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Interactive Decal Compositing with Discrete Exponential Maps
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Figure 1: A clay elephant statue (left) was modeled using sketch-based implicit-surface modeling software. Then, a lapped base texture and
25 feature textures were extracted from 22 images taken with a digital camera and composited on the surface. Photography, image creation,
and texture positioning was completed in under an hour.

Abstract

A method is described for texturing surfaces using decals, images
placed on the surface using local parameterizations. Decal pa-
rameterizations are generated with a novel O(N logN) discrete
approximation to the exponential map which requires only a sin-
gle additional step in Dijkstra’s graph-distance algorithm. De-
cals are dynamically composited in an interface that addresses
many limitations of previous work. Tools for image process-
ing, deformation/feature-matching, and vector graphics are imple-
mented using direct surface interaction. Exponential map decals
can contain holes and can also be combined with conformal pa-
rameterization to reduce distortion. The exponential map approx-
imation can be computed on any point set, including meshes and
sampled implicit surfaces, and is relatively stable under resampling.
The decals stick to the surface as it is interactively deformed, allow-
ing the texture to be preserved even if the surface changes topology.
These properties make exponential map decals a suitable approach
for texturing animated implicit surfaces.

1 Introduction

Texture mapping [Blinn and Newell 1976] is one of the major stages
in the modeling and animation pipeline. Texture design is gener-
ally a manual process and consumes a significant amount of the ef-
fort in most animation projects. Constrained parameterization tech-
niques [Lévy 2001] can provide some relief if suitable images are
available, however constraint placement is tedious and may need to
be repeated if the surface or texture is modified. Painting tools,
particularly 3D painting systems [Hanrahan and Haeberli 1990],
are the real workhorses of interactive texture design. Unfortunately
these tools are relatively inflexible. Useful operations such as copy-
and-paste are unavailable and there is no provision for re-using ex-
isting textures.

A third style of texturing interface, which combines aspects of both
painting and constraint tools, is the decaling interface, introduced
by Pedersen [1996]. In this approach the metaphor is that of de-
cals, or “stickers”, which are 2D images affixed to the surface. De-
cals are treated as independent scene elements which are simply
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constrained to lie on surfaces, but may otherwise be interactively
manipulated. Because a simple mapping exists between the image
and the surface, 2D image processing tools can be trivially imple-
mented. Decals are composited in real-time, mimicking 2D image
compositing [Porter and Duff 1984] and vector graphics interfaces.
This approach allows artists to interact with surface texture directly,
using familiar 2D methods and tools. One of the largest benefits of
decaling is that it allows for easy re-use of 2D images in texture
design. When combined with a digital camera or image database,
realistic textures can be created very quickly (Figure 1).

Pedersen’s [1996] pioneering work on decaling interfaces had many
practical limitations. A global base parameterization was required,
complicating use on implicit and point-set surfaces and prevent-
ing animation. Decals were limited to deformed rectangles by the
iterative mass-spring mesh optimization approach taken to parame-
terization. The user was required to manually define the decal cor-
ners, and it was not possible to automatically create a decal around
an arbitrary surface curve or update the decals if the underlying
surface changed. Some recent systems have taken decal-like ap-
proaches, including lapped textures [Praun et al. 2000] and texture
sprites [Lefebvre et al. 2005], however neither provides support for
interactive editing tools such as cut-and-paste.

We present a decaling interface that addresses many of the problems
encountered in Pedersen’s work [1996]. First, our approach is en-
tirely local - we do not require a base parameterization or any other
pre-processing of the surface beyond initial sampling. Our decals
are based on a local exponential map parameterization (Section 4)
which is generated from a single point and geodesic radius, simpli-
fying the user interface and supporting automatic creation of decals.
To efficiently generate these parameterizations we introduce a novel
discrete approximation to the exponential map which requires only
a simple addition to Dijkstra’s algorithm (Section 4.2). The approx-
imation is computed on a point set, implying that any surface which
can be sampled - triangle mesh, point set, or implicit surface - can
be textured with exponential map decals.

Our decals compare favorably to decals created using local con-
formal parameterization, in particular we find that exponential map
decals often preserve an intuitive sense of “squareness” that is lost
with parameterizations based on global optimization. However, we
achieve our most robust results by combining the two approaches
(Section 5). Distortion is also reduced by allowing decals to have
holes. We introduce techniques for interacting with decals, in-
cluding a deformation tool and surface vector graphics (Section 6).
We also address texturing animated implicit surfaces (Section 7),
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a problem which has eluded previous decaling systems. We show
that our approach can preserve texturing even in the presence of
topological changes.

2 Related Work

Interactive painting [Hanrahan and Haeberli 1990] has dominated
texture mapping interfaces. These tools are very robust. The recent
development of Octree textures [Benson and Davis 2002] [DeBry
et al. 2002] supports 3D painting on most types of surfaces without
requiring a surface parameterization. The drawback of this class of
interfaces is that painting realistic textures requires manual dexter-
ity and artistic skills which most people lack.

Another type of texture mapping interface is constrained parame-
terization [Lévy 2001; Kraevoy et al. 2003]. Here a set of con-
straints are manually specified between the desired texture image
and the surface. Global optimization algorithms are then applied
to map the image onto the surface such that the constraints are sat-
isfied and some distortion metric is minimized. Recent advances
support point sets [Zwicker et al. 2002], and atlas generation from
multiple images [Zhou et al. 2005]. These systems do not address
the general problem of texture design, the desired 2D image(s) are
assumed to already exist. Constrained parameterization can also be
used to apply decals, however the fluid interface of [Pedersen 1996]
is difficult to implement because of the problem of simultaneously
moving all of the constraints across the surface.

Procedural texturing [Ebert 2002] provides a semi-automated ap-
proach to texture generation in exchange for detailed artistic con-
trol. Only certain classes of texture can be generated, and many
methods assume that the surface is already parameterized. Lapped
textures [Praun et al. 2000] take a decal-like approach to texture
synthesis by overlapping many small images on a mesh. Our decals
can be used to apply lapped textures to any sampled surface.

