interactive al-
gorithms for rigid models [Redon et al. 2002] and articulated mod-
els [Redon et al. 2004; Zhang et al. 2007] that are based on tight-
fitting pre-computed hierarchies. CCD techniques for deformable
models [Govindaraju et al. 2005; Wong and Baciu 2005; Hutter
and Fuhrmann 2007] are mostly limited to models with fixed con-
nectivity. We compare the performance of our algorithm with these
approaches in Section 7.

3 Overview

In this section, we introduce the notation used in the rest of the
paper and give an overview of our approach.

3.1 Notation and Definitions

We use the symbols V , E, F , and T to represent vertices, edges,
faces, and triangles, respectively. We use lower-case symbols v,
e, f , and t to denote a specific vertex, edge, face, and triangle,
respectively. The vector quantities are written in bold face, e.g.,
n for the normal of a triangle. Also, we use {vi, fj} to denote a
pairwise relationship between two mesh elements, in this case, vi

and fj .

Our CCD algorithm is applicable to triangulated meshes. We re-
fer to each connected mesh as an object and the simulation may
consists of one or more objects. We do not make any assumptions
about the motion of any object or its deformation. Furthermore,
the number of objects can change due to topological changes, such
as breakage. We use the symbol Oi to represent an object and let
M i represent its mesh. Each M i is represented as triangles with
the connectivity and adjacency information, i.e., its vertices, edges,
and adjacent triangles. We denote the time interval, in which we
perform CCD, to be [0, 1]. Let M i

t denote the configuration of a

mesh at time t ∈ [0, 1]. Let M i
0 and M i

1 represent the configura-
tion of mesh i at the two discrete time steps ,0 and 1. As a result,
the motion of each triangle during this time interval sweeps out a
triangular prism1.

3.2 Continuous Collision Detection

In order to compute the first time-of-contact or the set of all col-
lisions, we perform continuous collision detection, including self-
intersection, on the meshes. We assume that we know the position
of each vertex in the meshes at every discrete time step. We also
assume the position of each vertex, between time steps, is defined

1It is not strictly a prism. Here we just use the term for the volume

formed by a swept triangle.

0n 1n)(tF
(b) a “ p r i s m ” f o r m e d b y t h ed e f o r m i n g t r i a n g l e(a) a d e f o r m i n g t r i a n g l ew i t h m o t i o n i n t e r p o l a t i o nd e f i n e d b y)(tF

Figure 1: Triangle under continuous motion through interpo-
lation: For the triangle under the motion defined by F (t), its swept
trajectory forms a “prism”.

by some continuous interpolation function. Let a polynomial func-
tion F (t), of time t, represent the interpolating function for vertex
position.

In the simplest case, F (t) is a linear function. Detecting colli-
sions between two triangles in motion reduces to performing pair-
wise vertex-face (VF) and edge-edge (EE) elementary tests [Provot
1997; Bridson et al. 2002]. These VF and EE elementary tests re-
quire solving cubic algebraic equations, which are derived from co-
planarity conditions. For two arbitrary triangles, we would need to
perform 15 tests: 6 VF and 9 EE tests. For a linear interpolating
function, these tests involve finding the roots of a cubic equation.

When F (t) is a polynomial function with degree d (d > 1), as
shown in Figure 1, the resulting test becomes more complex. We
still need to perform 15 VF and EE elementary tests, but the equa-
tions we need to have solved would have degree 3d. For example,
if we used cubic spline functions as F (t), we would need to find
the roots of an equation with degree 9. Solving these higher order
equations can be expensive and result in numerical inaccuracies. As
a result, most deformable applications use an linearly interpolating
motion between the discrete instances.

3.3 BVHs for CCD

Most prior algorithms for CCD between complex models use
BVHs. At each frame, these algorithms update the BVHs based
on the new position of the swept triangles and traverse the BVHs
to check for overlaps. Eventually, they perform elementary tests on
the triangular prisms to check for exact collisions during the [0, 1]
time interval. However, the performance of these algorithms is gov-
erned by two factors:

1. Culling Efficiency of BVH: How well a BVH fits the mesh
it is supposed to approximate directly affects its culling efficiency.
In scenes with extreme deformations, the BVH computed for one
frame may not provide good efficiency for the next frame and needs
to be updated or recomputed. Many prior algorithms for collision
detection between general deformable models use refitting algo-
rithms [van den Bergen 1997; Larsson and Akenine-Möller 2006;
Zachmann and Weller 2006; Govindaraju et al. 2005], and they may
not work well on scenes with changing topologies.

2. High number of false positives: Self-collision detection is
performed by recursively checking the BVs for overlap with other
BVs. Given that the BVs of adjacent (or nearby) triangle primitives
overlap, the hierarchical traversal does not cull many primitives at

the lower level of the tree and reaches all the leaf nodes of the hi-
erarchy. As a result, these algorithms perform exact collision tests
on a high number of triangle pairs, very few of which actually in-
tersect, resulting in a very high number of false positives.

3.4 Our Approach

We improve the performance of CCD algorithm by using novel
culling techniques and a hierarchical representation which maxi-
mizes the effect of those culling techniques. Specifically, we intro-
duce a novel two-level dynamic BVH based on k-DOPs that has
a low update cost and can provide high culling efficiency. The
two-level hierarchy is computed based on the connectivity of the
primitives, and we use a combination of refitting and selective re-
structuring algorithms to update them.

During the traversal of our two-level dynamic BVH, we cull inter-
section candidates at two-levels. We first perform high-level culling
based on a novel continuous normal cone (CNC) formulation. The
CNC test consists of the creation of a cone which bounds the direc-
tion of all the normals of a surface in a time interval and a contin-
uous contour test which detects collisions on the boundary of the
surface in the same interval. These two tests, taken together, are
sufficient to eliminate large regions of the mesh from consideration
for self-intersection. The CNCs are associated with nodes in the
hierarchy and are computed in a bottom-up manner. We use a com-
pact representation of CNCs based on Bernstein basis functions,
which have low storage and runtime overhead. These CNC tests
work particularly well in culling the regions of the mesh with low
curvature.

Our approach also performs low-level culling by reducing the num-
ber of elementary tests. Many authors have observed that there is
no need to perform all of the 15 elementary tests between adjacent
triangles, i.e. a triangle pair that shares an edge or a vertex [Govin-
daraju et al. 2005]. We introduce the concept of an orphan set to
exploit the topological and connectivity relationships between ad-
jacent triangles. The tests which belong to the orphan set represent,
in some sense, the optimal number of elementary tests between ad-
jacent triangles.

4 High-Level Culling

In this section, we present a novel high-level culling algorithm that
significantly reduces the number of false positives, leading to more
efficient execution of self-intersection queries.

One of the most expensive computations in deformable models is
self-collision detection. Prior methods for self-collisions based on
normal cones are limited to discrete collision detection. We extend
them to CCD and present a compact representation to compute a
normal cone and quickly check for collisions.

