
Interactive Deformation and Visualization of Level Set Surfaces Using

Graphics Hardware

Aaron E. Lefohn Joe M. Kniss Charles D. Hansen Ross T. Whitaker

Scientific Computing and Imaging Institute, University of Utah∗

(a) (b) (c)
Figure 1: (a) Interactive level set segmentation of a brain tumor from a 256 × 256 × 198 MRI with volume rendering to
give context to the segmented surface. (b) A clipping plane shows the user the source data, the volume rendering, and the
segmentation simultaneously, while probing data values on the plane. (c) The cerebral cortex segmented from the same data.
The yellow band indicates the intersection of the level-set model with the clipping plane.

Abstract
Deformable isosurfaces, implemented with level-set meth-
ods, have demonstrated a great potential in visualization for
applications such as segmentation, surface processing, and
surface reconstruction. Their usefulness has been limited,
however, by their high computational cost and and reliance
on significant parameter tuning. This paper presents a so-
lution to these challenges by describing graphics processor
(GPU) based algorithms for solving and visualizing level-
set solutions at interactive rates. Our efficient GPU-based
solution relies on packing the level-set isosurface data into
a dynamic, sparse texture format. As the level set moves,
this sparse data structure is updated via a novel GPU to
CPU message passing scheme. When the level-set solver is
integrated with a real-time volume renderer operating on
the same packed format, a user can visualize and steer the
deformable level-set surface as it evolves. In addition, the
resulting isosurface can serve as a region-of-interest specifier
for the volume renderer. This paper demonstrates the capa-
bilities of this technology for interactive volume visualization

∗e-mail:{lefohn|jmk|hansen|whitaker}@sci.utah.edu

and segmentation.

CR Categories: I.3.3 [Computer Graphics]—
Computational Geometry and Object Model-
ing,Methodology and Techniques

Keywords: Deformable Models, Image Segmentation,
Volume Visualization, GPU, Level Sets, Streaming Compu-
tation

1 Introduction

Level-set methods [Osher and Sethian 1988] rely on par-
tial differential equations (PDEs) to model deforming iso-
surfaces. These methods have applications in a wide range
of fields such as visualization, scientific computing, com-
puter graphics, and computer vision [Fedkiw and Osher
2002; Sethian 1999]. Applications in visualization include
volume segmentation [Malladi et al. 1995; Whitaker 1994],
surface processing [Tasdizen et al. 2002], and surface recon-
struction [Whitaker 1998].

The use of level sets in visualization can be problematic.
Level sets are relatively slow to compute and they typically
introduce several free parameters that control the surface
deformation and the quality of the results. The latter prob-
lem is compounded by the first because, in many scenarios,
a user must wait minutes or hours to observe the results of a
parameter change. Although efforts have been made to take
advantage of the sparse nature of the computation, the most
highly optimized solvers are still far from interactive. This
paper proposes a solution to the above problems by mapping
the level-set PDE solver to a commodity graphics processor.

While the proposed technology has a wide range of uses
within visualization and elsewhere, this paper focuses on a
particular application: the analysis and visualization of vol-



ume data. By accelerating the PDE solver to interactive
rates and coupling it to a real-time volume renderer, it is
possible to visualize and steer the computation of a level-
set surface as it moves toward interesting regions within a
volume. The volume renderer, with its global visualization
capabilities, provides context for the evolving level set. Also,
the results of a level-set segmentation can specify a region-
of-interest for the volume renderer [Yoo et al. 1992].

The main contributions of this paper are:
• An integrated system that demonstrates level-set com-

putations can be intuitively controlled by coupling a
real-time volume renderer with an interactive solver.

• A GPU-based 3D level-set solver which is approxi-
mately 15 times faster than previous optimized solu-
tions.

• A dynamic, packed texture format that enables the ef-
ficient processing of time-dependent, sparse GPU com-
putations.

• Real-time volume rendering directly from this packed
texture format.

• A novel message passing scheme between the GPU and
CPU that uses automatic mipmap generation to create
compact, encoded messages.

The following section discusses previous work and gives
some technical background for level sets, GPUs, and hard-
ware accelerated volume rendering. Section 3 discusses the
algorithmic and graphics hardware details of our level-set
solver and volume renderer. Section 4 describes our segmen-
tation application. It gives the specific form of the level-
set equations and desrcribes the results of a performance
analysis. In Section 5, we give conclusions, describe future
research directions, and make suggestions for future GPU
improvements.

2 Background and Related Work

2.1 Level Sets

This paper describes a new solver for an implicit represen-
tation of deformable surface models called the method of
level sets [Osher and Sethian 1988]. The use of level sets
has been widely documented in the visualization literature,
and several works give comprehensive reviews of the method
and the associated numerical techniques [Fedkiw and Osher
2002; Sethian 1999]. Here we merely review the notation
and describe the particular formulation that is relevant to
this paper.

In an implicit model the surface consists of all points S =
{x̄|φ(x̄) = 0}, where φ : ℜ3 7→ ℜ. Level-set methods relate
the motion of that surface to a PDE on the volume, i.e.

∂φ/∂t = −∇φ · v̄, (1)

where v̄, which can vary in space and time, describes the
motion of the surface. Within this framework one can im-
plement a wide range of deformations by defining an appro-
priate v̄. This velocity (or speed) term is often a combina-
tion of several other terms, including data-dependent terms,
geometric terms (e.g. curvature), and others. In many appli-
cations, these velocities introduce free parameters, and the
proper tuning of those parameters is critical to making the
level-set model behave in a desirable manner. Equation 1
is the general form of the level-set equation, which can be
tuned for wide variety of problems and which motivates the
architecture of our solver. We describe the specific form used
for volume segmentation in Sect. 4.1.