Pedersen [1996] describes an interactive texture design tool which
supports high-level operations such as copy-and-paste, where the
copy region can be interactively dragged across the surface. Any
type of surface can be used, although implicit surfaces require a
time-consuming manual segmentation [Pedersen 1995]. Decals
(called patchinos in this work) are created by manually connect-
ing four points on the surface with geodesics, limiting the copy and
paste regions to deformed rectangles. A rectangular or cylindrical
decal shape is required by the iterative mass-spring optimization
technique used to move decals. This method is noted to be unsta-
ble [Pedersen 1996], and when the mass-spring mesh collapses the
decal is lost and the user must re-start the process. One of the main
contributions of our work is to introduce a more robust method for
representing and interacting with decals.

[Lefebvre et al. 2005] describe an octree-texture-based decaling
system based on parallel projection, limiting the use of decals to
relatively flat surfaces unless severe distortion is acceptable. Oper-
ations such as copy-and-paste are not available because the surface
is not explicitly parameterized.

One approach to decaling is to simply drag square images around
in texture space, where a surface parameterization has already been
computed automatically using global mesh parameterization algo-
rithms [Floater 1997; Desbrun et al. 2002; Sheffer et al. 2005; Gu
and Yau 2003]. Related methods can be applied for point set para-
meterization [Floater and Reimers 2001; Alexa et al. 2003]. How-
ever, for most surfaces the global parameterization necessarily in-
troduces significant distortion, resulting in decals that change size
as they are dragged across the surface. These techniques can also

be used to apply decals by interactively computing the parameter-
ization only in the region of the decal. However, as we will show
in Section 5.1, this can result in unexpected distortion. Parame-
terization atlases [Maillot et al. 1993; Sorkine et al. 2002; Grimm
2004; Zhang et al. 2005] can reduce global distortion, however dis-
continuities in distortion across the atlas boundaries again result in
unexpected decal deformations.

Parameterizing implicit surfaces presents some additional chal-
lenges, particularly if the surface is animated. Existing approaches
are not interactive and provide either very limited control over
where textures are applied [Tigges and Wyvill 1999] or require
topological knowledge a priori [Grimm 2004]. Octree texturing
has limited applicability because there is no way to map back to
the “rest pose” described by [Lefebvre et al. 2005] during anima-
tion. None of these methods address the issue of animated topol-
ogy change. Our system produces consistent and predictable results
in these situations. Additional control is available to the animator
since decals can be keyframed.

3 Overview

The goal of our decaling interface is to make 3D surface texture
design as fluid and straightforward as 2D vector graphics and im-
age compositing is with software such as Adobe Illustrator. This
is accomplished by hiding all aspects of surface parameterization
in the texturing interface. Unlike [Pedersen 1996], we do not re-
quire a global base parameterization. Each decal is an independent
object in the system, with a simple layer order to determine the de-
cal compositing sequence. The artist interacts with decals, rather
than the underlying parameterizations. All decals are dynamically
composited each frame using the alpha blending and texturing map-
ping hardware found on commodity graphics hardware (Figure 2a).
Other blending modes, such as dodge and burn, can be implemented
with programmable GPUs.

Decals are dynamically generated based on a center point, orien-
tation, and radius. A decal is dragged across the surface by re-
positioning the center point with ray-surface intersections. The ori-
entation and radius are interactively controlled with simple 3D wid-
gets (Figure 2b).

Decals can also be used as canvases for 2D operations. 2D vector
graphics objects such as lines and curves can be manipulated by
moving control points on the surface (Figure 2d). Local feature-
alignment can be performed interactively by manipulating 2D im-
age deformations, again via 3D control points (Figure 2c). Curves
drawn in screen space can also be projected into decals and used
to control image processing operations such as blurring (Figure 2a)
and composited copy-and-paste (Figure 2b). Painting tools can be
implemented by using decals as local canvases for traditional 2D
or 3D painting interfaces. The advantage of the decal-as-canvas
metaphor is that decals can be (re)moved.

Finally, decals maintain consistency as the underlying surface
changes. Difficult cases, such as topological change in implicit
surfaces (Figure 2e), are handled robustly. Decals also provide a
mechanism for texturing animated implicit surfaces. In the follow-
ing sections we will explain how our decals are created, as well as
describe the implementation and use of our decaling interface.
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Figure 2: Three overlapping semitransparent decals are composited in (a, top). A selection region is used to blur the blue decal (a, bottom)
while leaving the red and green decals unchanged. In (b), the two decals inside the selection region are baked into a new decal which has
been pasted back onto the surface several times. In (c), a lattice tool is used to deform the decal. A surface vector line with an endcap is
created between the control points in (d,top) by rendering a 2D line into an automatically-generated decal. Surface curves can be rendered
using a set of vector lines (d,bottom). The underlying decals are shown as checkerboards. In (e), the decals on two separate implicit surfaces
are automatically updated when the surfaces are blended.

4 Exponential Maps

Our goal is to map a 2D image onto a 3D surface S such that the
center of the image lies at some point p on S. This mapping re-
quires a local 2D coordinate system on the surface around p. Differ-
ential geometry provides us with a means for defining this mapping
- the exponential map [do Carmo 1976]. The exponential map expp

takes points on S to the tangent plane Tp at p. This is accomplished
via geodesics. For any unit vector v ∈ Tp, there exists a geodesic

gv parameterized by arc length such that gv(0) = p and g′v(0) = v.

Essentially, gv are the geodesics that splay out radially from p (Fig-
ure 3). For any point q in the neighbourhood of p, a unique radial
geodesic gv passes through it. Hence, q can be mapped to Tp with
the polar coordinates (rg,θg), where rg is the geodesic distance
from p to q and θg is the polar angle of v in Tp. These are the
geodesic polar coordinates [do Carmo 1976]. Geodesic polar coor-
dinates can alternatively be expressed as normal coordinates (u,v)
in any orthogonal basis {e1,e2} of the tangent plane.