Given a continuous surface, S, bounded by a contour, C, Volino and
Thalmann [Volino and Thalmann 1994] presented a sufficient crite-
rion for no self-intersection based on the following two conditions:

1. Bounds on the normals: There is a vector, V, such that (N ·
V) > 0 for every point of the surface, S, where N is the normal
vector for a point of the surface.

2. No self-intersections on the boundary: The projection of
the contour C along the vector V does not have any self-
intersections on the projected plane.

The second condition is also called the contour test. Provot [Provot
1997] presented an efficient method to implement the first condition
based on normal cones.

0a 1a
0b 0c0n 0ntn 1n 1n 2)(✳nn 10 !

(a) a d e f o r m i n g t r i a n g l e (b) c o n t i n u o u s n o r m a lc o n e o f t h e t r i a n g l e
1b 1cta tb tc

Figure 2: Continuous normal range of a deforming triangle:
For a deforming triangle, we construct a CNC that contains n0,
n1, and (n0 + n1 − δ)/2.

In order to extend these tests to CCD, we need to develop
continuous-versions of these tests over the range of normals and
contours in the interval t ∈ [0, 1].

4.1 CNC: Continuous Normal Cone

In order to use the normal cone for CCD, we compute a normal cone
that bounds the normals of the deforming triangles in the entire in-
terval. Let a0,b0, c0 and a1,b1, c1 to be positions of the vertices
of the triangles at the time frame 0 and 1, respectively, as shown
in Figure 2(a). Also, let us define ~va = a1 − a0, ~vb = b1 − b0,
and ~vc = c1 − c0. Assuming the vertices of the triangles are un-
der linearly interpolating motion, we use the following theorem to
compute normal cones:

CNC Theorem: Given the start and end positions of the vertices
of a triangle during the interval [0, 1], whose positions are linearly
interpolated in the interval with respect to the time variable, t, the
normal, nt, of the triangle, at time t, is given by the equation:

nt = n0·B
2

0(t) + (n0 + n1 − δ)/2 · B2

1(t) + n1·B
2

2(t),

where n0 = (b0 − a0) × (c0 − a0),
n1 = (b1 − a1) × (c1 − a1), δ = (~vb − ~va) × (~vc − ~va),

and B2

i (t) is the ith basis function of the Bernstein polynomials of
degree 2.

Proof We define the following terms: at = a0 + ~va · t,
bt = b0 + ~vb · t, ct = c0 + ~vc · t. The normal vector of triangle
△atbtct is given as:

nt = (bt − at) × (ct − at)

= [(b0 − a0) + (~vb − ~va) · t] × [(c0 − a0) + (~vc − ~va) · t]

= (b0 − a0) × (c0 − a0) + (~vb − ~va) × (c0 − a0) · t +

(b0 − a0) × (~vc − ~va) · t +

(~vb − ~va) × (~vc − ~va) · t
2. (1)

Let n0 and n1 be the normal vectors of triangle △a0b0c0 and
△a1b1c1, respectively. Then:

n0 = (b0 − a0) × (c0 − a0), (2)

n1 = (b1 − a1) × (c1 − a1)

= (b0 + ~vb − a0 − ~va) × (c0 + ~vc − a0 − ~va)

= (b0 − a0) × (c0 − a0) + (~vb − ~va) × (c0 − a0)+

(b0 − a0) × (~vc − ~va) + (~vb − ~va) × (~vc − ~va).(3)

Based on above equations, we obtain:

n1 − n0 = (~vb − ~va) × (c0 − a0) + (b0 − a0) × (~vc − ~va)+

(~vb − ~va) × (~vc − ~va). (4)

We define:
δ = (~vb − ~va) × (~vc − ~va). (5)

Then from equations (4) and (5):

n1 − n0 − δ = (~vb − ~va) × (c0 − a0) + (b0 − a0) × (~vc − ~va).
(6)

By plugging the equations (2),(5), and (6) into equation (1), nt can
be represented as:

nt = n0 + (n1 − n0 − δ) · t + δ · t2

= n0 · (1 − t)2 + (n0 + n1 − δ)/2 · 2t · (1 − t) + n1 · t2

= n0 · B2

0(t) + (n0 + n1 − δ)/2 · B2

1(t) + n1 · B2

2(t).

We take advantage of the convex hull property associated with con-
trol points of Bernstein basis to compute a bound on CNCs. For a
given triangle, the range of nt is bounded by the control vertices; in
our case, those control vertices are n0, n1, and (n0 + n1 − δ)/2.
We use these three vectors to construct a CNC for each triangle
in the interval, as shown in Figure 2(b). Particularly, we use the
method proposed in [Provot 1997] to construct an axis and an apex
angle of a normal cone from three vectors. Then, the CNCs will be
merged as described in [Provot 1997] by traversing the hierarchy in
a bottom-up manner while the BVH is refitting.

Extension to other interpolating functions: In our derivation, the
CNC is defined with the assumption that the position of the deform-
ing vertices are linearly interpolated (i.e., F (t) is linear). But for
higher-order functions, e.g. quadratic, cubic, etc., the CNC equa-
tion for other motions, e.g., polynomial interpolation, the CNC
equation can be similarly derived. The result would produce a
larger set of control points for the higher-order Bernstein functions.
When the F (t) is a polynomial function with degree d, a Bernstein
basis with degree 2d will be used to perform the continuous normal
cone test.

4.2 CCT: Continuous Contour Test

Computing the continuous normal cone covers the first condition
for showing no self-intersections. We still require the second condi-
tion: a collision-free boundary for a moving surface. This typically
involves computing a projection of the contour of S and checking
for self-intersections. Even in the case of discrete collision detec-
tion, the contour test can be an expensive operation. Some prior al-
gorithms either omit it under standard geometrical contexts [Volino
and Thalmann 1994] or use some approximations [Provot 1997;
Mezger et al. 2003]. In this section, we present an exact, but effi-
cient contour tests method for CCD. At a high level, we transform
the contour tests into intersection tests between two edges that lie
on the same plane. We refer to them as planar (E,E) tests, in or-
der to differentiate it from the EE elementary tests used in CCD to
check whether two swept edges overlap.

Planar (E,E) Tests: Given a node in the BVH with a CNC
C(α,ax), where α is the apex angle, and ax is the axis of the
cone. We project the boundary edges of the connected mesh asso-
ciated with the node to a plane defined by ax and check for self-
intersection among the projected edges.

