
Interactive Deduplication using Active Learning

Sunita Sarawagi
sunita@it.iitb.ac.in

IIT Bombay

Anuradha Bhamidipaty
anu@it.iitb.ac.in

IIT Bombay

Abstract

Deduplication is a key operation in integrating data from
multiple sources. The main challenge in this task is
designing a function that can resolve when a pair of
records refer to the same entity in spite of various data
inconsistencies. Most existing systems use hand-coded
functions. One way to overcome the tedium of hand-coding
is to train a classifier to distinguish between duplicates
and non-duplicates. The success of this method critically
hinges on being able to provide a covering and challenging
set of training pairs that bring out the subtlety of the
deduplication function. This is non-trivial because it
requires manually searching for various data inconsistencies
between any two records spread apart in large lists.

We present our design of a learning-based deduplication
system that uses a novel method of interactively discovering
challenging training pairs using active learning. Our
experiments on real-life datasets show that active learning
significantly reduces the number of instances needed to
achieve high accuracy. We investigate various design issues
that arise in building a system to provide interactive
response, fast convergence, and interpretable output.

1 Introduction

A crucial step in integrating data from multiple sources
is detecting and eliminating duplicate records that refer
to the same entity. This process is called deduplication.
Large customer-oriented organizations often merge long lists
of names and addresses with partially overlapping sets of
customers. Another area where deduplication is necessary
is in the construction of web portals which integrate data
from various pages possibly created in a distributed manner
by millions of people. Examples of such portals are
CiteSeer [16] and Cora [18] that integrate citations and
paper titles parsed and extracted from several personal and
publisher webpages.

The main challenge in this task is finding a function that
can resolve when two records refer to the same entity in spite
of errors and inconsistencies in the data. We motivate
the difficulty of manually designing a good deduplication
function with examples from the bibliography domain.

Illustrative Example All citations in this illustration
are from the CiteSeer citation database (http://citeSeer.
nj.nec.com/cs). The entries that we show as duplicates

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
SIGKDD 02 Edmonton, Alberta, Canada
Copyright 2002 ACM 1-58113-567-X/02/0007 ...$5.00.

in these examples are the ones that escaped detection by
CiteSeer’s manually tuned deduplication function [16].

Based on our domain knowledge, we know that two
citations are duplicates if their author, title, year, and
where-published fields match. However, citations come in
a large spectrum of formats making a specific codification
of our knowledge difficult.

We show below two example duplicate citations of a
book — these are just two of the 14 groups of citations
to the book that Citeseer did not collapse as duplicates1

• L. Breiman, L. Friedman, and P. Stone, (1984).
Classification and Regression. Wadsworth, Belmont,
CA.

• Leo Breiman, Jerome H. Friedman, Richard A.
Olshen, and Charles J. Stone. Classification and
Regression Trees. Wadsworth and Brooks/Cole, 1984.

The example brings out the non-triviality of author
match. Individual author names in a multi-author list might
be hard to separate, orders of names could be reversed, some
names could be missing, misspelt, or abbreviated. Matching
of conference names could also get tricky as seen in the
duplicates below:

• R. Agrawal, R. Srikant. Fast algorithms for mining
association rules in large databases. In VLDB-94,
1994.

• Rakesh Agrawal and Ramakrishnan Srikant. Fast
Algorithms for Mining Association Rules In Proc. of
the 20th Int’l Conference on Very Large Databases,
Santiago, Chile, September 1994.

VLDB-94 is not a straightforward abbreviation of the
booktitle in the second citation. The year field might also
have errors — this is commonplace when one of the citation
has “to appear”.

Another difficulty is the lack of an explicit structure
in many input data sources. Citations often do not come
segmented into the author/title/conference fields. Typically
an automated program is used for the segmentation [2]. This
program cannot always do a perfect job, thereby introducing
another kind of inconsistency. A natural approach then is
to forget about matching individual entries thus and simply
attempt an overall count of the number of common words.
In the example below we show two citations that are not
duplicates even though they have a large number of common
words.

• H. Balakrishnan, S. Seshan, and R. H. Katz., Improv-
ing Reliable Transport and Handoff Performance in
Cellular Wireless Networks, ACM Wireless Networks,
1(4), December 1995.

• H. Balakrishnan, S. Seshan, E. Amir, R. H.
Katz, ”Improving TCP/IP Performance over Wireless

1Obtained by searching for citations with keyword “breiman” in
CiteSeer, http://citeseer.nj.nec.com/cs?q=breiman&submit=Search+
Citations&cs=1

http://citeSeer.nj.nec.com/cs
http://citeSeer.nj.nec.com/cs
http://citeseer.nj.nec.com/cs?q=breiman&submit=Search+Citations&cs=1
http://citeseer.nj.nec.com/cs?q=breiman&submit=Search+Citations&cs=1

Networks,” Proc. 1st ACM Conf. on Mobile
Computing and Networking, November 1995.

In contrast, the two citations below are duplicates in
spite of having significantly fewer common words even in
the title.

• Johnson–Laird, Philip N. (1983). Mental models.
Cambridge, Mass.: Harvard University Press.

• P. N. Johnson-Laird. Mental Models: Towards
a Cognitive Science of Language, Inference, and
Consciousness. Cambridge University Press, 1983.

State of the art Most existing systems for deduplication
are based on hand-coded rules that compute the extent
of match between individual attributes and combine the
match scores by using thresholds and several if-then- else
conditions.

One way of reducing the tedium of hand-coding is
to relegate the task of finding the deduplication function
to a machine learning algorithm [31, 32, 6]. The
algorithm takes as input training examples consisting of
pairs of duplicates and non-duplicates. A second input
is a collection of various kinds of simple, domain-specific
matching functions on various attributes, provided by a
domain expert. The learning algorithm can then use the
examples to automatically find the best way of combining
and thresholding the attribute similarity scores.