Figure 3: The exponential map at a point p takes geodesic curves
originating at p in (a) to straight vectors emanating from the origin
of the tangent plane Tp in (b). Geodesic “circles”, defined as iso-
contours of the geodesic distance function, are mapped to circles
about the origin of Tp.

Normal coordinates are by definition a mapping from the plane to
the surface and hence would seem to be an ideal solution for texture

mapping. The inverse function theorem ensures that for any differ-
entiable point on a surface, expp is defined and differentiable in
some neighbourhood around p [do Carmo 1976]. If S is restricted
to smooth manifolds, then the Hopf-Rinow theorem [Cheeger and
Ebin 1975] states that expp is guaranteed to be defined on the en-
tire surface. However, the map is still only diffeomorphic on a local
neighbourhood of p, implying that foldovers in the parameteriza-
tion will occur if the neighbourhood grows too large.

An example of a sphere texture-mapped using an analytic exponen-
tial map parameterization is shown in Figure 4. In the neighbour-
hood of p (at the center of the leftmost image), the checkerboard
exhibits low distortion. The parameterization is neither conformal
nor area-preserving, as can be observed on the back of the sphere.
However, the parameterization on the front of the sphere is very
“square” and hence is ideal for applying a decal.

Figure 4: Checkerboard texture applied to sphere using analytic
parameterization (top) and discrete approximation (bottom). Front
views show very high correspondence. Overall patterns in side and
back views are similar, however the approximation exhibits errors
accumulated during propagation. Rightmost images show 2D pa-
rameter space for lower-resolution triangulated spheres.
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4.1 Previous Approaches to Discrete Exponential

Maps

Parameterizations based on exponential maps have seen some use
in computer graphics. Projecting the neighbours of a triangle mesh
vertex p onto the tangent plane at p is a crude approximation to
expp. Welch and Witkin [1994] describe a more robust technique
for approximating expp on the 1-ring of a triangle mesh vertex.
This method has seen wide use as a component of global parameter-
ization algorithms [Floater 1997], however the approximation does
not extend beyond the 1-ring.

The key difficulty in computing expp is in finding the radial geo-
desic gv that passes through a surface point q. Dijkstra’s algo-
rithm [Dijkstra 1959] is perhaps the best-known technique for ap-
proximating geodesic distances. Unfortunately the piecewise lin-
ear geodesics produced by Dijkstra’s algorithm always lie on graph
edges and hence provide a very poor estimation of θg .

A number of algorithms that produce more accurate geodesic dis-
tance approximations are available. See [Mitchell 2000] for a re-
cent survey. The fast-marching mesh geodesic distance method
presented by [Kimmel and Sethian 1998] runs in O(N logN) time.
[Surazhsky et al. 2005] describe an algorithm which computes ap-
proximate mesh geodesic distances in a fraction of the time taken
for the fast-marching approach. These algorithms are heavily de-
pendent on the underlying mesh structure and hence unlikely to be
adaptable to unstructured geometry such as point clouds.

4.2 Discrete Exponential Map Approximation

In the discrete setting, we have a set of points on some surface S.
To approximate the exponential map at p, we must find the geo-
desic distance and polar angle for each other point q on the surface.
We approach the problem by computing these values directly in the
tangent plane at p, rather than trying to find the surface geodesics.
The resulting algorithm requires only a simple vector addition of
the piecewise-linear geodesics produced by Dijkstra’s algorithm.

First, consider the base case, with 3 points p, r, and q. The geodes-
ics from p to r and r to q are known, however the geodesic from
p to q is not (Figure 5a). Our task is not to find this geodesic but
rather to compute up,q , the 2D vector in normal coordinates of Tp

produced by applying expp to q. Since up,q is a 2D vector, it can
be rewritten as up,q = v+(up,q −v), where v is any 2D vector. Let
v = expp (r) = up,r . This is the known geodesic from p to r. We
now have

up,q = up,r +(up,q −up,r) (1)

where (up,q − up,r) is unknown. This 2D vector corresponds to
some curve on the surface from r to q, although it is not in general
a geodesic. We approximate this curve with the known geodesic
from r to q. In the tangent plane at r, let ur,q = expr (q). This is
the necessary vector, however it is defined in normal coordinates of
Tr and we need it in Tp. To transform between the tangent planes,
rotate Tr so that it is co-planar to Tp, and then rotate around the
normal to Tp to align the bases of the two planes. The second rota-
tion can be treated as a 2D rotation in the tangent plane and applied
directly to ur,q (Figure 5b), so if the rotation angle is θp,r , then
up,q can be approximated by

ûp,q = up,r +Rot2D(θp,r) ·ur,q (2)

as shown in Figure 5c (the red vector is Rot2D(θp,r) ·ur,q).

We have made two approximations. First, assuming (up,q −up,r)
is a geodesic is only correct on developable surfaces, where the

Gaussian curvature K = 0. Second, we used a simple affine trans-
formation to map between the tangent planes at r and p. Mind-
ing’s theorem states that this map is isometric only between sur-
faces where K is a constant [do Carmo 1976]. Otherwise, some
additional error is introduced. We have also assumed that the ex-
ponential map at any p can be computed in a small neighbourhood
around p. In the discrete setting this local exponential map is ap-
proximated by transforming linear segments into the tangent plane.
This local approximation, which we will denote êxpp (q) = ûp,q ,
is described in more detail in the next section.

Figure 5: The normal coordinates up,q of the unknown radial geo-
desic from p to q in (a) can be approximated using the known geo-
desics from p to r and r to q. The vector up,r (in normal coor-
dinates at r) is transferred to the tangent plane at p using a 2D
rotation with angle θp,r , producing the red vector in (b). This vec-
tor is an approximation to (up,q −up,r) and can be added to up,r

(c) to get the approximate result ûp,q .