We illustrate our approach with a simple example. Consider the
two edges ab and cd in Figure 3(a). The vertices representing
their positions are a0,b0, c0,d0 at t = 0, and a1,b1, c1,d1, at

(a)
0 1

0 1
0 11 0 (b) (c)

0 1 0 10
0

0
0

0 1
Figure 3: Planar (E,E) tests : Checking whether two co-planar
edges ab and cd (shown in (a)) intersect during the interval re-
duces to discrete line segment intersection test (b) and VE tests (c).

t = 1. In order to check whether any projection of these two edges
intersect during t ∈ [0, 1], we preform the following tests:

1. Discrete line segment intersection test: A discrete line seg-
ment intersection between a0b0 and c0d0 at t = 0 is shown
in Figure 3(b). If these discrete segments do not intersect, we
need to further test to ensure there is no intersection during
t ∈ (0, 1];

2. Vertex/edge(VE) elementary test: Suppose the two deform-
ing edge segments intersect during the interval. Let t ∈ (0, 1]
be the time of first contact between them. For two moving
edges, there is only one case of elementary contact type: one
vertex of an edge just touches another edge. Analogous to the
elementary tests between the triangles, i.e. VF or EE tests,
we need to perform the VE test in the plane. Take the case in
Figure 3(c), and it boils down to 4 VE tests that are based on
the following combinations: vertex a with edge cd, vertex b

with edge cd, vertex c with edge ab, and vertex d with edge
ab. If any of these four tests returns a true value, that implies
an intersection between deforming edges ab and cd.

We use the following theorem to perform a (V,E) test in a plane.

VE Test Theorem: Suppose that a vertex a and an edge cd

undergo linear deformation in the time interval [0, 1]. Let
a0,b0, c0,d0 be the positions of all the vertices at t = 0, and
a1,b1, c1,d1 be the positions at t = 1, respectively, as shown in
Figure 3(c). Also, let us define ~va = a1 − a0, ~vc = c1 − c0, and
~vd = d1 − d0. Then, the intersection between the edge and the

vertex is governed by the root of the following equation:

(a0 − d0) × (c0 − d0) + [(~va − ~vd) × (c0 − d0) + (a0 − d0)

×(~vc − ~vd)] · t + (~va − ~vd) × (~vc − ~vd) · t2 = 0. (7)

Proof Suppose the deforming vertex overlaps with the deforming
edge, then we get

(a − d) × (c − d) = 0.

Based on the equations a = a0 + ~va · t, c = c0 + ~vc · t, and
d = d0 + ~vd · t, we get the equation (7).

After computing the intersection, a trivial test is used to ensure it
lies between the two ends of the edge. Based on the above theorem,
the problem of planar (E, E) tests can be solved by solving four
quadratic equations. A naive implementation would perform pla-
nar (E, E) tests among all pairs in O(N2) complexity, where N is
the number of the edges in the contour. We use many acceleration
techniques to speed up the computation. Those include:

1. Bounding box culling: We compute a k-DOP for each de-
forming edge swept over the time interval [0, 1]. If the k-
DOPs of two boundary edges do not overlap, the edges cannot
intersect.

2. Fewer projections: The projected boundary edges used for
the parent nodes can be directly reused for the children nodes.
As a result, only a few additional boundary edges need to be
projected for successive child nodes. We maintain a cache
that contains the boundary edges used for the parent nodes.
We store boundary edges in the cache only if the normal cone
test is satisfied, but the contour tests fails. This is performed
as part of the process of hierarchy traversal.

3. Fewer intersections: If two contour edges for a particular
node intersect, then any descendant node that has those edges
in its contour will also fail the continuous contour test. So, we
do not perform the test on children nodes.

These optimizations are easy to implement and can result in consid-
erable speedups in many benchmarks. As an example, we are able
to improve the performance of continuous contour test by 93% for
the cloth-simulation benchmark (Fig. 11) based on these accelera-
tions.

Robustness: As pointed out by Andersson et al. [Andersson et al.
2006], there are several pitfalls to use the criterion of [Volino and
Thalmann 1994]. In our definition of CNC and CCT, the simple
connectedness is ensured by storing connected triangles at BVH
nodes, and non-selfintersection of projected contour is checked at
CCT phase. All of these enhance the robustness of our algorithm.

5 Orphan Set

In the previous section, we present a test to cull potentially large
regions of the mesh from consideration for self-intersection. Ulti-
mately, we must test for collisions in the remaining regions. To per-
form these tests, we logically partition the candidate triangle pairs
into two sets: non-adjacent and adjacent pairs. The initial phase
culls the non-adjacent triangle pairs to find potentially colliding tri-
angle pairs. We perform exact collision tests on those pairs. The
second phase uses the novel concept of an orphan set to perform
the optimal number of tests between adjacent triangle pairs.

5.1 Non-adjacent Phase

The high-level culling produces non-adjacent triangle pairs whose
bounding volumes overlap. For each of these pairs we exhaustively
perform all 15 elementary tests. By virtue of their non-adjacency,
we know that any intersection detected is meaningful. The same
can’t be said for adjacent pairs.

As we perform these tests between the non-adjacent triangle pairs
we will inherently encounter redundant tests since an edge or vertex
can be shared by multiple triangles. We use an efficient database
structure to record which (V, F) and (E, E) pairs have already
been tested. For a given non-adjacent triangle pair we examine each
of the 15 elementary tests and determine if that test has already been
performed and stored in the database. If it has not, we add it to the
database and perform the test.

5.2 Adjacent Phase

Many researchers [Govindaraju et al. 2005; Hutter and Fuhrmann
2007; Wong and Baciu 2006] have observed that for a given pair of
adjacent triangles, not all 15 elementary tests are necessary. If two
triangles are adjacent, then some subset of the 15 elementary tests
operate on adjacent elements. Adjacent elements trivially intersect
and the results of tests on them would be meaningless.

Beyond that, some have recognized that the results of the non-
adjacent phase could be used to further reduce the number of tests
between adjacent pairs [Govindaraju et al. 2005]. Figure 4 shows

Figure 4: Elementary tests for adjacent triangles: Two adjacent
triangles (ta and tb) share a common edge. Only four elementary
tests are necessary: {e1

b , e1

a}, {e2

b , e2

a}, {va, tb}, and {vb, ta}. Of
those four tests, there is a non-adjacent triangle pair which would
perform the same tests. They are: {te, tf}, {tc, td}, {tg , tb}, and
{th, ta}, respectively.

Figure 5: OIS and OAS for a vertex and an edge: (a) shows
the OIS and OAS for the vertex v. Vertex v forms an orphan pair
with face a5. (b) shows the OIS and OAS for the edge e. Edge e,
likewise, forms an orphan pair with (but not limited to) edge eo.

a typical example of two edge adjacent triangles: ta and tb. Only
four tests are actually meaningful: {va, tb}, {vb, ta}, {e1

b , e
1

a}, and
{e2

b , e
2

a}.

Now consider the non-adjacent triangle pair (tb, tg). If, during the
non-adjacent phase, tb and tg have been tested and found not to
intersect we can easily argue that the test {va, tb} cannot produce a
collision. So, the test is unnecessary.