Solving level-set PDEs on a volume requires proper nu-
merical schemes [Osher and Sethian 1988] and entails a sig-
nificant computational burden. Stability requires that the

surface can progress at most a distance of one voxel at each
iteration, and thus a large number of iterations are required
to compute significant deformations. The purpose of this
paper is to offer a solution that is relevant to a wide vari-
ety of level-set applications; that is, the ability to solve such
equations efficiently on commodity graphics hardware.

There is a special case of Eq. 1 in which the surface mo-
tion is strictly inward or outward. In such cases the PDE
can be solved somewhat efficiently using the fast marching
method [Sethian 1999] and variations thereof [Droske et al.
2001]. However, this case covers only a very small subset
of interesting speed functions. In general we are concerned
with problems that require a curvature term and simultane-
ously require the model to expand and contract.

Efficient algorithms for solving the more general equation
rely on the observation that at any one time step the only
parts of the solution that are important are those adjacent
to the moving surface (near points where φ = 0). In light
of this observation several authors have proposed numerical
schemes that compute solutions for only those voxels that lie
in a small number of layers adjacent to the surface. Adal-
steinson and Sethian [1995] have proposed the narrow band
method, which updates the embedding, φ, on a band of 10-20
pixels around the model, and reinitializes that band when-
ever the model approaches the edge. Whitaker [1998] pro-
posed the sparse-field method, which introduces a scheme in
which updates are calculated only on the wavefront, and sev-
eral layers around that wavefront are updated via a distance
transform at each iteration. A similar strategy is described
in Peng et al. [1999]. Even with this very narrow band of
computation, update rates using conventional processors on
typical resolutions (e.g. 2563 voxels) are not interactive.
This is the motivation behind our GPU-based solver.

2.2 Scientific Computation on Graphics Processors

Graphics processing units have been developed primarily for
the computer gaming industry, but over the last several years
researchers have come to recognize them as a low cost, high
performance computing platform. Two important trends in
GPU development, increased programmability and higher
precision arithmetic processing, have helped to foster new
non-gaming applications.

For many data-parallel computations, graphics processors
out-perform central processing units (CPUs) by more than
an order of magnitude because of their streaming architec-
ture [Owens 2002] and dedicated high-speed memory. In
the streaming model of computation, arrays of input data
are processed identically by the same computation kernel to
produce output data streams. In contrast to vector archi-
tectures, the computation kernel in a streaming architecture
may consist of many (possibly thousands) of instructions and
use temporary registers to hold intermediate values. The
GPU takes advantage of the data-level parallelism inherent
in the streaming model by having many identical processing
units execute the computation in parallel.

Currently GPUs must be programmed via graphics APIs
such as OpenGL or DirectX. Therefore all computations
must be cast in terms of computer graphics primitives such
as vertices, textures, texture coordinates, etc. Figure 2 de-
picts the computation pipeline of a typical GPU. A render
pass is a set of data passing completely through this pipeline.
It can also be thought of as the complete processing of a
stream by a given kernel.

Grid-based computations are solved by first transferring
the initial data into texture memory. The GPU performs
the computation by rendering graphics primitives that ad-
dress this texture. In the simplest case, a computation is



Vertex

Program

Rasterization

Textures
Fragment

ProgramFramebuffer

Vertices/

Texture 

Coordinates

Figure 2: The modern graphics processor pipeline.

performed on all elements of a 2D texture by drawing a
quadrilateral that has the same number of grid points (pix-
els) as the texture. Memory addresses that identify each
fragment’s data value as well as the location of its neigh-
bors are given as texture coordinates. A fragment program
(the kernel) then uses these addresses to read data from
texture memory, perform the computation, and write the
result back to texture memory. A 3D grid is processed as
a sequence of 2D slices. This computation model has been
used by a number of researchers to map a wide variety of
computationally demanding problems to GPUs. Examples
include matrix multiplication, finite element methods, multi-
grid solvers, and others [Goodnight et al. 2003; Larsen and
McAllister 2001; Strzodka and Rumpf 2001]. All of these ex-
amples demonstrate a homogeneous sequence of operations
over a densely populated grid structure.

Strzodka et al. [2001] were the first to show that the
level-set equations could be solved using a graphics proces-
sor. Their solver implements the two-dimensional level-set
method using a time-invariant speed function for flood-fill-
like image segmentation without the associated curvature.
Lefohn and Whitaker demonstrate a full three dimensional
level-set solver, with curvature, running on a graphics pro-
cessor [2002]. Neither of these approaches, however, take
advantage of the sparse nature of level-set PDEs and there-
fore they perform only marginally better (e.g. twice as fast)
than sparse or narrow band CPU implementations.

This paper presents a GPU computational model that
supports sparse and dynamic grid problems. These problems
are difficult to solve efficiently with GPUs for two reasons.
The first is that in order to take advantage of the GPU’s par-
allelism, the streams being processed must be large, contigu-
ous blocks of data, and thus grid points near the level-set sur-
face model must be packed into a small number of textures.
The second difficulty is that the level set moves with each
time step, and thus the packed representation must readily
adapt to the changing position of the model. This require-
ment is in contrast to the recent sparse matrix solvers [Bolz
et al. 2003; Krüger and Westermann 2003] and previous work
on rendering with compressed data [Beers et al. 1996; Kraus
and Ertl 2002]. Recent work by Sherbondy et al. [2003] de-
scribes a dynamic, sparse GPU computation model and is
discussed in Section 4. Section 3 gives a detailed description
of our solution to the sparse, dynamic computation problem.