Limitations of the learning approach The success of
the above learning method crucially hinges on being able
to provide a covering and challenging set of duplicates
and non-duplicates that will bring out the subtlety of the
deduplication function. Finding such examples is hard
because this requires a user to manually do a quadratic
search in large records lists where the confusing record pairs
might be spread far apart. Surprisingly, what is even harder
is finding an interesting set of non-duplicates that are likely
to be confused as duplicates in an existing training set.
Even though non-duplicates abound, it is hard to find non-
duplicates that can effectively counter any simple-minded
deduplication function inferred from an existing training
set.

Our contribution We designed a learning based dedupli-
cation system (alias

2) that allows automatic construction
of the deduplication function by using a novel method of
interactively discovering challenging training pairs. Our
key insight is to simultaneously build several redundant
functions and exploit the disagreement amongst them to
discover new kinds inconsistencies amongst duplicates in
the dataset. Active learning [7, 9] methods also rely on
a similar insight for selecting instances for labeling from a
large pool of unlabeled instances. Unlike an ordinary learner
that trains using a static training set, an active learner
actively picks subsets of instances which when labeled will
provide the highest information gain to the learner.

With this approach the more difficult task of bringing
together the potentially confusing record pairs is automated
by the learner. The user has to only perform the easy task
of labeling the selected pairs of records as duplicate or not.

We designed an active learning algorithm that can meet
our design goals of interactive response, fast convergence,
and high accuracy. Finally, our system outputs a

2Active Learning led Interactive Alias Suppression

deduplication function that is easy to interpret and efficient
to evaluate when deployed on large record lists. This
required evaluating various non-obvious design tradeoffs
that arise when using current active learning methods in
a practical setting. Experiments on real-life datasets show
that our approach reduces the number of labeled training
pairs by two orders of magnitude to reach a certain accuracy.
After labeling less than 100 pairs selected interactively by
our system, the learnt deduplication function can achieve the
peak accuracy which a randomly chosen set of pairs cannot
achieve even with 7000 pairs.

Outline There are two main parts to the paper. The
first part (Section 2) is an overall description of our alias

interactive deduplication system. The second part starting
from Section 3 covers the main novelty of our system,
namely, the mechanism for selecting the informative sets
of pairs, the foundations of which lie in Active Learning.
Section 4 presents an experimental evaluation of the
effectiveness of active learning in easing the deduplication
task. Section 5 discusses related work. Finally, conclusions
appear in Section 6.

2 Overall architecture

Figure 1 shows the overall design of our alias system
for deduplication. There are three primary inputs to the
system:

1. Database of records (D) The original set D of
records in which duplicates need to be detected. The data
has d attributes a1, . . . ad, each of which could be textual
or numeric. The goal of the system is to find the subset
of pairs in the cross-product D ×D that can be labeled as
duplicates.

2. Initial training pairs (L) An optional small(less than
ten) seed L of training records arranged in pairs of duplicates
or non-duplicates.

3. Similarity functions (F) A set F of nf functions
each of which computes a similarity match between two
records r1, r2 based on any subset of d attributes. Examples
of such functions are edit-distance, soundex, abbreviation-
match on text fields, and absolute difference for integer
fields. Many of the common functions could be inbuilt and
added by default based on the data type. However, it is
impossible to totally obviate an expert’s domain knowledge
in designing specific matching functions. These functions
can be coded in the native language of the system (C++
in our case) and loaded dynamically. The functions in the
set can be highly redundant and unrelated to each other
because finally our automated learner wil perform the non-
trivial task of finding the right way of combining them to
get the final deduplication function.

A rough outline of the main steps is given in Figure 1.
The first step is to map the initial training records in

L into a pair format via a mapper module. The mapper
module takes as input a pair of records r1, r2, computes the
nf similarity functions F and returns the result as a new
record with nf attributes. For each duplicate pair we assign
a class-label of “1” and for all the other pairs in L × L we
assign a class label of “0”. At the end of this step we get
a mapped training dataset Lp.These Lp instances are used

1. Input: L, D, F .

2. Create pairs Lp from the labeled data L and F .

3. Create pairs Dp from the unlabeled data D and F .

4. Initial training set T = Lp
5. Loop until user satisfaction

• Train classifier C using T .

• Use C to select a set S of n instances from Dp for
labeling.

• If S is empty, exit loop.

• Collect user feedback on the labels of S.

• Add S to T and remove S from Dp.

6. Output classifier C

Figure 1: Overall design and working of the alias interactive deduplication system.

to initialize the learning component of the system. More
details of this component are deferred to Section 2.2.

The next step is to map the unlabeled record list D.
The mapper is invoked on each pair of records in D ×D to
generate an unlabeled list of mapped records Dp. If the size
of D is large the quadratic size of the cross-product could be
intolerable. Later in section 2.1 we discuss how to avoid this
through proper indexing (the part within dashed boundaries
in Figure 1).

We next describe the interactive active learning session
on Dp with the user as the tutor. The learner chooses from
the set Dp a subset S of n (a user-configurable parameter,
typically less than five) instances that it would most benefit
from labeling. Details of how it does this are deferred until
Section 3. The user is shown the set of instances S along
with the current prediction of the learner. The user corrects
any mistakes of the learner. The newly labeled instances in
S are added to the training dataset Lp and the active learner
is retrained. The user can inspect the trained classifier
and/or evaluate its performance on a known test dataset.
If (s)he is not happy with the learner trained so far, the
active learner can select another set of n instances. This
process continues in a loop until the user is happy with the
learnt model. In each iteration, the user aids the learner by
providing new labeled data.

A useful side effect of the user inspecting the model’s
prediction at each iteration is that, he can discover newer
sources of discrepancies and errors in the data and decide to
modify his similarity functions or add new ones.

The output of our system is a deduplication function I
that when given a new list of records A can identify which
subset of pairs in the cross-product A × A are duplicates.
An example of a sample deduplication function learnt as a
decision tree is shown in Section 4.2.

2.1 The indexing component

When the data set D is large, the quadratic size of D ×D
could be problematic since we need to be able to provide
interactive response to the user during the active learning.