Directly exploiting this relationship requires that some form of
database be maintained. The database would store the results of
the non-adjacent phase. The adjacent phase would use the database
to determine if a particular test on an adjacent pair is necessary. For
any particular element pair on an adjacent pair of triangles, the non-
adjacent triangle pair, whose collision state could justify summary
dismissal of the elementary test, is dependent on both the type of
element pair and the nature of the adjacency between the adjacent
triangles. Each adjacent triangle pair could require multiple unique
database queries (as seen in [Govindaraju et al. 2005].)

This idea can be taken much farther and made far more efficient.
The cost (in both memory and query time) of the database is un-
necessary because the adjacent tests that need to be evaluated are
purely dependent on the topology of the mesh. The concept of the
orphan set formalizes this relationship and provides an optimal set
of tests to perform without elaborate run-time data structures, com-
plex algorithms or cache-antagonistic random memory accesses.

5.3 Orphan Pairs and Tests

Simply put, orphan tests are the elementary tests between adjacent
triangles that don’t get performed during the non-adjacent phase.
More precisely, an orphan test is a test between an elementary pair
(edge-edge or vertex-face) for which no pair of triangles exists such

Figure 6: Internal orphans: The element pair in (a), (v, a1), is an
internal orphan pair. The pyramids in (b) and (c) consist of nothing
but orphan pairs.

that each triangle is incident to one of the elements and both trian-
gles are non-adjacent. By incident triangles, we mean the triangles
that include the element in its construction, e.g., the fan of trian-
gles around a vertex. An orphan pair is the pair of elements in the
orphan test. The collection of all orphan tests is the orphan set.

5.3.1 Orphan Classification

Conceptually, there are two types of orphans: boundary and inte-
rior. Boundary orphans appear in open manifold meshes. In fact
every edge and vertex on the boundary of a mesh will be part of
one or more orphan pairs. Figure 5 shows two such orphan pairs.
Figure 5(a) shows a vertex, v, on the boundary of the mesh. The
triangle a5 is adjacent to every triangle incident to v. There is no
non-adjacent triangle pair (including a5) that would execute the test
(v, a5). So, (v, a5) is an orphan pair. Similarly, in Figure 5(b), we
see one of the orphan pairs for e: (e, e0).

Orphans are also possible on the interior of the mesh. There are
some special cases, such as a tetrahedron (Figure 6(b)) or four-
sided pyramid (Figure 6(c)), in which every triangle is adjacent to
every other triangle. Additionally, any tube with a circumference
formed by three triangles will have interior orphans. There is a
more general condition that can lead to interior orphans–if a trian-
gle in the mesh has vertices on its interior, orphans can also arise
(Figure 6(a)).

5.4 Orphan Set Computation

The number and location of orphans are strictly a function of topol-
ogy. Deformations which don’t change connectivity in the mesh
will leave the set of orphans unchanged. It is sufficient to identify
all orphans in a pre-processing step. The algorithms to identify or-
phans use two concepts: the Orphan Incident Set (OIS) and the
Orphan Adjacent Set (OAS). The OIS of an element contains all
triangles that are incident to that element (e.g. the fan around a ver-
tex.) The OAS of an element is the set of all triangles adjacent to
the triangles in OIS but not in OIS. These sets are also known as
the one-ring and two-ring, respectively. These sets are illustrated in
Figures 5(a) and (b).

With these concepts, we can test each edge and vertex to determine
which orphan pairs, if any, it belongs in. Algorithms 1 and 2 show
how orphans are identified. We simply execute each function on all
vertices and edges, respectively.

If we know a priori that there are no interior orphans, then we can
limit the search to the boundary of the mesh and reformulate the
algorithms above in a more optimized form. For example, a mesh
produced through Delauney triangulation, won’t suffer from ver-
tices on the interior of triangles. These meshes typically don’t have
interior orphans and creation of the orphan set can be constrained to
the boundary elements. In the extreme, if the mesh is a closed man-
ifold with none of the characteristics required for interior orphans,

Algorithm 1 FindVFOrphan: Find all orphan pairs built on the ver-
tex v

1: Create OIS for v
2: Create OAS for v
3: for all Triangle ta ∈ OAS do
4: adjacent = TRUE
5: for all Triangle ti ∈ OIS do
6: if ta not adjacent ti then
7: adjacent = FALSE
8: break
9: end if

10: end for
11: if adjacent == TRUE then
12: Add orphan pair {v, ta}
13: end if
14: end for

Algorithm 2 FindEEOrphan: Find all orphan pairs built on the edge
e

1: Create OIS for e
2: Create OAS for e
3: Create ES, the set of all edges in OAS
4: for all Edge ea ∈ ES do
5: if ea is incident to e then
6: continue
7: end if
8: Create OISa for ea

9: adjacent = TRUE
10: for all Triangle pair {ti, ta}, ti ∈ OIS ∧ ta ∈ OISa do
11: if ta not adjacent ti then
12: adjacent = FALSE
13: break
14: end if
15: end for
16: if adjacent == TRUE then
17: Add orphan pair {e, ea}
18: end if
19: end for

the orphan set would be completely empty.

5.4.1 Topological changes

In the event of topological changes, such as fracturing or tearing,
the orphan set can easily be updated. Changes to the orphan set
are limited to the region of the fracture or tear. We form a set con-
sisting of the triangles adjacent to the fracture (i.e. any triangle on
the fracture, and the triangles adjacent to those.) We eliminate any
orphan test in the orphan set which had an element eliminated by
the fracture. Finally, we perform Algorithms 1 and 2 on all of the
edges and vertices in the fracture adjacent set.

5.5 Processing Orphan Set

The adjacent phase simplifies to evaluating all of the tests in the
orphan set. It is possible to perform tests on only a subset of the
orphan set. We require some external condition which indicates
that a particular orphan pair can’t intersect. BV-overlap tests are
insufficient for this purpose. Because orphans lie on adjacent tri-
angles, BV-overlap tests won’t cull the triangle pair and, therefore,
can’t cull the orphan pair. However, any test which is immune to
this particular adjacency artifact would be sufficient to cull orphan
tests.

The CNC test is one such culling mechanism. If the CNC test shows

Model Tri# Adjacent Elementary tests Orphan

pairs of [Govindaraju et al. 2005] Set

Cloth 92K 564K 4.4M 4.8K

Princess 40K 269K 2.1M 2K

N-body 34K 198K 1.5M 200

Letters 5K 29K 224K 114

Table 1: This table shows the number of elementary tests per-
formed between adjacent triangles for various approaches. The
fourth column represents the work performed by [Govindaraju
et al. 2005], in which 9 elementary tests are performed for vertex-
adjacent pairs and 4 for edge-adjacent pairs. The orphan set is sig-
nificantly smaller–roughly 0.1% of the tests performed in [Govin-
daraju et al. 2005].

that no self-intersection is possible in a region, any orphan pair en-
tirely contained in that region can be summarily dismissed without
testing.