2.3 Hardware-Accelerated Volume Rendering

Volume rendering is a flexible and efficient technique for cre-
ating images from 3D data [Drebin et al. 1988; Levoy 1988;
Sabella 1988]. With the advent of dedicated hardware for
rasterization and texturing, interactive volume rendering has
become one of the most widely used techniques for visualiz-
ing moderately sized 3D rectilinear data [Cabral et al. 1994;
Wilson et al. 1994]. In recent years, graphics hardware has
become more programmable, permitting rendering features
with an image quality that rival sophisticated software tech-
niques [Engel et al. 2001; Kniss et al. 2002]. In this paper,
we describe a novel volume rendering system that leverages
programmable graphics hardware to simultaneously render

(a) (b)

 Bottom-left corner

 Top-left corner

 Top-right corner

 Bottom-right corner

 Bottom side

 Left side

 Top side

 Right side

 Center (c)

Unallocated

tiles

Figure 3: The spatial decomposition scheme for packing ac-
tive regions of the volume into texture memory. The un-
packed tile space is shown in (a) and the packed tile space
is shown in (b). CPU-based data structures exist for both
of these spaces. The only data stored on the GPU is that
represented by (b). Three dimensional neighborhoods are
efficiently reconstructed on the packed format by processing
boundary pixels in nine separate special cases. These nine
substreams are shown in (c).

the packed level-set solution and source data.

3 Implementation
This section gives a technical description of our implemen-
tation. We begin with a high-level description of the al-
gorithms used for both the sparse-grid, streaming, level-set
solver and the real-time volume renderer. We then cover
some of the implementation details that are specific to the
architecture of current graphics processors. Note that this
section focuses on our new solution to the sparse/narrow-
band computation problem. We therefore refer the reader
to Lefohn et al. [2002] for a detailed description of the level-
set equations.

3.1 Algorithmic Details

3.1.1 GPU Level-Set Solver

The efficient solution of the level-set PDEs relies on updat-
ing only those voxels that are on or near the isosurface. The
narrow band [Sethian 1999] and sparse field [Whitaker 1998]
methods achieve this by operating on sequences of hetero-
geneous operations. For instance, the sparse-field method
keeps a linked list of active voxels on which the computa-
tion is performed.

Like the narrow band and sparse field CPU-based solvers,
our sparse GPU level-set solver computes only those vox-
els near the isosurface. To run efficiently on GPUs, how-
ever, our solution must also have the following character-
istics: texture-based data structures that can be efficiently
updated, no scatter write operations, minimal memory re-
quirements, and be highly data-parallel. We achieve these
goals by decomposing the volume into a set of small 2D tiles
(e.g. 16 × 16 pixels each). Only those tiles with non-zero
derivatives are stored on the GPU (see Fig. 3). These ac-
tive tiles are packed, in an arbitrary order, into a large 2D
texture. The 3D level-set PDE is computed directly on this
packed format. The CPU is used only to help manage the
packing of the active data. Figure 4 shows a flow diagram
of our level-set solver.

Two data structures, a packed map and unpacked map, are
kept on the CPU to track each tile’s packed and unpacked
position. The packed map stores the volumetric location of
each tile in the sparse, GPU texture. The unpacked map



GPUCPU

Texture Coordinates

& Vertex Indices

Bit Vector

15-250 Render

Passes – PDE

Update

Figure 4: Flow diagram of the GPU-based level-set solver.

stores a tile object that contains the vertices and texture co-
ordinates for the actual texture data. There are two special
tiles set aside for white and black regions. Tiles that are not
active (i.e. homogeneous in value either inside or outside of
the level set) are mapped to the white or black tile in texture
memory. Also note that the vertices are replicated for each
tile because each tile needs its own set of texture coordinates
in order to locate its neighboring tiles. A diagram of these
mappings are shown in Fig. 3.

The overview of the GPU portion of the computation is
given below. The six steps shown are those required for a
single iteration of the level-set PDE. See Lefohn et al. [2002]
for an explanation of the twenty-one first and second deriva-
tives and the discretization of the level-set equations.

1. Compute 21, 1st and 2nd partial derivatives. 9 sub-
stream passes—each to the same 4 buffers.

2. Compute N level-set speed terms. At least N passes.
3. Update level-set PDE. 1 pass.
4. Create eight-bytes of neighborhood info. 9 substream

passes.
5. Down sample neighborhood information.
6. Create bit vector message. 1 pass.
7. Send bit vector to CPU.

The remaining portion of this section describes the de-
tails of the algorithm above. Step 1 is the only point in the
computation when neighboring data values are read. The
location of all necessary neighbor values is reconstructed on-
the-fly by using texture coordinates to locate adjacent tiles in
the 3D unpacked space. The position of data elements in re-
lation to tile boundaries divides these gather operations into
nine different cases: interior, corners, and edges (Fig. 3(c)).
Rather than use a single fragment program to compute all
nine cases, we instead create a specialized fragment program
for each boundary case. Each specialized program is associ-
ated with geometry that rasterizes only the pixels needed for
that case. We call this method of statically resolving condi-
tionals using specialized fragment programs and geometry,
substreams. The concept is a static implementation of the
data-routing idea described Kapasi et al. [2000].