The final algorithm for approximating the exponential map can now
be described. First, Dijkstra’s algorithm is run from point p to gen-
erate, for each other surface point q, a piecewise-linear curve from
p to q with vertices {pi}. These linear segments are then sequen-
tially “lifted” into Tp by evaluating

ûp,q = ûp0,p1 +
∑

i≥1

Rot2D (θp,pi
) · ûpi,pi+1 (3)

which amounts to summing the 2D vectors produced by transform-
ing each successive linear 3D segment into Tp. Note that ûpi,pi+1

is mapped directly into the tangent plane at p in Equation 3, rather
than incrementally mapping to each previous tangent plane. The
conditions described above on the tangent plane mapping hold re-
gardless of the distance between p and pi. Transforming the vector
through each previous tangent plane results in much higher total
error.

Equation 3 approximates the exponential map by transforming 3D
points into the 2D tangent plane at p. The magnitude of the re-
sulting 2D vector approximates the geodesic distance with more
accuracy than the value produced by Dijkstra’s algorithm. The im-
provement comes from the use of vector addition, rather than the
scalar addition used by Dijkstra’s algorithm. This result is rem-
iniscent of the improvement in Euclidean distance approximation
observed when using vector distance transforms instead of chamfer
distance transforms [Satherley and Jones 2001].

4.3 Implementation Details and Properties

The sampling rate of the underlying point set largely determines the
accuracy in the discrete exponential map. The first restriction on
sampling rate is that local geodesic neighbourhoods must be com-
putable. We use a k nearest geodesic neighbour scheme, with k =
15. If mesh connectivity is unavailable, nearest Euclidean neigh-
bours are assumed to be geodesic neighbours. This assumption

4



University of Calgary, Department of Computer Science Technical Report 2006-824-17

is valid only if global sampling criteria hold [Dey and Goswami
2004]. In some cases, such as subdivision and implicit surfaces,
additional samples can be generated automatically to resolve under-
sampling. Otherwise, algorithms that take a global approach to the
neighbour-finding problem are necessary [Fleishman et al. 2005].

Related to the problem of computing geodesic neighbourhoods is
that of computing the local discrete exponential map, êxpp. The
angle-spreading technique of [Welch and Witkin 1994] introduces
undesirable error. We assume that the length |p−q| is a good es-
timate of geodesic distance and determine the normal coordinates
by finding the angle θq between the vector −→pq and Tp, and then ro-
tating −→

pq by θq around the axis −→pq×np. The rotation must always
be in the direction of the normal, hence if np ·nq < 0 the rotation
angle is π−θq .

Figure 6: The sampling of the underlying point sets (created by
extracting the mesh vertices) has little effect on the decal shown
in these images. The same number of points are used to sample
the surface in (a) and (b). The ExpMap decal robustly handles the
irregular sampling created by the sliver triangles in (a) and (c).

Given adequate sampling, we have found the discrete exponential
map to be very robust in practice. In particular, there is no require-
ment that the surface sampling be regular. Our interactive system
is based on implicit surfaces, and we generate our point set by ex-
tracting the vertices of a marching cubes mesh. Marching cubes
is known to produce very irregular vertex distributions, resulting
in a worst-case sampling density much lower than the equivalent
number of points evenly distributed. The resulting parameteriza-
tion is visually indistinguishable from that computed with a more
regular point distribution, even at moderate tessellation resolutions
(Figure 6). The algorithm does assume that accurate surface nor-
mals are available. Noisy normals introduce local distortion but the
algorithm remains stable. Noise in the point set, however, affects
geodesic distances and causes the parameterization to quickly de-
generate.

The discrete exponential map we describe is very efficient. Us-
ing a priority queue, the running time of Dijkstra’s algorithm is
O(N logN) in the number of surface samples. The discrete expo-
nential map can be incrementally computed in-line with the Dijkstra
propagation, hence the running time remains O(N logN).

Dijkstra’s algorithm is known to be non-convergent. While we have
not found any theoretical proof, we have some evidence that the
discrete exponential map does converge. In numerical tests on a
sphere, ûp,q (Equation 2) converges quadratically to the analytic
value of up,q as the distances between p,r and r,q go to zero. For
longer piecewise-linear geodesic paths the numerical convergence
is only linear, likely due to the accumulation of error at each ap-
proximation step. In general, the discrete exponential map appears
to visually converge as the sampling rate is increased.

One property of exponential map parameterization is that devel-

opable surfaces (surfaces with zero Gaussian curvature) are para-
meterized with no distortion. Our discrete approximation repro-
duces this property, as seen in Figure 7.

Figure 7: Parameterizations generated for developable surface
patches - (a) swiss roll, (b)/(c) cone front/back, and (d) box. Arti-
facts occur on the rear of the cone because the discrete approxima-
tion fails once the geodesic distance field collides with itself.

5 Decal Parameterizations

Our interactive texturing system is based on local exponential map
parameterizations which we call ExpMap decals. A basic ExpMap
decal is defined by a seed point p on the surface and a geodesic
radius r. The decal is generated by first running Dijkstra’s algo-
rithm to find an approximate geodesic disc with radius r + δ. The
δ value is necessary to ensure that the disc of radius r is contained
within the decal, since the particular discretization may otherwise
result in clipping. We use the largest neighbour distance as δ. This
approximate geodesic disc is then parameterized using the discrete
exponential map as described in Section 4.2. Finally the parame-

terization is scaled by 1/
√

2r and translated by (0.5,0.5), so that
the “geodesic square” inscribed in the disc lies at [0,1]× [0,1] in
parameter space.

If only the unit square in texture space is required, then parameter-
izing the geodesic disc results in a significant amount of “wasted”
space, particularly for large decals. This can be avoided by comput-
ing the discrete exponential map in-line with Dijkstra’s algorithm,

and truncating the propagation when max(u,v) > r/
√

2+ δ.