Even without such a culling mechanism, the orphan set tends to be
quite small relative to the number of possible tests between adjacent
triangles.

5.6 Completeness and Optimality

It is important to recognize that a system using orphan sets is both
complete and optimal with respect to tests between adjacent trian-
gles.

Completeness: A collision detection algorithm is complete if no
collisions are missed. In CCD all intersection tests among the prim-
itives are reduced to intersections between VF or EE pairs. If the
specific VF or EE pair is incident to non-adjacent triangles, it will
be checked for overlap in the non-adjacent phase. Otherwise that
pair corresponds to an orphan pair and will be evaluated during the
adjacent phase. Any VF or EE test that results in a collision will be
evaluated. As a result, the orphan set formulation will not miss any
collision.

Optimality: The orphan set is optimal in the sense that it contains
only those tests between adjacent triangles that cannot be evaluated
in the non-adjacent phase. No other tests between adjacent triangles
are necessary. But every pair in the orphan set must be accounted
for, whether through direct evaluation or elimination via some tech-
nique similar to CNC.

Although the size of the orphan set represents an upper bound on
the number of elementary tests between adjacent triangles that need
to be explicitly evaluated, the bound tends to be quite small. In our
benchmarks, the number of orphan tests are three orders of mag-
nitude smaller than the number of tests which would otherwise be
performed between the adjacent triangles (see Table 1).

6 Implementation and Performance

In this section, we describe our implementation and highlight the
performance of our algorithm on many benchmarks. We have im-
plemented our algorithm on a standard Intel Pentium 4 with 2.66
GHz and 2G RAM by using Microsoft Visual Studio 2005. All the
timings are generated using a single thread.

6.1 DT-BVH: Dynamic Two-Level BVH

In order to fully utilize our culling algorithms, we use a two-level
hierarchy, DT-BVH, and use it for interactive CCD.

iO iMjO jM
iM(b))(ii MB V HH

c o n t a i n s k ⑤ D O Po n l y . B o u n d i n gb o x t e s t i s u s e df o r c u l l i n g . c o n t a i n s k ⑤ D O P , C N C , a n dc o n t o u r i n f o r m a t i o n . B o u n d i n gb o x t e s t , C N C t e s t , a n d c o n t o u rt e s t a r e u s e d f o r c u l l i n g .

(a) k ⑤ D O P s h i e r a c h y : H W

Figure 7: An example of DT-BVH: The first-level is a k-DOPs
hierarchy HW shown on the left (a). The leaf node of HW repre-
sents a connected mesh. The second-level (shown on the right) hi-
erarchy is build for each connected mesh M i, Hi = BV H(M i).

All the nodes in Hi contain normal cones (CNC) and the contour
of the mesh associated with that node.

The two-level hierarchy is built based on mesh connectivity and
bounds on the normals of the triangles. We illustrate the two-level
hierarchy, DT-BVH, in Figure 7. The two-levels are:

• The first-level of the hierarchy, HW , is a k-DOP hierarchy
and each of the leaf nodes represent one of the objects Oi and
its mesh M i.

• The second-level of DT-BVH represents a k-DOP hierarchy
of each mesh, M i. We denote each of these hierarchies as
Hi = BV H(M i). We also maintain a CNC and contour
information for each node in this hierarchy.

In dynamic scenes with changing topologies, the number of objects
in the scene may change and we update these hierarchies accord-
ingly.

Please note that CNC is only associated with the nodes of the
second-level hierarchy, which contains a connected subset of the
mesh M i.

6.1.1 DT-BVH Construction

Based on the definition of DT-BVH, we use a two-level construc-
tion algorithm. We use the connectivity of each mesh, M i, to com-
pute its BVH, Hi, in a bottom-up manner. Each node of Hi rep-
resents a subset of the mesh M i. We compute the CNCs and the
boundary edges associated with each node of Hi in a bottom-up
manner. Next, we compute the first-level hierarchy, HW, based on
the root nodes of each Hi in a top down manner.

Updating DT-BVH As the models undergo deformation, we up-
date the nodes of DT-BVH. Our goal is to perform the update oper-
ation quickly and ensure that the resulting hierarchy provides tight
culling efficiency. Again, we use a two-level approach to update the
hierarchy.

• Refitting Hi’s: We use a simple, linear time refitting al-
gorithm to update the k-DOPs and CNCs of each Hi in a

Algorithm 3 SelfCollide(Node N i): Perform self-collision on a
node of Hi

1: if IsLeaf(N i) then
2: return // Skip leaf nodes.

3: end if
4: // Continuous normal cone test.

5: if TestCNC() == true then
6: // Continuous contour test.

7: if CCT() == NoIntersection then
8: return // This region can be skipped.

9: end if
10: end if
11: // Check the descendants.

12: SelfCollide(N i →left) AND SelfCollide(N i →right)
13: Collide(N i →left, N i →right)

bottom-up manner. The refitting algorithm updates the ex-
tents of each k-DOP associated with the nodes of Hi. We
also compute CNCs of each leaf node as described in Section
4.1. The CNCs of the intermediate nodes are computed in a
bottom-up manner, based on the CNCs of their child nodes.

• Restructuring HW: Given each updated Hi, we use a re-
structuring algorithm to update HW. Our goal is to compute
a tight-fitting BVH. Given scenes with moving or breaking
objects, a simple refitting approach may result in a poor hi-
erarchy in terms of culling efficiency. Instead we use a re-
structuring approach, which regroups some of the primitives
in the tree. If the number of objects in the scene is small, we
use a simple, top-down rebuilding algorithm of complexity
O(n log n), where n is the number of objects. If the num-
ber of objects is high, we perform selective restructuring, as
described below.

Selective Restructuring for Collision Detection: In order to re-
duce the restructuring time, we use a selective restructuring algo-
rithm, which restructures localized regions of the hierarchy. Par-
ticularly, we identify regions with poor culling efficiency. We use
a volumetric metric [Yoon et al. 2007] that measures the culling
efficiency of any sub-BVH within the hierarchy. We perform re-
structuring operations on regions where the restructuring benefit in
terms of improved culling efficiency is greater than the cost of re-
structuring. Each restructuring operation only affects a portion of
the tree [Yoon et al. 2007]. This formulation works well in terms of
quickly computing a tree with good culling efficiency and can also
handle breaking objects.

6.1.2 Continuous Collision Detection using DT-BVH

Our collision algorithm starts with updating DT-BVH, as described
above. The collision checking process is started by performing self-
collisions on the root node of HW . As the recursive algorithm
reaches the leaf nodes Hi, then self-collision algorithm is invoked
on the corresponding Hi. For a node of Hi with CNC, we check
whether the apex angle of the normal cone is less than π and also
perform the continuous contour test. If these two tests are satisfied,
then, we do not need to traverse deeper to check for self-collisions.
The pseudo code description of the algorithm is given in Alg. 3.
Then, elementary tests are used to check for collisions between the
leaf nodes of Hi, as shown in Algorithm 4. Finally, we perform
orphan tests.