Our use of substreams is motivated by two characteristics
of graphics hardware. The first is that GPUs do not support
conditional execution in the fragment stage (all paths are
executed and a single result is conditionally assigned). The
second motivation is that the majority of the pixels are in
the interior case, which has highly local neighbor lookups.
In contrast, the neighbors for the eight boundary cases are
almost never local, making texture caches almost useless. If
we had instead combined all cases into one fragment program
with an indirection texture to locate the address of each
neighbor, neighbor lookups would be significantly slower for
the common (interior) case.

Step 2 of the algorithm computes the speed terms de-
scribed in Sect. 4. We add an additional term, however,
to keep the volume in which the level-set is embedded, φ,
resembling a clamped distance transform (CDT). This is
necessary because active tiles are identified by non-zero gra-
dients. The CDT ensures that voxels near the isosurface

have finite derivatives while those farther away have gradi-
ent magnitudes of zero. Our new speed term is added to the
velocity term v̄(t) in Eq. 1. This rescaling term, Gr is of the
form,

Gr = φgφ − φ|∇φ|, (2)

where φ is the value of the embedding at a voxel and |∇φ|
is the gradient in the direction of the isosurface. The tar-
get gradient, gφ, is set based on the numerical precision of
the level-set data. This speed term is strictly a numeri-
cal construct; it does not affect the movement of the zero
level set, i.e. the surface model. More detailed discussions
of embedding-rescaling computations such as Eq. 2 can be
found in the literature [Lefohn et al. 2003; Fedkiw et al.
1999].

After the solver updates the level-set data in step 3, it cre-
ates a compressed, bit-vector message. This message enables
the CPU (in step 7) to determine which tiles are active in the
next pass. This compressed message provides the CPU with
aggregated information about each tile at each iteration, so
that it can send vertices and texture coordinates for the new
active set of tiles that the GPU will need in the next itera-
tion. All of this communication between the CPU and GPU
must be at the level of tiles to avoid a communication bot-
tleneck. The aggregated tile description is generated on the
GPU from a logical combination of the status of each pixel
within each tile. This aggregation is performed efficiently
by using the built-in mipmap generation functionality of the
GPU.

The GPU creates the bit vector message in three stages—
steps 4, 5, and 6. The first stage (step 4) creates information
buffers that determine the active status of each voxel and its
neighbors. The information buffers created in step 4 consist
of eight bytes per active voxel. Each byte is set to either its
maximum value (true) or zero (false). The first byte is set
to true if any of the six, one-sided cardinal derivatives are
non-zero. This determines if the voxel needs to be active on
the next iteration. Each of the next six tests represent the
active status of adjacent tiles in the unpacked 3D neighbor-
hood. Each test is true only if a tile boundary is crossed in
the corresponding direction and a non-zero derivative exists
across that boundary. Note that the substream technique is
used to process only those voxels that lie on tile boundaries.
The eighth value is simply the level-set embedding value of
the voxel.

In step 5, the solver uses the automatic mipmapping fea-
ture on the GPU to down sample these eight bytes of in-
formation until each tile is reduced to a single pixel. Any
non-zero value in the original information buffers will result
in a non-zero down sampled value for the entire tile.

Finally in step 6, the GPU creates the bit vector im-
age/message by combining the eight bytes per pixel of down
sampled data into a single eight-bit code for each pixel. The
bit code is created with a fragment program that emulates
a bitwise OR operation by conditionally adding power-of-
two values. For each of the eight bytes that are non-zero, a
unique power-of-two value is added to the final, single-byte
result.

The CPU then reads back and decodes this small (< 64
kB) bit-vector image in step 7. The bit code denotes whether
a tile or any of the six adjacent tiles need to be active for
the next iteration. The code also encapsulates whether a
newly inactive tile is inside or outside the level-set surface.
The CPU uses this information to activate new tiles (white
or black as appropriate), frees tiles that are no longer active,
and updates the packed and unpacked maps described above.



(a) (b)

Figure 5: For volume rendering the packed level-set model:
(a) When the preferred slicing direction is orthogonal to the
packed texture, the tiles (shown in alternating colors) are
rendered into slices as quadrilaterals. (b) For slicing direc-
tions parallel to the packed texture, the tiles are drawn onto
slices as either vertical or horizontal lines.

3.2 Volume Rendering of Packed Data

Our volume renderer performs a full 3D (transfer-function
based) volume rendering of the original data simultaneously
with the evolving level set. For rendering the original vol-
ume, the input data and its gradient vectors are kept on the
GPU as 3D textures. The volume data is rendered on the
GPU with multidimensional transfer functions as described
in Kniss et al. [2002].

For rendering the evolving level-set model, we use a mod-
ification of the conventional 2D sliced approach to texture-
based volume rendering [Cabral et al. 1994]. We modify
the conventional approach to render the level-set solution
directly from the packed tiles, which are stored in a sin-
gle 2D texture. The level-set data and tile configuration
are dynamic, and therefore we do not precompute and store
the three separate versions of the data, sliced along cardi-
nal views, as is typically done with 2D texture approaches.
Instead we reconstruct these views each time the volume is
rendered.