We support three ways of reducing the number of pairs
to be generated.

Grouping Sometimes it is possible to find an easy
grouping/windowing function that is guaranteed to bring
together all duplicates. Examples of such grouping functions
are, year of publication for citation entries and the first letter
of the last name for address lists. Pairs are formed only
within records of a group. Similar windowing ideas have
been exploited in [12].

Sampling In the active learning phase, when we are
learning a deduplication function, we may not need to work
on the entire set of records D. Sampling appears like a
natural recourse in such cases. However, simple random
sampling will not work here because in most cases the
number of duplicates will be few and sampling might further
diminish such duplicate pairs. For example if only 10%
of the records in D have one duplicate each, then a 5%
random sample of the data will contain on an average just
0.10 × 0.05 × 0.05 = 0.025% duplicates. We propose an
alternative grouped sampling approach that hinges on being
able to find a grouping function such as above. In this
approach we sample in units of a group instead of individual
records.

Indexing Another option we support is to index the fields
of D such that predicates on the similarity function of
the attribute can be evaluated efficiently. For example, a
predicate on a similarity function of the form “fraction of
common words between two text attributes ≥ 0.4” can be
evaluated efficiently by creating an inverted index on the
words of the text attribute. Clearly, this cannot be done
easily for all possible similarity functions. Edit distance is an
example of such a hard to index similarity function. In most
cases, however, it is possible to approximate a similarity
function f with another function g that is always less than
or equal to f . So, a predicate that retrieves all records r
with f(r) ≥ C can be transformed to a looser predicate of
the form g(r) ≥ C. This predicate can be evaluated via
the index and later filtered for exact match. For example,
[23, 11] show how an inverted index on the NGrams of a
text field can used to lower bound the edit-distance function.
Such ideas have been used earlier in [19, 11, 5]

However, we cannot exploit such similarity functions
unless we modify our active learning mechanism which
as described in the previous section takes as input the
materialized pairs Dp = D × D and chooses a subset n
for labeling. We need to modify it to not require all of
D × D at a time. It is possible to design active learners
that can first output predicates that characterize the pairs
likely to be selected by the learner. The predicates can be
evaluated using the indices and only the qualifying pairs
will be materialized and passed to the learner for further
subseting to the n instances. This is just a rough outline of
an approach. In this paper we will not have space to discuss
this topic further. We defer further details to a future paper.
Our main focus here is to first study the efficacy of active
learning for deduplication.

2.2 The learning component

The core of the learning component of our system is a
classifier that in addition to the usual task of training a
model given examples and predicting labels for unknown
instances also needs to support active learning as discussed
in Section 3. We need to consider four criteria in choosing
a classifier: accuracy, interpretability, indexability, and,
training efficiency. We evaluate three popular classification
methods, Decision trees [24] (D-tree), naive Bayes [21] (NB)
and Support Vector Machines [4] (SVMs), on each of these
four criteria next.

Accuracy Our classification problem is particularly chal-
lenging because deduplication datasets are often severely
skewed in their class distribution — the fraction of
duplicate pairs could be less than 1% of the non-duplicates.
Another concern for such highly skewed data is choosing
an appropriate metric for evaluating classifiers. Accuracy
could be a misleading metric in such cases. For example a
case with just 1% duplicates, a trivial classifier that labels all
pairs as non-duplicates will yield 99% accuracy — the same
as another classifier that identifies all duplicates correctly
but also misclassifies 1% non-duplicates. We choose two
metrics for evaluation, recall and precision. Recall r is the
fraction of duplicates correctly classified and precision p is
the fraction correct amongst all instances actually labeled
duplicate. Ideally, we should evaluate our methods on both
recall and precision separately since no single metric can
combine them in a universally acceptable single number.
However, we need a single number for ease of plotting. We
use a well-known measure from the information retrieval
community called the F -measure that is the harmonic
mean of the precision and recall values, i.e.,

F =
1

0.5(1
p

+ 1
r
)

=
2pr

p+ r
. (1)

Thus, for the first case, the F value is 0 because recall
is 0. For the second case r = 1 and p=0.5. Thus,
F = 0.667. Another measure that we considered was
weighted accuracy but we found that weighted accuracy can
yield very high values of accuracy even when the precision
is extremely poor. For example, with 200 duplicates and
5000 non-duplicates and the classifier confusion matrix is[

180 20
500 4500

]
, weighted accuracy is 90% whereas precision

is just 28%. F measure is 42%.
We report both recall and precision values in addition

to the F measure for critical points.

Interpretability A second important concern is choosing
classifiers whose final deduplication rule is easy for a human
being to understand, interpret and tune. This is necessary
so that a domain expert can cover the limitations of the
training data and tune the function where needed. Decision
trees are most suited on this criteria.

Indexability Once the model is trained, it will be
deployed for finding duplicates in large lists of records.
In such cases, we cannot afford to generate the quadratic
cartesian product of mapped pairs. Instead as discussed
earlier in Section 2.1 we wish to analyze the deduplication
function learnt by the classifier and construct appropriate
similarity indices or grouping functions. Therefore, we
need a classifier like a decision tree whose predicates are

simple conjuncts and disjuncts on individual similarity
functions instead of classifiers like SVMs and naive Bayes
that combine the similarity functions in more complicated
ways. Sometimes, it might be possible to post-process a
classifier, like naive Bayes to extract indexable predicates as
shown in [5].

Efficient training Finally, we want a method that is fast
to train because for the interactive active learning phase,
during each iteration we would need to retrain a classifier
with a larger training dataset. Fortunately, the training data
size is not too large in each case, so this criteria is easily met
by all three of the above classifiers.