Algorithm 4 Collide(Node N i
a, N i

b): Checks for collision between
descendants of two nodes of Hi.

1: if BoundingBoxTest(N i
a, N i

b) == NoOverlap then
2: return
3: end if
4: // Perform elementary tests on leaf nodes.

5: if IsLeaf(N i
a) AND IsLeaf(N i

b) then
6: if N i

a not adjacent to N i
b then

7: ElmTests(N i
a, N i

b) // Perform elementary test.

8: return
9: end if

10: end if
11: // Check the descendants.

12: if IsLeaf(N i
a) then

13: Collide(N i
a, N i

b →left) AND Collide(N i
a, N i

b →right)
14: else
15: Collide(N i

a →left, N i
b) AND Collide(N i

a →right, N i
b)

16: end if

Model Tri # Query Speedup over: Speedup over

(K) (time ms) the base impl. GPU-based method

Cloth 92 290 9X 2.4X

Princess 40 45 8.8X 12X

N-body 34 89 14.6X NA

Letters 5 9.4 12.6X 10X

Dragon 253 878 21.4X NA

Table 2: Performance and Speedup: This table shows the aver-
age query time of our method and performance improvement over
the base implementation and GPU-based technique of [Sud et al.
2006]. Performance improvement over the base implementation is
mainly due to our DT-BVH hierarchy representation and improved
culling methods. We observe significant improvement over the base
implementation and the GPU-based method of [Sud et al. 2006]
due to our improved culling algorithms.

6.2 Benchmarks

In order to test the performance of our algorithm, we used five dif-
ferent benchmarks, arising from different simulations with different
characteristics.

• Folding cloth simulation: We drop a cloth on top of a
ball and it curls around resulting in a high number of self-
collisions in this 92K triangle model (Fig. 11).

• Princess: A dancer with flowing skirt (40K triangles) sits
on the ground, resulting in inter- and intra-object collisions
(Fig. 8).

• N-body collision: A scene with hundreds of balls (34K tri-
angles) that are colliding with each other (Fig. 10). This se-
quence is generated using a rigid-body simulator.

• Breaking and deforming letters: Multiple deforming mod-
els of characters (5K triangles) fall into a bowl and break into
pieces (Fig. 12).

• Bunny-Dragon breaking simulation: We drop a bunny
model on top of a dragon model (total 253K triangles) and
the dragon model decomposes into a high number of smaller
pieces (Fig. 9).

All the benchmarks have multiple simulation steps. We perform
continuous collision detection between each discrete steps and
compute the first time-of-contact.

Model Base Our

implementation algorithm

Letters 340K 8K

Princess 932K 14K

N-body 3, 359K 188K

Cloth 7, 522K 216K

Dragon 16, 199K 981K

Table 3: Improved culling efficiency: This table shows the num-
ber of elementary tests performed per frame by the base method
and our improved algorithm. The combination of DT-BVH and im-
proved culling algorithms reduces the number of false positives by
almost two orders of magnitude.

6.3 Performance

The running time of our algorithm is governed by three steps: up-
dating DT-BVH (performing selective restructuring for breaking
models and refitting for simple models, e.g., no drastic deforma-
tions), traversing the DT-BVH, and performing elementary tests.

We assume that the triangles are deforming under linear continu-
ous motion and implement the EE and VF elementary tests used to
check triangular prisms for overlap by solving cubic equations. In
practice, each such elementary tests takes about 0.2 microseconds
on average. Moreover, we perform a planar (E,E) test by perform-
ing multiple VE elementary tests. Each VE elementary test reduces
to solving a quadratic equation and takes about 0.1 microseconds
on average.

Bounding volume: We selected k-DOPs (specifically 18-DOPs) as
bounding volumes over AABBs for their superior culling efficiency.
Based on our experiments, k-DOPs offer better overall performance
for CCD than AABBs. The cost to update the hierarchy is a small
fraction of the overall collision query. But the improved culling
efficiency yields an overall gain. Please note that this is not the case
in discrete collisions or ray tracing. The benefits in terms of fewer
false positives with k-DOPs offer a slight net speedup (5%-18%).

Memory overhead: The storage overhead of DT-BVH is about
500 bytes per triangle. The memory requirements of our two-level
BVH are not optimized in our current implementation and higher as
compared to maintaining a single BVH per object. Moreover, we
store more information with the intermediate nodes of the second-
level BVHs including CNCs, contour, etc.

Culling efficiency: In order to demonstrate the benefit of our hier-
archical representation and culling techniques, we implemented a
“base” version without any of these culling methods. The “base”
version also uses an k-DOPs hierarchy computed using refitting al-
gorithms (for models with fixed connectivity) and rebuilding algo-
rithms (for models with changing topologies or breaking objects).
We used the same implementation of the elementary tests, using
the cubic equation solver from [Provot 1997] , in both of these im-
plementations. Table 6.2 shows the average CCD time of our al-
gorithm and performance improvement over the base method and
GPU-based technique [Sud et al. 2006]. We observe almost one
order of magnitude improvement due to the improved culling effi-
ciency.

Table 3 shows the improvement in the number of elementary tests
performed per frame. The two orders of magnitude improvement is
due to our hierarchical representation and culling algorithms.

Figure 8: Princess benchmark: A dancer with a flowing skirt.
This model has 60K vertices and 40K triangles. Our novel CCD
algorithm takes 45ms per frame to compute all the collisions, and
is about one order of magnitude faster than prior approaches.

Figure 9: Dragon benchmark:In this simulation, a bunny model
is dropped on top of the dragon model and the dragon model breaks
into many pieces. This model has 193K vertices and 253K trian-
gles. In this scene with changing topologies, our algorithm obtains
high culling efficiency and reduces the number of false positives by
20 times, as compared to prior CCD algorithms. The average CCD
query time is about 878ms, about an order of magnitude faster than
prior algorithms.

7 Analysis and Comparison

In this section, we analyze the performance of our algorithm. The
main benefits of our algorithm come from the high culling effi-
ciency of the DT-BVH, along with the benefits of the high-level
and low-level culling methods. We observe significant reduction in
the number of elementary tests (in terms of false positives). More-
over, the time to update the DT-BVH hierarchy is relatively small
(at most 5−10% of the total query time). This results in almost one
order of magnitude improvement in our benchmarks. In the rest of
this section, we compare some of the features and the performance
with prior methods.