The 2D slice-based rendering requires interpolation be-
tween two adjacent slices in the back-to-front ordering along
the appropriate cardinal direction. We reconstruct each slice
in unpacked space by texture mapping either quadrilateral or
line primitives with data from the packed level-set texture.
When the preferred slice axis, based on the viewing angle,
is orthogonal to the unpacked slices, we reconstruct using
textured quadrilateral for each tile. If the preferred slice di-
rection is parallel to the unpacked slicing, we instead render
a row or column from each tile using textured line primi-
tives. Figure 5 illustrates the two cases for 2D slice-based
rendering of the level-set model.

For efficiency the renderer reuses data wherever possible.
For instance, lighting for the level-set surface uses gradient
vectors computed during the level-set update stage. The
rendering of the source data relies on precomputed gradient
data—the gradient magnitude is used by the transfer func-
tion and the gradient direction is used in the lighting model.

3.3 Graphics Hardware Implementation Details

This subsection describes implementation details that are
specific to the current generation of graphics hardware. Sug-
gestions for future graphics hardware features are given in
Sec. 5.

The level-set solver and volume renderer are implemented
in programmable graphics hardware using vertex and frag-
ment programs on the ATI Radeon 9800 GPU. The pro-
grams are written in the OpenGL ARB vertex program and
ARB fragment program assembly languages. The bulk of
the computations are performed in fragment programs. Ver-
tex programs are used, however, to efficiently compute tex-

ture coordinates for neighbor lookups—thereby minimizing
both AGP bandwidth and valuable fragment instructions.

Critical to the performance of the system are two capabil-
ities pertaining to render pass destination buffers. The first
capability, relatively recent on GPUs, is the ability to out-
put multiple, high-precision 4-tuple results from a fragment
program. Multiple outputs enable us to perform the expen-
sive 3D neighborhood reconstruction only once and use the
gathered data to compute all derivatives in the same pass.
The second feature crucial to the performance is the ability
to quickly change render pass destination buffers. As Bolz et
al. [2003] discuss, changing pbuffers is very expensive due to
the unnecessary context switch. We avoid this overhead by
allocating a single buffer with many render surfaces (front,
back, aux0, etc.) and switching between them. When the
complexity of the computation requires more intermediate
buffers, we use sub-regions of larger buffers to augment this
multisurface approach.

There is a subtle speed-versus-memory tradeoff that must
be carefully considered. The packed level-set texture can
be as large as 20482 (the largest 2D texture currently al-
lowed on GPUs). In order to minimize the memory costs of
the intermediate buffers (derivatives, speed values, etc.), the
level-set data is updated in sub-regions. We maximize the
size of these sub-regions to keep computational efficiency as
high as possible. We currently use 5122 sub-regions when
the level-set texture is 20482 and use a single region when it
is smaller.

4 Application and Results
This section describes an application for interactive vol-
ume segmentation and visualization, which uses the level-set
solver described previously. The system combines interac-
tive level-set models with real-time volume rendering on the
GPU. We show pictures from the system and present timing
results relative to our current benchmark for level-set de-
formations, which is a highly optimized CPU solution [The
Insight Toolkit 2003].

4.1 Volume Visualization and Analysis

For segmenting volume data with level sets, the velocity usu-
ally consists of a combination of two terms [Malladi et al.
1995; Whitaker 1994]

∂φ

∂t
= |∇φ|

»

αD(x̄) + (1 − α)∇ ·
∇φ

|∇φ|

–

, (3)

where D is a data term that forces the model to expand
or contract toward desirable features in the input data, the
term ∇ · (∇φ/|∇φ|) is the mean curvature H of the sur-
face, which forces the surface to have less area (and remain
smooth), and α ∈ [0, 1] is a free parameter that controls the
degree of smoothness in the solution. This corresponds to a
surface velocity (from Eq. 1), v̄ = n̄(D + H), where n̄ is the
surface normal.

This combination of a data-fitting speed function with the
curvature term is critical to the application of level sets to
volume segmentation. Most level-set data terms D from the
segmentation literature are equivalent to well-known algo-
rithms such as isosurfaces, flood fill, or edge detection when
used without the smoothing term (i.e. α = 1). The smooth-
ing term alleviates the effects of noise and small imperfec-
tions in the data, and can prevent the model from leak-
ing into unwanted areas. Thus, the level-set surface models
provide several capabilities that complement volume render-
ing: local, user-defined control; smooth surface normals for
better rendering of noisy data; and a closed surface model,



D(I)

Model

Expands

T

D = 0

T-ε T+ε

I

Model

Contracts

Model

Contracts

Figure 6: A speed function based on image intensity causes
the model to expand over regions with greyscale values
within the specified range and contract otherwise.

Figure 7: A depiction of the user interface for the volume
analysis application. Users interact via slice views, a 3D
rendering, and a control panel.

which can be used in subsequent processing or for quantita-
tive shape analysis.

For the work in this paper we have chosen a simple speed
function to demonstrate the effectiveness of interactivity and
real-time visualization in level-set solvers. The speed func-
tion we use in this work depends solely on the greyscale value
input data I at the point x̄:

D(I) = ǫ − |I − T |, (4)

where T controls the brightness of the region to be seg-
mented and ǫ controls the range of greyscale values around
T that could be considered inside the object. In this way a
model situated on voxels with greyscale values in the interval
T±ǫ will expand to enclose that voxel, whereas a model situ-
ated on greyscale values outside that inverval will contract to
exclude that voxel. The speed term is gradual, as shown in
Fig. 6, and thus the effects of the D diminish as the model
approaches the boundaries of regions with greyscale levels
within the T ± ǫ range, and the effects of the curvature term
will be relatively larger. This choice of D corresponds to a
simple, one-dimensional statistical classifier on the volume
intensity [Lefohn et al. 2003].

