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�TODAY’S SOCS contain multiple programmable

processor cores, hardware accelerators, and dedi-

cated peripherals. In addition, a growing amount of

embedded software runs on SoCs, causing both hard-

ware and software complexity to increase rapidly.

Many SoCs are built using a globally asynchronous,

locally synchronous (GALS) design style to support

tens of different clock domains and to facilitate lay-

out, power management, and interfacing to the out-

side world.

Before silicon is manufactured, a SoC’s correctness

must be confirmed through formal verification, simu-

lation, and emulation. These techniques provide con-

fidence that no design errors were introduced and

that the resulting chip will behave according to its

specification. However, the number of use cases veri-

fied must be traded off with the amount of design

detail��that is, the level of abstraction��included in

the verification. Therefore, functional and electrical

problems might go undetected at this stage because

it is impossible to verify all use cases at the detail

level of a physical implementation. For GALS SoCs

in particular, verifying a SoC design’s behavior for

all combinations of clock frequencies and phases is

not feasible. Prototype silicon, therefore, can still con-

tain errors that manifest themselves only in the prod-

uct, outside the controlled test and verification

environment. Any remaining error must be found

and removed as quickly as possible in postsilicon val-

idation and debug. Industry benchmarks show that,

on average, postsilicon debug con-

sumes more than 50% of total project

time.1 This article introduces an ap-

proach we have developed to improve

this process.

Why SoC debug is difficult
Debugging a SoC involves three non-

trivial tasks: observing its state, obtain-

ing a consistent state, and directing the SoC to the

erroneous trace and state.

Observability

The first difficulty lies in the limited observability

that a SoC provides of what happens inside it when it

executes in its target environment and of why it doesn’t

exhibit its specified behavior (i.e., the problem’s root

cause). Ideally, we would use simulator-like functional-

ity to inspect the state and operation of each intellec-

tual property (IP) block in the chip, in as much detail

as needed to analyze the erroneous behavior. Unfortu-

nately, two factors constrain observability for silicon

SoC implementations: the limited amount of debug in-

formation that we can stream through the device out-

put pins in real time and the limited amount of on-

chip memory that we can dedicate to capturing

debug information without affecting system functional-

ity or adding too much to final product cost.

One popular debug approach that overcomes the

observability problem is the so-called interactive (or

run/stop) technique, which stops an execution of

the SoC before its state is inspected in detail. An ad-

vantage of this technique is that we can inspect the

SoC’s full state without running into the device pins’

speed limitations. It also requires only a small amount

of additional debug logic in the SoC.2 The main disad-

vantage of interactive debug is that because the SoC

must be stopped prior to observing its state, the tech-

nique is intrusive.
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Sampling and consistency

Regardless of the specific

debug technique used, finding

an error requires analysis of the

SoC state. Because on-chip com-

munication delays are not negli-

gible in large SoCs, it is not

possible to instantaneously stop

and observe the entire state of

GALS SoCs. SoCs are therefore

similar to distributed systems,

for which obtaining a consistent

state snapshot is a difficult prob-

lem.3 A consistent SoC state con-

sists of IP block states that are

both locally and globally consis-

tent. Local consistency allows

the combination of single-bit val-

ues, as stored in the flip-flops in

the IP block, to be interpreted

as a valid functional IP state

(counter values, instructions,

etc.). Global consistency enables

correlation and interpretation of

locally consistent states across

IP blocks. Achieving global con-

sistency is difficult because tak-

ing a global snapshot is not

instantaneous. IP block states can evolve during this

time, and data must be captured in more than one

place. For example, a write transaction could be cap-

tured first in a CPU and then, on its way to memory, in

the interconnect.

Sampling an IP block’s state with its own clock sig-

nal ensures local consistency. However, in a GALS

SoC, there is no single moment at which the clocks

of all IP blocks coincide. Figure 1 illustrates this prob-

lem; it shows the timeline of two asynchronous IP

blocks, A and B. Each circle indicates a state change

in a block. When sampling the state of Block B using

the clock signal of Block A as a sample signal, we ob-

serve either one of the two states��B1 or B2��for

Block B (indicated by the black circles) or an invalid

intermediate state. The same is true in sampling the

state of Block A (state A1 or A2) using the clock signal

of Block B.