GPU-based accelerations: The GPU-based algorithms use the ras-
terization hardware to perform occlusion queries [Govindaraju et al.
2005] or compute 3D distance fields [Sud et al. 2006], and readback
these fields. Their performance can vary based on the specific GPU
and driver implementation. They have been combined with AABB
culling to improve the performance of CCD. We compare the per-
formance with the implementation of [Sud et al. 2006] and observe
considerable speedups on some of the benchmarks (up to 10X). As
compared to occlusion queries or readbacks, our hierarchy traver-
sal with CNC and contour tests appears to have a lower overhead.
Furthermore, the low-level culling algorithms significantly reduce
the number of elementary tests.

Kinetic BVHs and updates: [Zachmann and Weller 2006; Weller
and Zachmann 2006] used kinetic BVH and separation lists to re-
duce the number of updates and tests on the BVH. This is an event-
based approach and complementary to our work. We use a single
two-level hierarchy for all the objects in the scene as well as new
culling algorithms, which appear faster in practice. On the other
hand, it becomes harder to maintain the kinetic separation lists effi-
ciently, especially in complex scenes with hundreds of thousands of

Figure 10: N-body benchmark: In this simulation, multiple balls
are colliding with each other. This scene has 18K vertices and 34K
triangles. Our culling algorithms reduce the number of elementary
test by 18 times and can find all collisions in about 89ms per frame.

Figure 11: Cloth benchmark: We drop a cloth on top of a ro-
tating ball. This model has 46K vertices and 92K triangles and the
simulation results in a high number of self-collision. Our algorithm
takes about 290ms on average to perform continuous collision de-
tection. Our culling techniques reduce the number of false positives
by 38 times.

triangles. As a result, our approach could be faster on such complex
scenes, especially with breaking objects.

Lower-level culling: Many other authors have also proposed meth-
ods to reduce the number of elementary tests between adjacent
primitives [Govindaraju et al. 2005; Hutter and Fuhrmann 2007;
Wong and Baciu 2006; Curtis et al. 2008]. Our formulation is
more general and achieves higher culling and fewer elementary
tests as compared to the prior approaches. We also compared the
culling efficiency of our algorithm with that presented in [Hutter
and Fuhrmann 2007]. We observe that our method performs 8.9
times and 7 times fewer elementary tests in the cloth and N-body
collision benchmarks, respectively. Algorithms [Wong and Baciu
2006; Curtis et al. 2008] can be classified as feature based culling
methods. By making some sort of assignment at preprocessing
stage, all the replication of elementary test can be naturally solved.
In practice, these methods are limited to scenes with fixed connec-
tivity. For breaking scenes with changing topology, it is inefficient
to adjust the assignment dynamically. While our culling method is
more general and more robust to deal with all kinds for deforming
scene.

Improved normal cone tests: Most prior work in use of normal
cones has been limited to discrete collision detection. Recently,
[Wong and Baciu 2005] presented a technique to bound the nor-
mals of a mesh for continuous motion, using a ”canonical cone”.
However, their formulation is rather conservative and inefficient as
compared to our fast culling test based on Bernstein basis represen-
tation.

7.1 Limitations

Our approach has some limitations. First of all, the benefit of our
approach is limited by the extent of connectivity in the model. As

Figure 12: Letters benchmark: Multiple characters interact with
a bowl. This model has 3K vertices and 5K triangles.It takes 9.4ms
on average for CCD, which is almost 10 times faster than the run-
ning time presented in [Sud et al. 2006].

the objects break into pieces and loses mesh connectivity, the ben-
efit of high-level and low-level culling techniques decreases. Sec-
ondly, our normal bounds CNC test can be quite conservative, espe-
cially on models with highly varying curvature. We observe this in
cloth simulation benchmarks, after the cloth folds multiple times.
Thirdly, our memory requirements can be high due to maintaining
various lists.

8 Conclusion and Future Work

We present a novel algorithm for CCD between complex de-
formable models. Our approach is based on a two-level hierarchy
and applicable to models arising in different applications, includ-
ing cloth simulation, breaking objects and N-body simulations. We
introduce high-level and low-level culling techniques that signif-
icantly reduce the number of false positives. We have tested the
performance on different benchmarks and observed considerable
improvement in performance over prior CCD algorithms.

There are many avenues for future work. Firstly, we would like
to address some of the limitations highlighted in Section 7.1. Sec-
ondly, we want to further improve the performance, especially on
scenes with breaking objects that reduce the mesh connectivity.
One option would be to develop novel algorithms that can easily
utilize the multiple cores on current processors and ensure good
cache efficiency. Finally, we would like to integrate our collision
detection algorithm into different simulators and use application-
specific optimizations to improve the performance.

Acknowledgments

We would like to thank Stephane Redon for many useful discus-
sions and his initial code for elementary tests. We also thank Ras-
mus Tamstorf, Naga Govindaraju, Avneesh Sud, Russ Gayle and
Ming Lin for useful discussions and the benchmarks.

This research is supported in part by ARO Contracts DAAD19-02-
1-0390 and W911NF-04-1-0088, NSF awards 0400134, 0429583
and 0404088, DARPA/RDECOM Contract N61339-04-C-0043,
Disney and Intel. Yoon is supported in part by a seed grant
from KAIST, ETRI, and IT R&D program of MIC/IITA contract
ITAA1100070400010001000300200. Tang is supported in part by
National Basic Research Program of China (No. 2006CB303106),
Natural Science Foundation of Zhejiang, China (No. Y107403),
Doctoral subject special scientific research fund of Education Min-
istry of China (No. 20070335074), and Future Academic Star fel-
lowship from Zhejiang University.

References

ANDERSSON, L.-E., STEWART, N. F., AND ZIDANI, M. 2006.
Conditions for use of a non-selfintersection conjecture. Comput.
Aided Geom. Des. 23, 7, 599–611.

BARAFF, D., WITKIN, A., AND KASS, M. 2003. Untangling
cloth. Proc. of ACM SIGGRAPH, 862–870.

BRADSHAW, G., AND O’SULLIVAN, C. 2004. Adaptive medial-
axis approximation for sphere-tree construction. ACM Trans. on
Graphics 23, 1, 1–26.

BRIDSON, R., FEDKIW, R., AND ANDERSON, J. 2002. Robust
treament for collisions, contact and friction for cloth animation.
Proc. of ACM SIGGRAPH, 594–603.

CURTIS, S., TAMSTORF, R., AND MANOCHA, D. 2008. Fast
collision detection for deformable models using representative-
triangles. In SI3D ’08: Proceedings of the 2008 Symposium on
Interactive 3D graphics and games, 61–69.

ERICSON, C. 2004. Real-Time Collision Detection. Morgan Kauf-
mann.

FOSKEY, M., GARBER, M., LIN, M., AND MANOCHA, D. 2001.
A voronoi-based hybrid planner. Proc. of IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems.

GOTTSCHALK, S., LIN, M., AND MANOCHA, D. 1996. OBB-
Tree: A hierarchical structure for rapid interference detection.
Proc. of ACM Siggraph’96, 171–180.