In our interactive system, the surface is rendered as a texture-
mapped triangle mesh. Decals are stored as independent local
parameterizations of portions of the surface, similar to [Praun
et al. 2000]. Compositing is performed dynamically using alpha-
blending. This may involve storage and rendering of hundreds of
decal parameterizations, which is acceptable for interactive editing
but less so if many decaled objects are part of a complex scene. For
this case the decals can be baked into a global parameterization or
octree texture.

5.1 Comparison to Other Mesh Parameterizations

We have compared our ExpMap decals with those generated using
a variety of automatic mesh parameterization techniques. The decal
creation procedure is the same as for ExpMap decals - we segment
a region of the mesh that approximates a geodesic disc, and then
interactively parameterize this disc.

We first compared our results with several mesh parameterization
algorithms that require a boundary. In our case it is relatively sim-
ple to map the geodesic disc to a circular boundary. We tried the
shape-preserving weights [Floater 1997], geodesic weights [Lee
et al. 2005], and intrinsic weights [Desbrun et al. 2002]. How-
ever, in all of these cases we observed significantly higher distor-
tion, likely introduced by the boundary mapping. In addition, the
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distortion is not frame-coherent, so while the user drags the decal
across the surface it randomly changes size and orientation.

Better results were found with the natural conformal map [Desbrun
et al. 2002], which does not require a boundary mapping and hence
has significantly less distortion. However, if only two vertices are
constrained (the minimum necessary to define a unique conformal
solution), the orientation and scaling of the decal are not frame co-
herent as it is dragged across the surface or the surface is resampled.
We found that if we constrained all of the vertices in the neigh-
bourhood of the decal seed point, frame coherency was improved
significantly, although some artifacts can still be seen.

We have observed that conformal decals are identical to ExpMap
decals only on developable surfaces. On a sphere the “edges” of
the square are similar, but the internal distortion is different (confor-
mal decals are less uniform). However, in many relatively simple
cases the square edges are not as well-preserved (Figure 8). Be-
cause ExpMap decals are based on geodesics, the decal distorts
when the geodesics distort. Conformal decals use global optimiza-
tion to spread the distortion out across the decal, producing decals
with edges that we feel are much less “square” than ExpMap decals.

The problem is magnified during interaction. For example, on the
cylinder in Figure 8b, the conformal decal begins to distort before
the edge of the texture crosses the edge of the cylinder. This be-
havior is very unintuitive. Another problem is that the conformal
parameterization is not necessarily contained within the geodesic
disc. This can result in the decal being clipped (Figure 8c).

Figure 8: Comparison between conformal (top) and ExpMap (bot-
tom) decals. In these cases the global distortion minimization of
the intrinsic conformal parameterization results in decals which are
less “square” than the ExpMap decals. In (c), the conformal para-
meterization is clipped because it extends beyond the boundary of
the decal (near the blue star).

5.2 Hybrid Decals

Distortion in ExpMap decals is governed by the behavior of the set
of radial geodesics originating at the seed point, which are in turn
largely dependent on surface curvature. Variations in surface cur-
vature cause the radial geodesics to spread apart or come together,
which in turn distorts the decal. In theory this distortion happens
smoothly, as in the analytic sphere example (Figure 4). However,
the “greedy” nature of the discrete exponential map can produce
artifacts, and even local foldovers, if the decal has high distortion.
Generally this occurs with decals that cover undersampled regions
of the surface with significantly varying curvature. Removing these
artifacts is challenging - the algorithm has only local information,
however global knowledge is required to spread out the distortion.

A global approach can be constructed by applying constrained con-
formal parameterization to ExpMap decals.

First, we identify regions of the decal that are distorted by defining
a distortion metric

ǫi = max
j

∣∣∣∣
|ui −uj |2
|pi −pj |2

−1

∣∣∣∣ (4)

where pj are the neighbours of point pi, and uj are the associated
texture coordinates. If ǫi is larger than a user-controllable thresh-
old, the u of pi and all of it’s neighbours are discarded. Then a
conformal parameterization is computed for these points, with all
the “good” points constrained to their exponential map parameter
values. The result is a hybrid ExpMap / Conformal decal (Figure 9).

Figure 9: Comparison between ExpMap (a), Hybrid (b), and Con-
formal (c) decals. The extreme variation in decal size (middle row)
and distortion (bottom row) found in some cases with Conformal
decals is mitigated with Hybrid decals.

Hybrid decals also can repair the global foldovers that occur in the
analytic exponential map at at singularities in the geodesic distance
field, where there is no unique geodesic curve from the seed point.
In some cases, the foldover is very small and may not appear de-
pending on the discretization. Hybrid decals easily repair these
foldovers. Global foldovers inevitably occur if the decal covers a
large region with many changes in the sign of Gaussian curvature
(Figure 10). Hybrid decals are not always useful in these cases be-
cause even though the global foldovers are avoided, there can still
be very high distortion (Figure 10d) and even the conformal para-
meterization can have foldovers [Desbrun et al. 2002]. However,
generally these regions are large enough that the metaphor of stick-
ing a square image onto the surface is no longer applicable, so this
issue is essentially beyond the scope of the decaling interface.

We also note that while Hybrid decals do generally reduce distor-
tion, minor distortion is often unnoticeable when more realistic tex-
tures with high-frequency details are used. Hybrid decals were not
required to create any of the examples in this paper.

5.3 Partial Decals

Pedersen’s patchinos were limited to “regions that are relatively flat
except for a hole or branch extending outwards” [Pedersen 1996],
because when passing over these features the patchino would be-
come highly distorted. ExpMap decals suffer from the same prob-
lem, as seen in Figure 11a. Pedersen also noted that this situa-
tion could be avoided if the patchino contained a hole which passed
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Figure 10: The ExpMap decal in (a) is textured with an image
that has a different color assigned to each of the 4 quadrants. The
seed point is marked with an arrow. The varying curvature of the
shape produces several foldovers, marked with arrows in (b). The
hybrid decal appears more uniform in (c), however the distortion
is very high and there are some small foldovers at the edge of the
constraint region (d).

around the feature. His system could not support this because the
patchino optimization procedure required a complete mass-spring
mesh, however it is trivial to implement with ExpMap decals.