To control the model a user specifies three free param-
eters, T , ǫ, and α, as well as an initialization. The user
generally draws a spherical initialization inside the region to
be segmented. Note that the user can alternatively initial-
ize the solver with a preprocessed (thresholded, flood filled,
etc.) version of the source data.

4.2 Interface and Usage

The application in this paper consists of a graphical user
interface that presents the user with two slice viewing win-
dows, a volume renderer, and a control panel (Fig. 7). Many
of the controls are duplicated throughout the windows to al-
low the user to interact with the data and solver through
these various views. Two and three dimensional representa-
tions of the level-set surface are displayed in real time as it
evolves.

The first 2D window displays the current segmentation
as a yellow line overlaid on top of the source data. The sec-

ond 2D window displays a visualization of the level-set speed
function that clearly delineates the positive and negative re-
gions. The first window can be probed with the mouse to
accomplish three tasks: set the level set speed function, set
the volume rendering transfer function, and draw 3D spher-
ical initializations for the level-set solver. The first two are
accomplished by accumulating an average and variance for
values probed with the cursor. In the case of the speed func-
tion, the T is set to the average and ǫ is set to the standard
deviation. Users can modify these values, via the GUI, while
the level set deforms. The spherical drawing tool is used to
initialize and/or edit the level-set surface. The user can place
either white (model on) or black (model off) spheres into the
system.

The volume renderer displays a 3D reconstruction of the
current level set isosurface as well as the input data. In
addition, an arbitrary clipping plane, with texture-mapped
source data, can be enabled via the GUI (Fig. 1b). Just
as in the slice viewer, the speed function, transfer function,
and level-set initialization can be set through probing on this
clipping plane. The crossing of the level-set isosurface with
the clipping plane is also shown in bright yellow.

The volume renderer uses a 2D transfer function to render
the level set surface and a 3D transfer function to render the
source data. The level-set transfer function axes are inten-
sity and distance from the clipping plane (if enabled). The
transfer function for rendering the original data is based on
the source data value, gradient magnitude, and the level-
set data value. The latter is included so that the level set
model can function as a region-of-interest specifier. All of
the transfer functions are evaluated on-the-fly in fragment
programs rather than in lookup tables. This approach per-
mits the use of arbitrarily high dimensional transfer func-
tions, allows run-time flexibility, and reduces memory re-
quirements [Kniss et al. 2003].

We demonstrate our interactive level-set solver and vol-
ume rendering system with the following three data sets: a
brain tumor MRI (Fig. 1), an MRI scan of a mouse (Fig. 8),
and transmission electron tomography data of a gap junc-
tion (Fig. 9). In all of these examples a user interactively
controls the level-set surface evolution and volume rendering
via the multiview interface. The initializations for the tumor
and mouse were drawn via the user interface while the gap
junction solution was seeded with a thresholded version of
the source data.

4.3 Performance Analysis

Our GPU-based level-set solver achieves a speedup of ten
to fifteen times over a highly-optimized, sparse-field, CPU-
based implementation [The Insight Toolkit 2003]. All bench-
marks were run on an Intel Xeon 1.7 GHz processor with
1 GB of RAM and an ATI Radeon 9800 Pro GPU. For a
256 × 256 × 175 volume, the level-set solver runs at rates
varying from 70 steps per second for the tumor segmenta-
tion to 3.5 steps per second for the final stages of the cortex
segmentation (Fig. 1). In contrast, the CPU-based, sparse
field implementation ran at 7 steps per second for the tumor
and 0.25 steps per second for the cortex segmentation.

The speed of our solver is bound almost entirely by the
fragment stage of the GPU. In addition, the speed of our
solver scales linearly with the number of active voxels in
the computation. Creation of the bit vector message con-
sumes approximately 15% of the GPU arithmetic and tex-
ture instructions, but for most applications the speedup over
a dense GPU-based implementation far eclipses this addi-
tional overhead.



Figure 8: (top) Volume rendering of a 2563 MRI scan of a
mouse thorax. Note the level set surface which is deformed
to segment the liver. (bottom) Volume rendering of the vas-
culature inside the liver using the same transfer function as
in (a) with the level-set surface is being used as a region-of-
interest specifier.

Figure 9: Segmentation and volume rendering of 512×512×
61 3D transmission electron tomography data. The pic-
ture shows cytoskeletal membrane extensions and connexins
(pink surfaces extracted with the level-set models) near the
gap junction between two cells (volume rendered in cyan).

The amount of texture memory required for the level-set
computation is proportional to the surface area of the level-
set surface—i.e. the number of active tiles. Our tests have
shown that for many applications, only 10%-30% of the vol-
ume is active. To take full advantage of this savings, tex-
ture memory must be dynamically allocated as the surface
expands. Our current implementation performs only static
allocation, but future versions could easily realize the above
memory savings. Section 5 discusses changes to GPU dis-
play drivers that will facilitate the implementation of this
feature.