3 Active learning

An active learner starts with a limited labeled and a large
unlabeled pool of instances. The labeled set forms the
training data for an initial preliminary classifier. The goal
is to seek out from the unlabeled pool those instances which
when labeled will help strengthen the classifier at the fastest
possible rate. What criteria should we use for picking
such instances? The initial classifier will be sure about
its predictions on some unlabeled instances but unsure on
most others. The unsure instances are those that fall in
the classifier’s confusion region. This confusion region is
large when the training data is small. The classifier can
perhaps reduce its confusion by seeking predictions on these
uncertain instances. This intuition forms the basis for one
major criteria of active learning, namely, selecting instances
about which the classifier(s) built on the current training
set is most uncertain. We give an example to show how
selecting instances based on uncertainty can help reduce a
classifier’s confusion.

Example: Consider a very simple learner for separating
points from two different classes: positive (P) and negative
(N) on a straight line as shown in Figure 2. Assume that the
set of points are separable by a single point on the line. The
initial training set consists of one positive point b (star) and
one negative point r (circle) picked randomly from the line.
The rest of the points(squares) are unlabeled. The confusion
region is the region between r and b. Any unlabeled point
x to the left of r and to the right of b will have no effect in
reducing this confusion. Hence they will not be selected for
active learning. The points in between r and b are the ones
about which the classifier is uncertain to varying degree.
For any point x in this region, assume that the probability
that it is negative is inversely proportional to its distance
from r. For simplicity, assume r has a coordinate of 0 and b
has a coordinate of 1. Thus, if x has a coordinate of d, the
probability that its class is negative (N) is Pr(N |x) = 1− d
and Pr(P |x) = d. If x were negative, the size of confusion
margin would reduce by d, if it were positive the size would
decrease by (1 − d). Hence, the expected reduction in the
size of the confusion region on adding x to the training set is
Pr(N |x)d+Pr(P |x)(1−d) = (1−d)d+d(1−d) = 2d(1−d) .
This achieves the maximum value when d = 0.5, that is, the
point about whose prediction the classifier has the maximum
uncertainty. By including m in the training set, the size of
the uncertain region will reduce by half no matter what its
label. Any other point say s that is close to the negative
boundary but far from the positive boundary could reduce
the confusion more if its true label is found to be positive

Figure 2: Example of active learning for separating points
on a line.

but the probability of that is small given the current training
data. Thus, the expected reduction in confusion is less for
this point than for m — the most uncertain instance.

In the example above, we noticed that the instance about
which the learner was most unsure was also the instance for
which the expected reduction in confusion was the largest.
Instances whose prediction the learner can already make
with strong confidence will likely not have much effect on
the learner. Theoretical justification for approximating
expected reduction in confusion (formally, version space)
with prediction uncertainty appear in [30, 1, 9].

The example above was for a simple case where the two
classes are completely separable by the classifier. Real-
life data is noisy and when picking instances based on
uncertainty we need to make sure that we are not picking
erroneous or outlying instances. We are more likely to gain
from instances that are representative of a large number of
unlabeled instances, than an extreme outlying instance. To
ensure this, a second criteria that becomes important is the
representativeness of an instance.

In the rest of the section we discuss how to quantify the
notions of uncertainty (Section 3.1) and representativeness
of an instance (Section 3.2). The techniques discussed
are a distillation of the various methods of active learning
proposed recently [7, 20, 30, 9, 1, 17, 14] along with an
explanation of our particular design rationale. We will
accompany each design decision with justifications of our
chosen approach using experiments on two real-life datasets:
a citation database and an address database. More details
of the experimental setup can be found in Section 4.

3.1 Uncertainty score of an instance

There are two major ways of evaluating the uncertainty of
the prediction on a instance.

An intuitive method for measuring uncertainty for
separator based classifiers like SVMs and regression is to
make it inversely proportional to the distance of the instance
from the separator [30, 27]. Similarly for bayesian classifiers,
the posterior probabilities of classes can be used as an
estimate of certainty [20]. For decision trees, typically
uncertainty is derived from the error of the leaf into which
the instance falls [33]. However, in our experiments we found
that the uncertainty scores of decision trees and naive Bayes
were not satisfactory in returning informative instances.

A classifier independent way of deriving the uncertainty
of an instance is by measuring the disagreement amongst
the predictions it gets from a committee of N classifiers.
The committee is built so that the N member classifiers are
slightly different from each other, yet they all have similar
accuracy on the training data. The different members thus
provide redundant ways of classification. A sure duplicate
or non-duplicate would get the same prediction from all
members. The uncertain ones will get different labels
and by adding them in the training set the disagreement
amongst the members will be lowered in the next iteration.
Uncertainty of predictions of a committee can be quantified

in various ways. We used entropy on the fraction of
committee members that predicted each of the two classes.

3.1.1 Methods of creating committees

We next present three different ways of creating commit-
tees.

Randomizing model parameters A common method
of creating committees is by making small perturbations
on the parameters of the model trained through the given
training data [28, 1]. The perturbations are made by
sampling from a distribution that the particular training
parameter is expected to follow. Some of the previous
approaches show how to perturb the parameters of a Naive
Bayes classifier[20] and Hidden Markov Model [1].

We propose a mechanism for randomizing decision tree
classifiers. During tree construction, when selecting an
attribute for splitting on next, instead of deterministically
choosing the attribute with the highest information gain,
we randomly pick one with information gain within close
range of the best. Secondly, when picking the threshold on
which to split a continuous attribute, instead of picking the
midpoint of the range within which the information gain
remains unchanged, we pick a point uniformly randomly
from anywhere in the range.

Partitioning training data A second model-
independent method of creating committees is by
partitioning the training dataset in various ways, including
disjoint and overlapping partitioning. Disjoint partitioning
did not work well in our experiments due to the limitation
of training data in the early phase of active learning. We
therefore did N -fold overlapping partitioning where (for a
committee of size N) we first partition a training dataset
D into N disjoint sets D1, D2 . . .DN . Then, train the i-th
committee with the dataset D−Di. This way each member
gets trained on (1− 1

N
)th fraction of the data.