To create partial decals, the unwanted points are removed from the
Dijkstra computation and left unparameterized. In our system we
implement this by simply halting the Dijkstra propagation at points
whose absolute Gaussian curvature is larger than a user-defined
threshold (Figure 11b). Other alternatives could include halting at
creases, or based on boundaries painted by a user. Partial decals
can also be combined with the Hybrid decal technique described in
the previous section to parameterize the features without introduc-
ing distortion into the flatter portion of the decal. Note that the seed
point for the decal cannot reside in the hole region.

Partial decals provide an example of a very interesting property
of the discrete exponential map approximation described in Sec-
tion 4.2. If the above procedure were performed using actual geo-
desics (such as those described by [Surazhsky et al. 2005]), the re-
sult would not be as shown in Figure 11b. The actual geodesic
wave-fronts would pass around the “hole” and then collide behind
it, creating a texture discontinuity. However, because the incremen-
tal vector addition is done in the tangent space of the exponential
map, the “geodesic curves” on the surface actually pass through the
feature - as if it were replaced by a smooth surface. This property
may have applications for hole-filling in point sets. Note, however,
that because the path taken from the seed point to the points behind
the hole is less direct, the approximation error is larger.

Figure 11: In the case of a relatively smooth surface with a high-
frequency feature, the decal is necessarily distorted (a), both on the
feature as well as behind it. By simply halting the vector propaga-
tion based on curvature magnitude, a hole is created as the decal
passes around the feature (b). The distortion introduced behind the
feature is also avoided (insets).

6 Interactive Techniques

Our decaling interface is based on the user interacting with the de-
cal via a simple 3D control (Figure 2b,top). The decal is moved by
dragging the center point across the surface, rotated with the circle,
and scaled with the outer point. The parameterization is automat-
ically recomputed as needed. To fit a decal around a set of points
{pi} on the surface, a seed point is chosen and then Dijkstra’s al-
gorithm is run until all pi have been reached. If the points {pi}
have been created by projecting a 2D screen-space curve onto the
surface, we use the projection of the 2D bounding box centroid as
the seed point. For other sets of 3D points, a reasonable guess is the
point closest to the center of the bounding box of {pi}.

To implement user-interface tools, it is useful to be able to map
between the 3D surface and 2D parameter space for points not in
the initial point set. A 2D parameter u can be mapped to 3D q

on the surface by first finding the Delauney triangulation of the 2D
points, then using barycentric interpolation in the triangle contain-
ing u. Mapping from 3D q to 2D u would ideally be done by adding
the new point to the point set and recomputing the decal parameter-
ization, however this is too expensive for interactive use. A quick
approximation is to find the nearest neighbour to q and locally prop-
agate the parameterization from this neighbour using Equation 2.

6.1 Decal Deformation

It is often useful to be able to deform a decal, either to match image
features to surface features, or to correct for some unwanted dis-
tortion. One approach is to use 2D image deformations, modifying
the texture image to better fit the parameterization. However, these
deformations are not interactive if the image has high resolution.
Image deformation also prevents re-use of the same texture image
for multiple decals with different deformations. Instead, we deform
the decal parameterization.

If the image deformation ω is desired, then the inverse deformation

ω−1 must be applied to the parameterization. Unfortunately many
common deformation functions are difficult to invert. In addition,
we must deform the entire decal parameterization, not only the re-
gion inside the unit square [0,1]× [0,1], to minimize foldovers. To

handle this issue we use a ω−1 function that has global support

Our deformation tool is based on C2 variational scattered-data in-
terpolation, also known as thin-plate splines or radial basis func-
tions. We have a set of point constraints between sources (u,v)
and destinations (u′,v′). Two 2D variational warps are fitted, one
which maps each (u′,v′) to the correspond u value, and another for
the v value. This warp is evaluated for each point in the parameter-
ization. The process is similar to the mesh deformation described
by [Botsch and Kobbelt 2005]. Since the variational solution is
based on point constraints, both lattice deformations (Figure 2) and
feature alignment (Figure 12) are supported.

6.2 Surface Vector Graphics

A decal can be used as a canvas for 2D vector graphics. A simple
line element can be generated between two points on the surface
by creating a decal originating at one point and with a decal radius
equal to the geodesic distance to the second point. The line width is
kept uniform by scaling linearly based on the decal radius. Defin-
ing a line element this way ensures that the line lies on a geodesic,
intuitively the shortest curve between the two points. If the geo-
desic crosses regions of the surface with widely varying curvature,
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Figure 12: Decal deformation. In (a), the decal image is too small
to cover the eyeball. Using the lattice deformation shown in Fig-
ure 2 results in a stretched pupil (b). Placing extra constraint points
around the pupil (c) produces the desired result (d).

distortion in the decal may produce a non-uniform line width. In
this case distortion can be reduced by subdividing the geodesic and
placing each segment into a separate decal.

Geodesic line elements can be used as a building block for other
surface vector elements. We create surface curves by projecting the
vertices of screen-space curves onto the surface and then connect-
ing them with line elements (Figure 13). One advantage of this ap-
proach is that portions of the surface which are occluded can still be
painted, unlike the projective texturing found in 3D painting tools.

Figure 13: In (a), a vertebra model extracted from a volume dataset
is annotated using vector text. In (b), a screen space stroke (top) is
mapped to a surface by connecting projected points with surface
vector lines. The vector lines are geodesics and hence are continu-
ous across the occluded area (bottom).