The captured state of a GALS SoC, therefore, is not

necessarily consistent. Synchronizing the moment of

taking a snapshot with any of the clock signals creates

the risk of sampling the state of an unrelated clock

domain while it is still changing. This leads to meta-

stability in (some of) the flip-flops in the observed

clock domain and possibly to capturing a locally in-

consistent state. Alternatively, sampling each IP

block independently on its own clock at a different

point in time results in locally consistent states that

may have progressed to different extents. Hence,

they might not be correlated in a globally consistent

state.

Nondeterminism and erroneous state

Modern SoCs circumvent the sampling problem by

using handshake-based IP communication protocols,

such as the advanced extensible interface (AXI).4

During a handshaked data exchange, the data on

the initiator’s output remains stable until the target

has explicitly indicated that it has sampled the data.

Figure 2 shows an example of a four-phase handshake

protocol. The initiator prepares data on its data out-

puts before asserting its valid output signal. This

signal is then synchronized inside the target. The tar-

get samples the data inputs when it sees an activated

Local state Sample moment Sample moment

Block A

Block B

B1

A1 A2

B2

Time

Clock A

Clock B

Figure 1. The sampling problem in a globally asynchronous, locally synchronous

(GALS) SoC with multiple clocks.
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Figure 2. Handshake-based communication between clock domains.
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valid signal, and then it asserts its accept output sig-

nal. This signal is synchronized in the initiator. The ini-

tiator deasserts its valid output when it sees the

activated accept signal; then the target deasserts its

accept signal.

Handshake-based communication ensures that

initiator data outputs are held functionally stable

for the handshake’s duration, ensuring that the target

can sample the data correctly. This process can take

multiple clock cycles in each initiator and target

clock domain because the time it takes the initiator

(or target) to decide whether this signal is asserted

depends on the amount of time between signal as-

sertion and the initiator (or target) clock’s active

edge. The shorter this interval, the longer it can take

the initiator (or target) to reach a decision.5 As an un-

avoidable consequence of asynchronous chip I/O

and the GALS design style, the clock cycle in which

the target sees the valid data is nondeterministic��it

depends on relative clock frequencies, clock phases,

and fluctuations in the signal level’s settling to a stable

value.

Because communication between IP blocks takes

a variable amount of time, their behaviors can vary

from one execution run to the next. Even sampling

each IP block i on the same local clock cycle ci

does not yield a constant result from run to run.6 It

may thus be necessary to rerun the SoC many times

before an error is reproduced because the error

might depend on unlikely timings of data transfers.

Furthermore, with more than two IP blocks, the

nondeterministic behavior at the clock-cycle level

propagates to higher abstraction levels, such as the

transaction level. When asynchronous IP blocks

share a resource, an arbiter must decide the order

in which requests from multiple IP blocks are pro-

cessed. Requests from different IP blocks may arrive

in different clock cycles at the

arbiter’s inputs over multiple exe-

cutions of the SoC, leading to dif-

ferent execution interleavings.

(Using a handshaking asynchro-

nous arbiter instead of a sam-

pling synchronous arbiter incurs

the same problem.5)

Figure 3 shows an example of

this problem. Here, the requests

from the producer and consumer

to the shared memory are very

close in time. Small differences

in clock frequency and/or phase between execution

runs can change the order in which the arbiter

receives and processes these requests. This can affect

system state at the transaction level. For example, the

result of a read operation by the consumer can de-

pend on whether a write operation by the producer

preceded it or not. By introducing nondeterminism

at the transaction level, the GALS design style further

complicates error reproducibility.

An error can therefore be intermittent��that is, it

might not occur in all traces, which would make it

permanent. For simplification, we assume that errors

are constant��that they persist after they occur and

are not transient. They are also certain��there is no

probing effect making the debug observation itself in-

trusive and changing the observed SoC’s behavior

from run to run.7

Problem statement

In summary, although the GALS design style solves

many timing and scalability issues, it introduces two

fundamental problems for debug:

1. how to obtain a consistent global state, when no

instantaneous distribution of a sample clock is

possible, and when there is no sample clock

aligned with all IP clocks to avoid metastability

or inconsistent data; and

2. how to force the SoC to arrive in an erroneous

state, when in each SoC execution run, each asyn-

chronous communication may use a different

number of clock cycles to synchronize, leading

to different traces at both the clock-cycle and

transaction levels.