Attribute Partition When the training data is sparse,
but the number of attributes is surplus, another method of
constructing a committee is by partitioning the attribute
set in various ways. Like for data partitioning, one
approach is disjoint partitioning where all attributes used
in constructing a model are removed from the attribute set
before constructing the next model. We stop constructing
models once all attributes exhaust or the accuracy on the
training data reduces drastically. Not surprisingly, this
method did not work well. We therefore used a second
approach that removed only the topmost attribute from each
earlier model. This is applicable only for decision trees.

3.1.2 Comparing the three different methods of
creating committee

In Figure 3 we compare the three different methods of
creating committee members for the two datasets and
settings described in Section 4. The x-axis is the different
rounds of active learning and since we select one instance per
round this is also equal to the number of training instances,
the y axis is F accuracy of the current classifier on the total
unlabeled data Dp.

We find that for both the datasets, the randomized
parameter method performs the best overall, followed by
attribute partitioning. Data partitioning is relatively worse

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

F
 A

cc
ur

ac
y

�

Rounds of Active Learning

Attribute Partition

Randomize parameter

Data Partition

(a) Bibliography data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

F
 A

cc
ur

ac
y

�

Rounds of Active Learning

Attribute Partition

Randomize parameter

Data Partition

(b) Address data
Figure 3: Comparing the three different methods of creating
committees

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7 8

A
gg

re
ga

te
 A

cc
ur

ac
y

�

Number of Committee members

Address Dataset
Bibliography Dataset

Figure 4: Change in aggregate accuracy with varying
number of committee members

in the initial stages when the available training data for
partitioning is small. On the contrary, attribute partitioning
gets worse in the later stages because as the training set gets
larger and more complex, the redundancy in the available
attributes diminishes. In such cases, removing the topmost
split attributes, makes the subsequent trees significantly
weaker.

Number of committee members (N) The committee
size N is taken as an input argument. We study its effect on
active learning. In Figure 4 we plot committee size versus
the area under the accuracy curve formed by active learning
with that committee size. The area is measured by summing
up the accuracy values for each round. Interestingly, we find
that the performance of the classifier is not too sensitive to
the number of committee members. This implies that the
committee size can be kept to be fairly small (less than five)
without hurting accuracy.

3.2 The representativeness of an instance

Real-life data is often noisy. The most uncertain instance
could often be an outlier. An uncertain instance that is
representative of a larger number of unlabeled instances
is likely to have a greater impact on the classifier, than
an outlying instance. Hence, another important factor is
how representative an instance is of the underlying data
distribution.

The main challenge in incorporating the representa-
tiveness factor is figuring out how to combine it with
the uncertainty factor. Two different methods have been
proposed for this.

The first approach explicitly measures the representa-
tiveness of an instance by estimating the density of points
around it after clustering the unlabeled instances [20]. The
instances are then scored using a weighted sum of its
density and uncertainty value and the n highest scoring
instances selected. This method requires us to tune
several parameters: distance function for clustering, number
of clusters and the weights to tradeoff uncertainty with
representativeness.

A second more common approach relies on sampling
to preserve the underlying data distribution [9, 1, 17].
First, each candidate unlabeled instance is weighted by its
uncertainty value. Then the n instances for active learning
are selected from this using weighted sampling. We chose
and experimented with different variations of this approach
starting with no-sampling to full-sampling. In no-sampling
we simply pick the n highest uncertainty instances. In full-
sampling we do weighted sampling on the entire unlabeled
set. An intermediate approach is to first pick the top
kn (k ≥ 1) instances based on uncertainty and then do
weighted random sampling on them to select n out of these
kn instances. k = 1 then corresponds to no sampling, kn =
total data size corresponds to the full sampling. We had a
default k of 5.

In Figure 5 we show the accuracy change with active
learning for the above three sampling schemes with
two different base classifiers: decision trees (D-tree), a
discriminative classifier and naive Bayes (NB), a generative
classifier. For D-trees we find all three sampling schemes to
be comparable. We notice the real benefit of accounting
for representativeness for naive Bayes classifier. This
is expected because for generative classifiers maintaining
the input data distribution is much more important than
for discriminative classifiers. Theoretical analysis of this
phenomenon can be found in [34].

The final algorithm used by our system for picking the
n instances for labeling is given in Figure 6.

4 Experimental evaluation

We now present overall evaluation figures for our chosen
active learning approach.

Our experiments were on the following two datasets:
The Bibliography dataset consists of citation entries

obtained from CiteSeer by searching on the lastnames of the
100 most frequently referred authors. The data consisted
of 254 citations, 54 of which were found duplicates (after
careful manual searching). In the pair format, this led to
254×253

2
= 32131 instances of which only 169 were duplicates

— that is, only 0.5% of the instances were of the positive

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

F
 A

cc
ur

ac
y

�

Rounds of Active Learning

Full Sampling

Partial Sampling

No Sampling

(a) Bibliography data: Decision tree

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 10 20 30 40 50 60 70 80 90 100

F
 A

cc
ur

ac
y

�

Rounds of Active Learning

Full Sampling

Partial Sampling

No Sampling

(b) Bibliography data: Naive Bayes
Figure 5: Comparing different sampling schemes for
incorporating representative instances

1. Input: Lp: current training data, N number of
committees, Dp unlabeled instances

2. Train N classifiers C1, C2, . . . CN on Lp by
randomizing the choice of the parameters for all
but the first classifier.

3. For each unlabeled instance x in Dp,

(a) Find prediction y1 . . . yN from the N mem-
bers.

(b) Compute uncertainty U(x) as the entropy of
the above N predictions.

4. Return n instances by (weighted) sampling on the
instances with the weight as U(x).

Figure 6: Algorithm used by active learning for selecting n
instances for labeling

class. The raw data had no underlying structure. We
segmented the text record into five fields namely, author,
title, year, page number and rest using CiteSeer’s scripts.