7 Dynamic Surfaces and Animation

Most texture-mapping schemes assume that the underlying surface
is static. If the surface changes, global parameterizations must be
recomputed, frequently leading to significant changes in the tex-
ture space distortion that make the previous textures useless. Even
simple remeshing can be problematic. Decal parameterizations fare
much better when the underlying surface changes. Since the local
parameterizations are dynamically generated, the decal seed points
are simply moved to the new surface. As shown in Figure 6, decals
are quite stable under remeshing, so in areas where the surface does
not change the decal textures will be preserved. In the deformed
regions, the decals will flow onto the new surface in a consistent
and predictable manner.

Decals can also be used to texture animated surfaces. As long as
the visible areas of the decals have low distortion, the results will

be relatively frame coherent because (assuming adequate sampling)
the decal parameterization is only influenced locally by changes in
the surface. Essentially, if a portion of the surface under a decal is
modified, only the geodesics passing across that area will change.
The rest of the decal remains unaffected. This local influence helps
greatly with frame coherence and also is desirable for interaction,
since it is very disorienting if the decal unexpectedly changes as it
is dragged across the surface, or the surface is deformed. Note that
local influence does not hold if the modified area contains the decal
seed point - in that situation, all geodesics are changed, hence so is
the entire decal.

Because decals preserve texture across remeshing and surface de-
formation, they are an alternative for texturing animated implicit
surfaces. Our modeling system is based on hierarchical skeletal
implicit surfaces [Wyvill et al. 1999], where the surface is a com-
position of simpler shapes. Each shape has a local reference frame,
so each decal is first associated with the nearest shape and stored at
local coordinates in the reference frame. The decal position for any
frame is then found by performing a gradient walk from these local
coordinates to the surface. This approach has the benefit of allowing
the user to jump to any frame. Animation with mass-spring decals
would require the user to wait for simulation of all the in-between
steps.

In practice, frame-coherence is largely determined by the amount
of distortion in the decal. With high distortion the parameteriza-
tion is likely to “pop” from frame to frame in the distorted regions.
The popping occurs because the sampling rate is too low in the
distorted regions, so denser and more regular sampling can help
to some extent. However, we have found that replacing a highly-
distorted decal with several smaller, less-distorted decals provides
better results. Another option is to compute a mesh and use a more
robust but slower geodesic computation [Surazhsky et al. 2005].

One benefit of animating with decals is that difficult situations such
as topology change can be handled. Figure 14 shows several frames
from an animation where two objects are blended. Decals can also
be used as a canvas for 2D animation techniques. Video textures
and sprite animations [Lefebvre et al. 2005] are easily applied, and
vector animations can be created by keyframing the control points
of vector elements (Section 6.2).

Figure 14: Decals can preserve texture during topological change.
The decals on these the two implicit surfaces smoothly slide to-
gether in the blending area. The rest of the texture is unaffected.

8 Results

Combined with a digital camera, our decaling system provides a
quick and easy-to-use interface for texturing 3D models. Using an
existing model and a few snapshots, the dog in Figure 15 was com-
posited in a few minutes. The base fur texture was generated by
uniformly distributing fur decals across the surface, essentially cre-
ating a lapped texture [Praun et al. 2000]. Lapping decals can also
be used to achieve NPR-like effects, such as in Figure 15b. Render-
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ing NPR strokes with decals has the advantage that the strokes then
automatically curve with the surface.

An example of modeling a real-world object is shown in Figure 1. A
rough 3D model was generated using sketch-based modeling soft-
ware, and then 22 snapshots of the clay statue were taken. A base
texture was generated using the lapping technique, and then rele-
vant features were cut out of each image and attached to the model.
The entire process, from clay statue to textured 3D model, took
several hours, with the most time-consuming step being the manual
color-balancing necessary to compensate for the poor color repro-
duction of the digital camera.

Figure 16 shows a textured implicit gremlin model. The textures
were taken from a variety of sources, including photographs of a
frog, a painting, and the author. These textures were cleaned up and
re-colored using image-processing software, and then pasted onto
the suface. Many of the textures are re-used multiple times. For
example, each finger and toe uses the same set of decals, although
they are deformed to better fit the particular geometry.

Figure 15: In (a), an irregular piece of fur texture is automatically
lapped to create a base fur texture on a model of a dogs head. The
eyes, a nose, and a few additional pieces of fur were cut from other
photographs. Placing them on the surface takes only a few minutes.
In (b), an image of a few strokes is lapped. The decals are aligned
with the first principal curvature, and decal visibility is modulated
based on a 3D light position to produce an NPR effect.

9 Conclusions and Future Work

We have described an interactive texture mapping interface based
on decals generated using a new discrete exponential map approx-
imation. Perhaps the most obvious benefit of this approach is that
sampled surfaces can be textured without a global base parameter-
ization. Surfaces created in our implicit modeling system can be
immediately textured. Furthermore, if the designer finds that the
surface must be modified, extensive changes can be made without
losing the textures applied so far.

With our interface, the designer uses high-level tools to composite
and manipulate decals, and is not forced to deal with the underly-
ing parameterizations. ExpMap decals enable new texturing tools,
such as surface vector-graphics, selection of of curved regions, and
decals with holes, which were not possible using the mass-spring
technique of [Pedersen 1996]. In our experience, ExpMap decals
generally provide predictable and consistent results, and address
difficult problems such as animating implicit surfaces and topology
change.

We have found this decaling tool to be a fluid and efficient way to
texture surfaces, particularly for those who are not skilled at texture
painting. Even for texture painters, the ability to easily mix-and-

match from existing images makes decaling a useful addition to the
texture design toolbox.

We anticipate a wide range of applications for ExpMap decal para-
meterizations in interactive tools. Other mapping techniques such
as bump and displacement mapping can benefit from an interac-
tive decaling interface. Interactive re-meshing or re-sampling of
point sets is easily implemented by sampling in the decal para-
meterization. When combined with the partial decals described in
Section 5.3, re-sampling in parameter space also supports repair of
holes or removal of unwanted features. Decals may be useful in
mesh and point-set modeling contexts for implementing interactive
tools such as surface deformation and geometry cut-and-paste. We
are also exploring application of decal parameterization to high-
quality tessellation of implicit surfaces.