In comparison to the depth-culling-based sparse volume
computation presented by Sherbondy et al. [2003], our pack-
ing scheme guarantees that very few wasted fragments are
generated by the rasterization stage. This is especially im-
portant for sparse computations on large volumes—where
the rasterization and culling of unused fragments could con-
sume a signficant portion of the execution time. In addition,
our packing strategy allows us to process the entire active
data set simultaneously, rather than slice-by-slice. This im-
proves the computationally efficiency by taking advantage of
the GPU’s deep pipelines and parallel execution. Our algo-
rithm should also be able to process larger volumes, due to
the memory savings discussed above. Our algorithm, how-
ever, does incur overhead associated with maintaining the
tiles, and more experimentation is necessary to understand
the circumstances under which each approach is advanta-
geous. Furthermore, they are not mutually exclusive, and
Sect. 5 discusses the possibility of using depth culling in
combination with our packed representation.

5 Conclusions
This papers demonstrates a new tool for interactive vol-
ume exploration and analysis that combines the quantitative
capabilities of deformable isosurfaces with the qualitative
power of volume rendering. By relying on graphics hard-
ware, the level-set solver operates at interactive rates (ap-
proximately 15 times faster than previous solutions). This
mapping relies on a novel dynamic, packed texture and a
GPU-to-CPU message passing scheme. While the GPU up-
dates the level set, it renders the surface model directly from
this packed texture format. Future extensions and applica-
tions of the level-set solver include the processing of mul-
tivariate data as well as surface reconstruction and surface
processing. Most of these only involve changing only the
speed functions.

Another promising area of future work is to adapt these
volume processing algorithms to leverage the evolving capa-
bilities of GPUs. For instance, the efficiency of our mem-
ory usage is hampered by inflexibilities in the GPU mem-
ory model and instruction set. The first way in which we
could use memory more efficiently is by spreading the packed
representation across multiple textures. We could then dy-
namically allocate texture memory as needed and would not
be limited to the maximum size of 2D textures. This ap-
proach requires either an efficient mechanism for rendering
to a slice of a 3D buffer or the ability to dynamically select
which texture is sampled (i.e. more indirection in texture
reads). The former solution is now possible with the uber
buffer [Percy and Mace 2003] OpenGL extension. A second
strategy for reducing memory usage is the development of
better compression schemes. Implementing these more ag-
gressive compression algorithms will almost certainly require
the ability to use integer data types and bitwise operations
in the fragment processor.

Current GPU capabilities also limit the computational ef-
ficiency of the proposed algorithms. We could achieve better



computational efficiency within each tile if we could avoid
processing pixels that are not sufficiently close to the sur-
face, i.e. we could achieve an even narrower band of compu-
tation. This would require a more flexible depth and/or sten-
cil culling mechanism in which multiple data buffers could
access a single depth/stencil buffer [Percy and Mace 2003].
In addition, we could save additional fragment instructions
by computing all texture addresses in the vertex stage. This
would require more per-vertex interpolants. For instance,
the sampling of a 3×3×3 kernel from a 3D texture requires
at least 21, 4-tuple interpolants.

Future implementations of our algorithm could also take
advantage of recently proposed higher-level shading lan-
guage features. The Java-like interfaces proposed in Mark
et al. [2003] could be used to separate memory access opera-
tions from arithmetic computation code. This would maxi-
mize code reuse for the nine specialized substream fragment
programs because these programs differ only in the definition
of their gather operation.

Acknowledgments
Thanks to Evan Hart, Mark Segal, Jeff Royal and Jason
Mitchell at ATI for donating technical advice and hardware
to this project. Gordon Kindlmann’s nrrd toolkit was used
for dataset manipulation. Milan Ikits’ GLEW library was
used for OpenGL extension management. Erik Jorgensen
helped with production of the video. Steve Lamont and
Gina Sosinsky at the National Center for Microscopy and
Imaging Research at UCSD provided the tomography data.
Simon Warfield, Michael Kaus, Ron Kikinis, Peter Black and
Ferenc Jolesz provided the MRI head data. The mouse data
was supplied by the Center for In Vivo Microscopy at Duke
University. This work was supported by grants from NSF,
ACI0089915 and CCR0092065, and ONR N000140110033.
We also thank John Owens and the anonymous reviewers
for their input on the manuscript.

References

Adalsteinson, D., and Sethian, J. A. 1995. A fast level set method

for propogating interfaces. Journal of Computational Physics, 269–

277.
Beers, A. C., Agrawala, M., and Chaddha, N. 1996. Rendering from

compressed textures. In Proceedings of SIGGRAPH 96, Computer

Graphics Proceedings, Annual Conference Series, 373–378.
Bolz, J., Farmer, I., Grinspun, E., and Schröder, P. 2003. Sparse

matrix solvers on the GPU: Conjugate gradients and multigrid. In

ACM Transactions on Graphics, vol. 22, 917–924.
Cabral, B., Cam, N., and Foran, J. 1994. Accelerated volume

rendering and tomographic reconstruction using texture mapping

hardware. In ACM Symposium On Volume Visualization, 91–98.
Drebin, R. A., Carpenter, L., and Hanrahan, P. 1988. Volume

rendering. In Computer Graphics (Proceedings of SIGGRAPH 88),

vol. 22, 65–74.
Droske, M., Meyer, B., Rumpf, M., and Schaller, C. 2001. An

adaptive level set method for medical image segmentation. In Proc.

of the Annual Symposium on Information Processing in Medical

Imaging, Springer, Lecture Notes Computer Science, R. Leahy and

M. Insana, Eds.
Engel, K., Kraus, M., and Ertl, T. 2001. High-Quality Pre-

Integrated Volume Rendering Using Hardware-Accelerated Pixel

Shading. In Graphics Hardware 2001.
Fedkiw, R., and Osher, S. 2002. Level Set Methods and Dynamic

Implicit Surfaces. Springer.
Fedkiw, R., Aslam, T., Merriman, B., and Osher, S. 1999. A non-

oscillatory Eulerian approach to interfaces in multimaterial flows

(the ghost fluid method). Journal of Computational Physics 152 ,

457–492.
Goodnight, N., Woolley, C., Lewin, G., Luebke, D., and

Humphreys, G. 2003. A multigrid solver for boundary value prob-

lems using programmable graphics hardware. In Graphics Hardware

2003, 102–111.