The Address dataset consists of names and addresses
of customers with the local telephone company of the city
of Pune in India. The data had ten attributes: “lastname,
firstname, middlename, Address1, · · · Address6 and Pin”.
The six address fields did not follow any meaningful breakup
of the address. We had 300 records, 98 of which were found
duplicates (again by manual search). In the pair format,
this led to 300×299

2
= 44850 instances of which 105 were

duplicates — a skewness of 0.25%.

Similarity functions We designed 20 similarity functions
on each of the two datasets. For each text attribute, we
had three functions: NGrams match (with ngrams of size
3), fraction of overlapping words, and, approximate edit
distance as described in [31, 32]. For integer fields like year

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80 90 100

T
ot

al
 T

im
e

(in
 s

ec
)

Rounds of Active Learning

Address Dataset

Bibliography Dataset

Figure 7: Running time.

and page, we had a special number match that tolerated
shift by 1. For attributes that are likely to get wrongly
segmented as a neighboring field, we created new text fields
by concatenating the neighboring fields and defined on them
the text matching functions. A special function was also
designed for null-matches on each attribute. This is to
distinguish cases where two attributes match because they
are both nulls, or two attributes mismatch because one of
them was null.

Classification methods We used the following three
classification methods: C4.5 decision tree classifier,
MLC++’s naive Bayes classifier [15], and SVMTorch
Support Vector Machine classifier (SVM) [8]. Our
experiments were performed on a three processor Pentium
III server running Linux redhat 7.0 with 512 MB of RAM.

All our experiments were obtained by averaging over
ten runs with different seeds of a random number generator
that gets deployed in different stages of our algorithm as
discussed in Section 3.

Defaults The defaults for the different parameters of
our algorithm were set to the best option found in
the experiments of the previous section. The default
classification method was decision trees. The number of
committees was set to 5. The committees were created using
parameter randomization and instances were selected using
partial-sampling. The initial training set consisted of one
exact duplicate and one clear non-duplicate. In each round
of active learning one instance was selected for labeling, i.e.,
n = 1. The accuracy of the classifier at each round of active
learning is measured on the entire unlabeled dataset.

4.1 Running time

In Figure 7 we plot total running time with increasing
rounds of active learning for both the datasets. This graph
establishes that the time per round of active learning is
limited to within 3 seconds. The address dataset takes
longer since it has more unlabeled instances. The datasets
used in this experiment are small and do not use any of the
performance enhancements discussed in Section 2.1. This is
a topic of our ongoing research.

4.2 Evaluating active learning on different
base classifiers

In Figure 8 we plot the performance of active learning under
three different classification methods. These graphs show
that decision trees provide the best F accuracy overall. In
the legend of Figure 8 we show the precision and recall
values at the last round of active learning. D-trees dominate
SVMs which in turn dominate NB in both the precision
and recall values. However, D-trees show a much larger
fluctuation in accuracy in the initial stages. This is to be

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

F
 A

cc
ur

ac
y

�

Rounds of Active Learning

Decision Tree [P=0.90, R=0.95]

SVM [P=0.83, R=0.61]

Naive Bayes [P=0.32, R=0.84]

(a) Bibliography data

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

F
 A

cc
ur

ac
y

�

Rounds of Active Learning

Decision Tree [P=0.98, R=0.97]

SVM [P=0.90, R=0.67]

Naive Bayes [P=0.71, R=0.55]

(b) Address data
Figure 8: Comparing performance of different classification
methods with active learning.

expected because decision trees are known to be unstable
classifiers. For the address dataset, SVMs are better in the
initial stages of active learning when the training data is
small but they loose out later. This does not imply that
for a fixed training set SVMs would be worse than D-trees.
In these graphs we are evaluating a classifier both on its
capability to return meaningful uncertainty values and its
overall accuracy. SVMs are known to excel on accuracy
but the uncertainty value measured as distance from SVM
separator is perhaps not too meaningful. D-trees turn out to
be better in the combined metric. This is good news because
D-trees also offer other advantages of interpretability and
indexability as discussed in Section 2.2. For example, we
show below the final C4.5 d-tree output for the bibliography
data. Such an output is easy to interpret and tune.

4.3 Comparing active learning with random
selection

We evaluate the overall performance of active learning by
comparing its speed of convergence to the peak accuracy
with that of a random selection of the same number of

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

F
 A

cc
ur

ac
y

�

Rounds of Active Learning

Optimal [P=0.97, R=0.95]

Active Learning [P=0.97, R=0.95]

Random [P=0.64, R=0.34]

(a) Bibliography data

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100
F

 A
cc

ur
ac

y

�

Rounds of Active Learning

Optimal [P=0.98, R=0.95]

Active Learning [P=0.98, R=0.97]

Random [P=0.61, R=0.42]

(b) Address data
Figure 9: Speed of convergence with active learning, random
selection and optimal selection

instances in Figure 9. The graphs show three lines, one each
for active learning, random, and optimal selection. We will
discuss the comparison of active learning with random first.
For both datasets, active learning shows clear superiority
over random selection. Within just 100 of the more than
30,000 instances available, active learning is able to achieve
a peak accuracy of 97% for the bibliography and 98% for the
address dataset. The accuracy does not improve beyond
these first 100 instances. The same number of instances
selected randomly, achieve accuracy of just 30% and 50%
respectively for the bibliography and address datasets. In
fact, to achieve even 90% of the peak accuracy random
selection needs 5600 instances for the address data and 2700
instances for the bibliography data.

Another interesting observation from these experiments
is that in the first 100 selected instances duplicates form 44%
of the total for both data sets — a jump from the less than
0.5% fraction duplicates in the original unlabeled pool. Does
this mean that the primary gain of active learning is due to
correcting the extreme skewness in the original data? Or,
are the particular set of instances important? We performed
a second experiment by randomly selecting 100 instances
but this time keeping the number of duplicates the same as
after active learning. This yielded an average accuracy of
only 40% on the bibliography data and 31% on the address
dataset.