Another benefit of ExpMap decals is that, because the parameteri-
zation is dynamically generated, no UV-coordinates need be stored
with the geometry. Network transmission of decals is very efficient,
once the decal images are transferred then only the seed points and
frames must be sent. Since ExpMap decals are stable under remesh-
ing, this may be particularly beneficial for progressive geometry.

Figure 16: The decal texture for this implicit gremlin model was
created using 19 different images cut out of various photographs
and then manipulated using 2D image editing software. The texture
consists of 392 decals, although only 78 were placed manually, in-
cluding 24 for the hand. The rest were generated using texture lap-
ping or by duplicating the arm and leg.
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Figure 17: Decal parameterizations with geodesic distance computed using Dijkstra’s Algorithm (top) and Discrete Exponential Map
(bottom). The underlying point set is extracted from a marching cubes mesh at voxel-resolution-per-edge of 30, 50, 100, 200 (left to right),
with 15 neighbours for each point. The Discrete Exponential Map clearly exhibits better convergence behavior for local geodesic distances
than Dijkstra’s Algorithm.

Figure 18: Decal parameterizations using the discrete exponential map on point sets with noise in the normal vectors. The underlying point
set is the same as in the 100-resolution sphere in Figure 1, however random noise has been added to the normal vectors. The maximum
noise is (left to right) 5%, 10%, 25%, and 50%. Innaccurate normal vectors introduce very local distortion, however the overall shape of the
parameterization is preserved.

Figure 19: Results of a numerical convergence test computed in Mathematica. Geodesic distances computed with the discrete exponential
map are compared with analytic geodesic distances on a sphere. In (a), the base-case of 3 points is tested. As the distance between the points
(X axis) increases, the geodesic error (Y axis) increases quadratically. In (b) and (c), a similar test is run using piecewise-linear approximate
geodesics with 50 and 100 segments, respectively. The intermediate points are initialized on the geodesic and then randomly offset along
the surface by up to a maximum geodesic distance (X axis). Each data point is the average of 10 runs. In these cases the geodesic error
increases linearly with the average offset distance. The relationship between number of data points and offset distance wrt geodesic error is
more complex - generally when increasing the number of data points, the offset distance must be decreased for error to decrease.
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Figure 20: Approximation error at each point for the discrete exponential map algorithm measured on a sphere regularly sampled with 5000
points, computed using 32-bit floating point. In (a) and (b), points are plotted along the X axis based on actual geodesic distance from the
seed point (at the “north pole”), and the Y axis indicates absolute geodesic error. In (a), the discrete exponential map is computed with
analytic local geodesics (“Real Geodesics”) and linear local geodesics. Neither is consistently more accurate. In (b), geodesic distance
computed with Dijsktra’s algorithm is also plotted, showing significantly higher error even at small distances. In (c), the polar geodesic
angle error is plotted on the Y axis. A similar pattern to (a) is observed.
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Figure 21: Global exponential map parameterization generated for a complex shape. The seed point is at the middle of the bridge of the
nose. Compression regions trail off the edges of the eyes and nose, and the parameterization is stretched at tip of nose, but otherwise the
result is quite regular and un-distorted.

Figure 22: First (a) and last frames from a simple animation of a bump rising out of a flat surface with ExpMap (b) and conformal (c) decals.
The ExpMap decal exhibits significantly more frame coherence because the parameterization is stable outside the regions of the mesh that
are changing, as shown by the difference image in (d). The conformal decal (e) distorts globally as the bump rises. This distortion oscillates
rapidly as the decal mesh changes shape. The ExpMap decal also oscillates rapidly, but only in the deforming region. Also, the oscillation
in the ExpMap decal is due to inaccuracy in the approximation - a better geodesic approximation would reduce or remove the incoherence
completely.
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Figure 23: Snapshots from an animation of two implicit surfaces blending, where each surface is textured with lapped decals. The left column
shows the lapped textures, the right column shows the same decals with a checkerboard texture. The decals smoothly flow into the blending
region, and appear to slide together in the video. Only the decals covering the portion of the changing surface are affected, decals on the far
sides of each object are stationary. There is very little distortion in any particular decal, as can be seen from the checkerboards.
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Figure 24: An implicit model of the clay elephant statuette in the photograph was created with sketch-based modeling software in under an
hour. Then, photographs of the statuette were taken and from those photographs a set of feature textures were extracted (upper right). A base
texture was also extracted, which was lapped to create a base model. Then the feature textures were interactively placed over the base model.
Texture placement was very quick, the total time including taking photographs and cutting out the relevant features was approximately an
hour. However, low lighting conditions and “automatic color balancing” hardware on the digital camera resulted in each photograph (and
it’s feature textures) having a slightly different color balance from the base texture and eachother. Manual color balancing took an additional
two to three hours.
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Figure 25: The base texture and feature textures for this dog were segmented from a few photographs, two are shown in the figure. Generating
the lapped base fur texture takes from a few seconds to a few minutes, depending on the number of decals and the sampling rate of the
underlying point set. The eyes, nose, and extra fur textures take only a minute to position. The extra fur textures (and the fur on the edge of
the eyes) help break up the semi-regularity of the base texture, creating a much more compelling result.
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Figure 26: This implicit gremlin model was textured using the 19 images shown in the top right. The base skin texture is created by lapping
an image taken from the photograph shown on the middle right. The model was textured separately in 4 parts - arm, head, body, and leg. The
arm and leg were duplicated, and then the parts were assembled. Of the 392 decals used in total, 78 were manually placed, including 24 for
the hand. The rest were generated automatically, either with texture lapping or by duplicating the arm and leg.
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