To address these problems, we have developed the

CSAR (for communication-centric, scan-based,

abstraction-based, run/stop-based) debug approach.
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CSAR debug approach
The CSAR approach abstracts from absolute time

by raising the moment of state sampling from incon-

sistent local clock cycles to the level of handshakes of

globally consistent IP communication protocols. The

on-chip architecture supports the distribution of

events that safely (but potentially at a nondeterminis-

tic time) stop the communication handshakes and

hence communication between IP blocks. This

ensures that the states of individual (single-threaded)

IP blocks are stable and hence can be sampled deter-

ministically and that the states of different IP blocks

are consistent with each other; that is, every data ele-

ment (message) is found either in the state of the

sender or receiver IP block or in the state of the chan-

nel between them. In addition, through guided replay

of selected transactions, we force execution to con-

tinue along a subset of traces toward a trace that

exhibits the error.

The CSAR approach’s most important ingre-

dient is the temporal abstraction of clock cycles

to handshakes and transactions, which has several

consequences.

First, almost all IP blocks stall when they cannot

send or receive data. Disabling the valid and/or ac-

cept signals of IP ports stabilizes the internal state,

which then can be sampled on any clock. Disabling

communication handshakes allows observation of lo-

cally consistent states, alleviating problem 1.

Second, using temporal abstraction of clock cycles

to handshakes makes the communication between

two IP blocks deterministic. The variations in the non-

deterministic number of clock cycles for a single

communication action are simplified to a determinis-

tic handshake (data was either transferred or not),

partially addressing problem 2. The abstraction to

handshakes does not completely eliminate nondeter-

minism because the decision to stop can be located

very close in time to the handshake, potentially caus-

ing nondeterminism in the decision to stop before or

after the particular handshake. As a consequence,

however, the resulting nondeterminism in state will af-

fect a larger set of correlated data (e.g., an entire

transaction), allowing that data to be more easily

interpreted, unlike individual bits.

Third, the previous item also contributes to solv-

ing problem 1 by guaranteeing that communicating

asynchronous IP blocks are consistent with each

other, since data is either in the sender (if the hand-

shake did not occur) or in the receiver (if the

handshake did occur). Moreover, data is never dupli-

cated (e.g., due to oversampling the slower clock) or

lost (e.g., due to undersampling the faster clock).

Since this consistency holds for all communicating

IP blocks, it in turn guarantees global consistency.

The event distribution interconnect (EDI), described

later, ensures that IP blocks stop as soon as possible,

such that IP states have minimally progressed beyond

the moment at which the system was commanded to

stop.

Finally, temporal abstraction removes the variation

in time (the number of clock cycles per handshake)

but not the nondeterministic interleaving of transac-

tions for more than two IP blocks. The latter still

causes the multiple traces of Figure 3. Although we

can solve this problem by enforcing a static order

(interleaving) for all arbiters in the SoC,8 this is

quite restrictive and often wasteful in performance.

Therefore, we allow nondeterministic interleavings

in normal execution runs. For debugging, we must

find an erroneous trace, which, ideally, we can then

replay at will. Deterministic replay, the recording

and replaying of a particular order of arbiter decisions

(at particular local clock cycles), can be expensive.9

For this reason, the CSAR approach incorporates mon-

itors for nonintrusive observation of the SoC until a par-

ticular event of interest occurs. On this event, the

distributed protocol-specific instrument (PSI) compo-

nents enforce a particular local order of handshakes

and, hence, arbitration interleavings. The SoC is thereby

guided to the erroneous state, alleviating problem 2.

However, the PSIs are currently directed from off-

chip debugger software via the IEEE Std. 1149.1-2001

test access port (TAP), which is onerous, and the

guiding process remains challenging.