GOVINDARAJU, N., LIN, M., AND MANOCHA, D. 2004. Fast
and reliable collision detection using graphics hardware. Proc.
of ACM VRST .

GOVINDARAJU, N., KNOTT, D., JAIN, N., KABUL, I., TAM-
STORF, R., GAYLE, R., LIN, M., AND MANOCHA, D. 2005.
Collision detection between deformable models using chromatic
decomposition. ACM Trans. on Graphics (Proc. of ACM SIG-
GRAPH) 24, 3, 991–999.

HEIDELBERGER, B., TESCHNER, M., AND GROSS, M. 2003.
Real-time volumetric intersections of deforming objects. Proc.
of Vision, Modeling and Visualization, 461–468.

HEIDELBERGER, B., TESCHNER, M., AND GROSS, M. 2004. De-
tection of collisions and self-collisions using image-space tech-
niques. Journal of WSCG 12, 3, 145–152.

HUBBARD, P. M. 1993. Interactive collision detection. In Pro-
ceedings of IEEE Symposium on Research Frontiers in Virtual
Reality.

HUTTER, M., AND FUHRMANN, A. 2007. Optimized continu-
ous collision detection for deformable triangle meshes. In Proc.
WSCG ’07, 25–32.

JAMES, D. L., AND PAI, D. K. 2004. BD-Tree: Output-sensitive
collision detection for reduced deformable models. Proc. of
ACM SIGGRAPH, 393–398.

KIM, Y., VARADHAN, G., LIN, M., AND MANOCHA, D. 2003.
Efficient swept volume approximation of complex polyhedral
models. Proc. of ACM Symposium on Solid Modeling and Ap-
plications, 11–22.

KLOSOWSKI, J., HELD, M., MITCHELL, J., SOWIZRAL, H., AND

ZIKAN, K. 1998. Efficient collision detection using bounding
volume hierarchies of k-dops. IEEE Trans. on Visualization and
Computer Graphics 4, 1, 21–37.

KNOTT, D., AND PAI, D. K. 2003. CInDeR: Collision and inter-
ference detection in real-time using graphics hardware. Proc. of
Graphics Interface, 73–80.

LARSSON, T., AND AKENINE-MÖLLER, T. 2006. A dynamic
bounding volume hierarchy for generalized collision detection.
Computers and Graphics 30, 3, 451–460.

LAUTERBACH, C., YOON, S., TUFT, D., AND MANOCHA, D.
2006. RT-DEFORM: Interactive Ray Tracing of Dynamic
Scenes using BVHs. IEEE Symposium on Interactive Ray Trac-
ing, 39–46.

LIN, M., AND MANOCHA, D. 2003. Collision and proximity
queries. In Handbook of Discrete and Computational Geometry.

MEZGER, J., KIMMERLE, S., AND ETZMUβ , O. 2003. Hierarchi-
cal techniques in cloth detection for cloth animation. Journal of
WSCG 11, 1, 322–329.

OTADUY, M., CHASSOT, O., STEINEMANN, D., AND GROSS, M.
2007. Balanced hierarchies for collision detection between frac-
turing objects. In IEEE Virtual Reality, 83–90.

PROVOT, X. 1997. Collision and self-collision handling in cloth
model dedicated to design garment. Graphics Interface, 177–
189.

REDON, S., KHEDDAR, A., AND COQUILLART, S. 2002. Fast
continuous collision detection between rigid bodies. Proc. of
Eurographics (Computer Graphics Forum) 21, 3, 279–288.

REDON, S., KIM, Y. J., LIN, M. C., AND MANOCHA, D. 2004.
Fast continuous collision detection for articulated models. In
Proceedings of ACM Symposium on Solid Modeling and Appli-
cations, 145–156.

SANNA, A., AND MILANI, M. 2004. CDFast: an algorithm com-
bining different bounding volume strategies for real time colli-
sion detection. SCI Proceedings 2, 144–149.

SUD, A., OTADUY, M. A., AND MANOCHA, D. 2004. DiFi: Fast
3D distance field computation using graphics hardware. Com-
puter Graphics Forum (Proc. Eurographics) 23, 3, 557–566.

SUD, A., GOVINDARAJU, N., GAYLE, R., KABUL, I., AND

MANOCHA, D. 2006. Fast proximity computation among de-
formable models using discrete voronoi diagrams. Proc. of ACM
SIGGRAPH, 1144–1153.

TESCHNER, M., KIMMERLE, S., HEIDELBERGER, B., ZACH-
MANN, G., RAGHUPATHI, L., FUHRMANN, A., CANI, M.-
P., FAURE, F., MAGNENAT-THALMANN, N., STRASSER, W.,
AND VOLINO, P. 2005. Collision detection for deformable ob-
jects. Computer Graphics Forum 19, 1, 61–81.

VAN DEN BERGEN, G. 1997. Efficient collision detection of com-
plex deformable models using AABB trees. Journal of Graphics
Tools 2, 4, 1–14.

VOLINO, P., AND THALMANN, N. M. 1994. Efficient self-
collision detection on smoothly discretized surface animations
using geometrical shape regularity. Computer Graphics Forum
(EuroGraphics Proc.) 13, 3, 155–166.

VOLINO, P., AND THALMANN, N. M. 2000. Accurate collision
response on polygon meshes. In Proc. of Computer Animation,
154–163.

WELLER, R., AND ZACHMANN, G. 2006. Kinetic separation
lists for continuous collision detection of deformable objects. In
Virtual Reality Interactions and Physical Simulation, 189–196.

WONG, W. S.-K., AND BACIU, G. 2005. Dynamic interaction be-
tween deformable surfaces and nonsmooth objects. IEEE Tran.
on Visualization and Computer Graphics 11, 3, 329–340.

WONG, W. S.-K., AND BACIU, G. 2006. A randomized mark-
ing scheme for continuous collision detection in simulation of
deformable surfaces. Proc. of ACM VRCIA, 181–188.

YOON, S., CURTIS, S., AND MANOCHA, D. 2007. Ray trac-
ing dynamic scenes using selective restructuring. Proc. of Euro-
graphics Symposium on Rendering.

ZACHMANN, G., AND WELLER, R. 2006. Kinetic bounding vol-
ume hierarchies for deforming objects. In ACM Int’l Conf. on
Virtual Reality Continuum and its Applications.

ZHANG, L., AND MANOCHA, D. 2008. Motion interpolation
with distance constraints. Tech. Rep. TR 08-001, Department
of Computer Science, UNC Chapel Hill.

ZHANG, X., REDON, S., LEE, M., AND KIM, Y. J. 2007. Con-
tinuous collision detection for articulated models using taylor
models and temporal culling. ACM Transactions on Graphics
(Proceedings of SIGGRAPH 2007) 26, 3, 15.