These numbers are important. They confirm our original
intuition that manually collecting large number of duplicates
will not achieve high accuracy unless proper care is taken
in selecting a confusing enough set of non-duplicates to go
with it. This is hard not only because the number of non-
duplicates is large but also because it is not easy to know
what non-duplicate would be misclassified as a duplicate

with an existing training set.

4.4 Comparison with optimal selection

Another important question is how close our active selection
method is to some absolute best method. We designed an
optimal method that knows the labels of all instances in our
unlabeled set Dp through an oracle. At each round of active
learning, it then picks one instance (n = 1) as follows:

1. For each instance x in Dp

(a) Add x with its correct label to the current
training data T and train a classifier Cx.

(b) Compute accuracy ax of Cx in predicting class-
labels of instances in Dp − x

2. Pick the instance x for which accuracy ax was the
highest.

This is the best algorithm one can design in the one-
instance-at-a-time category of algorithms. This does not
guarantee to give us the best subset of k instances for a
fixed training size k, it just ensures optimality at each step
where we pick one instance at a time. In Figure 9 we plot
the accuracy of this optimal approach. For both datasets we
notice that our chosen criteria of instance selection is indeed
very close to the accuracy provided by the optimal approach
that unrealistically assumes that all labels are known. One
major difference is that optimal is smooth and monotonic
whereas with active learning the accuracy fluctuates. In
the legend part of Figure 9 we show the precision and
recall values after the last round. Along both these metrics
separately active learning is close to the optimal approach.

5 Related work

Recently, there has been renewed interest in the database
community on the data cleaning problem [26, 10, 25]
comprising several aspects, including, data segmenta-
tion, deduplication, outlier detection, standardization
and schema mapping. For the specific problem of
deduplication, most recent work [12, 22] has concentrated
on the performance aspects assuming that the deduplication
function is input by the user.

The problem of deduplication has long been relevant
for library cataloging — see [29] for a survey. [16, 13]
concentrate on hand-coding deduplication functions for the
bibliography domain. The deduplication problem is also
of interest to the statistics community in organizations
like Census Bureau [31, 32, 6]. Much effort has been
spent in designing domain-specific similarity functions for
Census datasets. The learning approach is restricted to one-
shot conventional classification using logistics regression and
naive Bayes. Some of our similarity functions have been
inspired by this literature. However, none of these systems
address the difficulty of collecting a good covering set of
training instances to start with.

Our approach of learning the deduplication function
interactively bears resemblance to interactive relevance
feedback used to refine queries over text and multimedia
content [3]. In relevance feedback the goal is to learn
a relevance function which in most cases boils down to
learning appropriate weights of a weighted distance function.
The key difference between relevance feedback and active
learning is the type of examples shown to the user for

collecting feedback. In most relevance feedback systems the
user is shown the top few most relevant answers in each
round whereas in active learning fast convergence rests on
showing the user the most uncertain answers.

In Section 3 we have already discussed the various ways
of doing active learning. Active learning has been applied in
several domains in the past, including, text classification [20,
30, 17], and information extraction [1]. We believe ours is
one of the first attempts at using active learning to solving
a large-scale, practically motivated problem.

6 Conclusion

Deduplication, a key operation in integrating data from
multiple sources, is a time-consuming, labor-intensive and
domain-specific operation. alias is a novel approach to
easing this task by limiting the manual effort to inputing
simple, domain-specific attribute similarity functions and
interactively labeling a small number of record pairs. We
presented a careful evaluation of a number of non-obvious
design tradeoffs to ensure that the active learning process is
practical, effective and can provide interactive response to
the user. The final deduplication function is designed to be
easy-to-interpret and efficient to apply on large datasets.

We find that active learning requires one to two orders
of magnitude fewer pairs to be labeled than random
selection. Our experiments show that starting from a highly
skewed unlabeled pool with less than 0.5% duplicates, we
are surprisingly able to selectively sample 100-fold more
duplicates than non-duplicates, making the skew 50%. Also,
the specific set of non-duplicates that we pick are important.
If the same number of non-duplicates are picked without
active selection our accuracy drops to half. Finally, we find
that our chosen approach is close to an optimal approach.

Future work include more extensive running time
evaluation, design of better similarity indices, and aiding
users in designing good attribute similarity functions.

Acknowledgments

This project was funded by the Ministry of Information
Technology, India under the project “Mobile agents for
collaborative distributed applications”, 2001-2002. We
would like to acknowledge the help of Mrs. Pratibha Joag of
the National Informatics Corporation for providing us the
address dataset and Dr. Nageswara Rao for his support and
encouragement during the project.

References

[1] S. Argamon-Engelson and I. Dagan. Committee-based
sample selection for probabilistic classifiers. Journal of
Artificial Intelligence Research, 11:335–360, 1999.

[2] V. R. Borkar, K. Deshmukh, and S. Sarawagi.
Automatic text segmentation for extracting structured
records. In Proc. ACM SIGMOD International Conf.
on Management of Data, Santa Barabara,USA, 2001.

[3] C. Buckley, G. Salton, and J. Allan. The effect of
adding relevance information in a relevance feedback
environment. In Proc. of SIGIR, pages 292–300, 1994.

[4] C. J. C. Burges. A tutorial on support vector machines
for pattern recognition. Data Mining and Knowledge
Discovery, 2(2):121–167, 1998.

[5] S. Chaudhuri, V. Narasayya, and S. Sarawagi. Efficient
evaluation of queries with mining predicates. In Proc. of
the 18th Int’l Conference on Data Engineering (ICDE),
San Jose, USA, April 2002.

[6] W. Cohen and J. Richman. Learning to match and
cluster entity names. In ACM SIGIR’ 01 Workshop
on Mathematical/Formal Methods in Information
Retrieval, 2001.

[7] D. Cohn, L. Atlas, and R. Ladner. Improving
generalization with active learning. Machine Learning,
15(2):201–221, 1994.

[8] R. Collobert and S. Bengio. Svmtorch: Support
vector machines for large-scale regression
problems. Journal of Machine Learning Research,
1:143–160, 2001. Software available from
”http://www.idiap.ch/learning/SVMTorch.html”.