Communication-centric debug

In traditional, computation-centric debug ap-

proaches, we observe computation inside IP blocks,

especially embedded processors. When an impor-

tant internal event occurs, we can take specific

debug actions, such as stopping the computation

in some or all IP blocks.

With an increasing number of processors, commu-

nication and synchronization between IP blocks grow

in complexity and become a major source of errors.

To complement mature computation-centric pro-

cessor debug methods, the CSAR approach also

allows debugging the communication and synchroni-

zation between IP blocks.
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Older on-chip interconnects, such as the advanced

peripheral bus (APB) and ARM high-performance bus

(AHB), are single-threaded and process only one

transaction at a time. As a result, the interconnect

forces a unique trace for all IP blocks even when a

GALS design style is used. For scalability and perfor-

mance, newer interconnects, such as multilayer

AHB and AXI buses and networks on chip (NoCs),10

are multithreaded. In other words, they allow both

multiple transactions between a master and a slave

(pipelining) and concurrent transactions between dif-

ferent masters and slaves. Therefore, no unique trace

exists for these newer interconnects.

The aim of communication-centric debug in the

CSAR approach is to observe and control the traces

that the interconnect, and hence the IP blocks

attached to it, follow. This gives insight into the com-

munication and synchronization between IP blocks

and allows (partially) deterministic replay.

Scan-based debug

Because only a limited amount of trace data can

be stored on-chip or sent off-chip, in the CSAR

approach we allow the user to observe state only

when the system has been stopped. We reuse the

scan chains that embedded systems use for manufac-

turing test to create access to all state in the chip’s flip-

flops and memories via the TAP.11 This helps minimize

silicon area cost.

Run/stop-based debug

Because state can be observed only via the scan

chains when the system has stopped, we use non-

intrusive monitoring and run/stop control to stop

the system at interesting points in time. We imple-

ment these functions by monitoring a subset of the

system state and generating events on programma-

ble conditions. These assertions can be distribu-

ted��that is, they can involve multiple monitors at

different locations��and sequential��that is, they

can consider the state at different points in time.

The EDI broadcasts events at high speed to the mon-

itors and the PSIs.

Ideally, we would deterministically follow the

erroneous trace. However, rather than collecting

and storing information for replay, we first monitor

(unintrusively) for a happening of interest. Then, we

iteratively guide the system toward the error trace

by disallowing particular communications, thereby

forcing execution to continue along a subset of

system traces. Thus, we can iteratively refine the set

of system traces to a unique trace that exhibits an

error. This process can be interpreted as partially

deterministic replay, or guided replay, although errors

can become uncertain because the debug process is

intrusive, occurring only after the system has stopped

and using off-chip debugger software.

Abstraction-based debug

In the CSAR approach, we use temporal abstrac-

tion to limit the frequency and number of observa-

tions to those of interest. Rather than observing

a port between an IP block and the interconnect

at every clock cycle, the monitors, by abstracting

to handshakes, consider only the clock cycles

in which information is transferred. Conventional

computation-centric debug can be used in combina-

tion with this approach to observe the internal behav-

ior of IP blocks.

For example, an AXI transaction request consists of

a command and a number of data words. Each of

these can be individually abstracted to a handshake.

Similarly, a response consists of a number of data

words. A message is a request or a response, and a

transaction is the request together with the (optional)

response. Figure 4 shows temporal abstraction from

clock cycles, via handshakes and transactions, to dis-

tributed shared memory. At each step, we combine a

number of events into a coarser event that is mean-

ingful and consistent in itself.

As Figure 4 shows, we also use structural and be-

havioral abstractions. Our debug observability involves

reusing the scan chains to retrieve the functional state

(the bits in registers and memories) from the chip

when the system has stopped. This provides intrusive

access to state from the chip. The resulting state

dump is a sequence of bits that is still mapped to log-

ical registers and memories in gate- and register-

transfer-level descriptions. Modules are one level

higher, corresponding to the structural design hierar-

chy. These abstraction levels only describe structure��

that is, how gates and registers are (hierarchically)

interconnected.

The next level makes a significant step in abstrac-

tion by interpreting structural modules as functional

IP blocks. Information about an IP block’s intended

behavior lets us interpret sets of registers. For exam-

ple, a simple IP block that implements a FIFO buffer

contains data registers and read and write pointers.