Kapasi, U., Dally, W., Rixner, S., Mattson, P., Owens, J., and

Khailany, B. 2000. Efficient conditional operations for data-parallel

architectures. In Proceedings of the 33rd Annual International

Symposium on Microarchitecture, 159–170.
Kniss, J., Kindlmann, G., and Hansen, C. 2002. Multi-Dimensional

Transfer Functions for Interactive Volume Rendering. Transactions

on Visualization and Computer Graphics 8 (July-September), 270–

285.
Kniss, J., Premoze, S., Ikits, M., Lefohn, A., and Hansen, C. 2003.

Gaussian transfer functions for multi-field volume visualization. In

IEEE Visualization, To Appear.
Kraus, M., and Ertl, T. 2002. Adaptive texture maps. In Graphics

Hardware 2002, 7–16.
Krüger, J., and Westermann, R. 2003. Linear algebra operators

for GPU implementation of numerical algorithms. In ACM Trans-

actions on Graphics, vol. 22, 908–916.
Larsen, E. S., and McAllister, D. 2001. Fast matrix multi-

plies using graphics hardware. In Super Computing 2001, ACM

SIGARCH/IEEE.
Lefohn, A., and Whitaker, R. 2002. A GPU-based, three-

dimensional level set solver with curvature flow. University of Utah

tech report UUCS-02-017, December.
Lefohn, A., Cates, J., and Whitaker, R. 2003. Interactive, GPU-

based level sets for 3D brain tumor segmentation. In Medical Image

Computing and Computer Assisted Intervention, To Appear.
Levoy, M. 1988. Display of surfaces from volume data. IEEE

Computer Graphics & Applications 8 , 29–37.
Malladi, R., Sethian, J. A., and Vemuri, B. C. 1995. Shape model-

ing with front propagation: A level set approach. IEEE Trans. on

Pattern Analysis and Machine Intelligence 17 , 158–175.
Mark, W. R., Glanville, R. S., Akeley, K., and Kilgard, M. J.

2003. Cg: A system for programming graphics hardware in a C-like

language. In ACM Transactions on Graphics, vol. 22, 896–907.
Osher, S., and Sethian, J. 1988. Fronts propagating with curvature-

dependent speed: Algorithms based on Hamilton-Jacobi formula-

tions. Journal of Computational Physics 79 , 12–49.
Owens, J. 2002. Computer Graphics on a Stream Architecture.

PhD thesis, Stanford University.
Peng, D., Merriman, B., Osher, S., Zhao, H., and Kang, M. 1999.

A PDE based fast local level set method. Journal of Computational

Physics 155 , 410–438.
Percy, J., and Mace, R. 2003. OpenGL extensions: Siggraph 2003.

http://mirror.ati.com/developer/techpapers.html.
Rumpf, M., and Strzodka, R. 2001. Level set segmentation in graph-

ics hardware. In International Conference on Image Processing,

1103–1106.
Sabella, P. 1988. A rendering algorithm for visualizing 3D scalar

fields. In Computer Graphics (Proceedings of SIGGRAPH 88),

vol. 22, 51–58.
Sethian, J. A. 1999. Level Set Methods and Fast Marching Methods

Evolving Interfaces in Computational Geometry, Fluid Mechanics,

Computer Vision, and Materials Science. Cambridge University

Press.
Sherbondy, A., Houston, M., and Nepal, S. 2003. Fast volume

segmentation with simultaneous visualization using programmable

graphics hardware. In IEEE Visualization, To Appear.
Strzodka, R., and Rumpf, M. 2001. Using graphics cards for quan-

tized FEM computations. In Proceedings VIIP Conference on Vi-

sualization and Image Processing.
Tasdizen, T., Whitaker, R., Burchard, P., and Osher, S. 2002.

Geometric surface smoothing via anisotropic diffusion of normals.

In IEEE Visualization, 125–132.
The Insight Toolkit. 2003. http://www.itk.org.
Whitaker, R. T. 1994. Volumetric deformable models: Active

blobs. In Visualization In Biomedical Computing 1994, SPIE,

Mayo Clinic, Rochester, Minnesota, R. A. Robb, Ed., 122–134.
Whitaker, R. 1998. A level-set approach to 3D reconstruction from

range data. International Journal of Computer Vision October ,

203–231.
Wilson, O., Gelder, A. V., and Wilhelms, J. 1994. Direct Volume

Rendering via 3D Textures. Tech. Rep. UCSC-CRL-94-19, Univer-

sity of California at Santa Cruz, June.
Yoo, T., Neumann, U., Fuchs, H., Pizer, S., Cullip, T., Rhoades, J.,

and Whitaker, R. 1992. Direct visualization of volume data. IEEE

Computer Graphics and Applications 12 , 63–71.