[9] Y. Freund, H. S. Seung, E. Shamir, and N. Tishby.
Selective sampling using the query by committee
algorithm. Machine Learning, 28(2-3):133–168, 1997.

[10] H. Galhardas, D. Florescu, D. Shasha, E. Simon, and
C. Saita. Declarative data cleaning: Language, model
and algorithms. In Proc. of the 27th Int’l Conference
on Very Large Databases (VLDB), pages 307–316,
Rome,Italy, 2001.

[11] L. Gravano, Panagiotis, and H. V. Jagadish. Ap-
proximate string joins in a database (almost) for free.
In Proc. of the 27th Int’l Conference on Very Large
Databases (VLDB), Rome,Italy, 2001.

[12] M. A. Hernandez and S. J. Stolfo. Real-world data is
dirty: Data cleansing and the merge/purge problem.
Data Mining and Knowledge Discovery, 2(1):9–37,
1998.

[13] J. Hylton. Identifying and merging related biblio-
graphic records. Master’s thesis, MIT, 1996.

[14] V. S. Iyengar, C. Apte, and T. Zhang. Active learning
using adaptive resampling. In R. Ramakrishnan,
S. Stolfo, R. Bayardo, and I. Parsa, editors, Proceedin-
mgs of the 6th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD-00),
pages 91–98, N. Y., Aug. 20–23 2000. ACM Press.

[15] R. Kohavi, D. Sommerfield, and J. Dougherty. Data
mining using MLC++: A machine learning library
in C++. In Tools with Artificial Intelligence, pages
234–245. IEEE Computer Society Press, available from
http://www.sgi.com/tech/mlc/, 1996.

[16] S. Lawrence, C. L. Giles, and K. Bollacker. Digital
libraries and autonomous citation indexing. IEEE
Computer, 32(6):67–71, 1999.

[17] R. Liere and P. Tadepalli. Active learning with
committees for text categorization. In Proceedings of
AAAI-97, 14th Conference of the American Association
for Artificial Intelligence, pages 591–596, Providence,
US, 1997. AAAI Press, Menlo Park, US.

[18] A. McCallum, K. Nigam, J. Reed, J. Rennie, and
K. Seymore. Cora: Computer science research paper
search engine. http://cora.whizbang.com/, 2000.

[19] A. McCallum, K. Nigam, and L. H. Ungar. Efficient
clustering of high-dimensional data sets with applica-

tion to reference matching. In Knowledge Discovery
and Data Mining, pages 169–178, 2000.

[20] A. K. McCallum and K. Nigam. Employing EM
in pool-based active learning for text classification.
In J. W. Shavlik, editor, Proceedings of ICML-98,
15th International Conference on Machine Learning,
pages 350–358, Madison, US, 1998. Morgan Kaufmann
Publishers, San Francisco, US.

[21] T. Mitchell. Machine Learning. McGraw-Hill, 1997.

[22] A. E. Monge and C. P. Elkan. The field matching
problem: Algorithms and applications. In Proceedings
of the Second International Conference on Knowledge
Discovery and Data Mining (KDD-96), 1996.

[23] G. Navarro. A guided tour to approximate string
matching. ACM Computing Surveys, 33(1):31–88,
2001.

[24] J. R. Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufman, 1993. software available from http:
//www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.gz.

[25] V. Raman and J. M. Hellerstein. Potters wheel: An
interactive data cleaning system. In Proc. of the 27th
Int’l Conference on Very Large Databases (VLDB),
pages 307–316, Rome,Italy, 2001.

[26] S. Sarawagi, editor. IEEE Data Engineering special
issue on Data Cleaning. http://www.research.
microsoft.com/research/db/debull/A00dec/issue.
htm, December 2000.

[27] G. Schohn and D. Cohn. Less is more: Active
learning with support vector machines. In Proc. 17th
International Conf. on Machine Learning, pages 839–
846. Morgan Kaufmann, San Francisco, CA, 2000.

[28] H. S. Seung, M. Opper, and H. Sompolinsky. Query by
committee. In Computational Learing Theory, pages
287–294, 1992.

[29] S. Toney. Cleanup and deduplication of an international
bibliographic database. Information Technology and
libraries, 11(1):19 – 28, 1992.

[30] S. Tong and D. Koller. Support vector machine active
learning with applications to text classification. Journal
of Machine Learning Research, 2:45–66, Nov. 2001.

[31] W. E. Winkler. Matching and record linkage. In
B. G. C. et al, editor, Business Survey Methods, pages
355–384. New York: J. Wiley, 1995. available from
http://www.census.gov/.

[32] W. E. Winkler. The state of record linkage
and current research problems. RR99/04,
http://www.census.gov/srd/papers/pdf/rr99-04.pdf,
1999.

[33] B. Zadrozny and C. Elkan. Learning and making
decisions when costs and probabilities are both un-
known. In In Proceedings of the Seventh International
Conference on Knowledge Discovery and Data Mining
(KDD), 2001.

[34] T. Zhang and F. J. Oles. A probability analysis on the
value of unlabeled data for classification problems. In
Proc. 17th International Conf. on Machine Learning,
pages 1191–1198. Morgan Kaufmann, San Francisco,
CA, 2000.

http://www.sgi.com/tech/mlc/
http://www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.gz
http://www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.gz
http://www.research.microsoft.com/research/db/debull/A00dec/issue.htm
http://www.research.microsoft.com/research/db/debull/A00dec/issue.htm
http://www.research.microsoft.com/research/db/debull/A00dec/issue.htm

	Introduction
	Overall architecture
	The indexing component
	The learning component

	Active learning
	Uncertainty score of an instance
	Methods of creating committees
	Comparing the three different methods of creating committee

	The representativeness of an instance

	Experimental evaluation
	Running time
	Evaluating active learning on different base classifiers
	Comparing active learning with random selection
	Comparison with optimal selection

	Related work
	Conclusion