At the functional IP level, we can interpret the values

Transaction-Level Validation of Multicore Architectures
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in the read and write registers

and, for example, display only

the valid entries in the data

registers.

The higher abstraction levels,

from channel to use case, go

one step further. They abstract

from hardware to software, or

from the static design-time view

to the dynamic runtime view��

in other words, from structural

components of the system to its

logical view, or how it is pro-

grammed. Because we focus on

communication, we move from

structural interconnect compo-

nents such as routers and network

interfaces to logical communica-

tion channels and connections

used by applications. Processors

execute functions, which are

part of threads and tasks that

synchronize, which in turn are

part of the complete application.

Finally, use cases define the com-

binations of applications that

run on the system, as required

by the user.

Experimental results
Figure 5 shows a multiple-clock SoC that illustrates

our approach. CPU tiles 1 and 2, each with tightly

coupled instruction and data memories, communi-

cate via the NoC and two memory tiles, using

the C-HEAP (CPU-controller heterogeneous em-

bedded architectures for signal processing) soft-

ware FIFO protocol.12 The SoC uses clock domain

crossing modules to communicate across clock do-

main boundaries. CPU tile 3 is responsible for initi-

alizing the NoC and is synchronous with it. The

monitors, PSIs, and EDI (not shown) count hand-

shakes on the communication interfaces and, if

programmed, stop all communication on a particu-

lar handshake.

We defined two use cases. In case 1, all blocks op-

erate with a clock period of 2,000,003 femtoseconds

(approximately 500 MHz). For use case 2, we change

the clock period of tile 1 to 3,000,016 fs (approxi-

mately 333 MHz), and of tile 2 to 5,000,011 fs (approx-

imately 200 MHz). We chose these periods because
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they are prime and they yield realistic operating

frequencies.

We conducted two experiments. In the first exper-

iment, we sampled the entire system state in the inter-

val 0 to 50,000 NoC clock cycles and compared all

state bits. (A bit is stable if it

has the same value in both

traces.) Figure 6a shows that

the amount of state unstableness

due to the use of multiple clocks

varied between 0 and 5,533 bits,

with an average of 2,617 bits.

In the second experiment

(Figure 6b), we programmed

our debug infrastructure to first

stop the entire system on hand-

shakes 60, 70, 80, 90, and 100

on the interface between tile 1

and the NoC. For each hand-

shake, the monitor in tile 1 gener-

ated an event when the desired

handshake on the tile’s interface

occurred. The EDI sent the

events to all the PSIs, which

then inhibited communication

on the local interface. We then

waited until all communication

was stopped to extract the sys-

tem state. This wait can take

some time because IP blocks

may have internal activity��for

example, the NoC continues to

move packets until they have

all arrived at their destinations.

Some internal activity might

never cease, such as the NoC

arbiter’s counters.

We show the absolute times

of breakpoints for both use

cases at the top of Figure 6a.

Note that in use case 2, where

tile 1 ran at a lower frequency,

the handshakes occurred later

than in use case 1. With the

CSAR approach, we corrected

for this difference in time and

prevented the unstableness it

causes in system state.

Figure 6b shows the remain-

ing unstableness in the entire

state when stopping on the indicated communication

handshakes. The remaining unstableness was pre-

dominantly located in registers on the boundaries

of the clock domains that could nondeterministi-

cally sample signals from neighboring clock domains.
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By using the communication handshake level, the CSAR debug approach significantly

lowers the number of unstable bits per observed state.
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The values in these registers, however, are never used

without a valid handshake, so their unstableness did

not affect the clock domain’s functional operation.

Figure 6b shows that the CSAR approach yielded a

significantly lower number of unstable state bits, eas-

ing state interpretation and thus improving system

debuggability.

THE CSAR APPROACH effectively uses hardware- and

software-based temporal, structural, and behavioral

abstraction techniques in the debug process to obtain

globally consistent states of a GALS SoC and guide its

execution to an erroneous state. This guiding process

remains challenging and is a subject of our ongoing

research. �
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