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1. INTRODUCTION

Developable surfaces are very important in both theory and prac-
tice. Being defined as surfaces which locally can be mapped to
a planar domain without stretching or tearing, they represent the
shapes obtainable with thin materials like sheet metal or paper
which do not stretch. Thus developables are relevant to the man-
ufacturing industry, for example for ship hulls [Pérez and Suárez
2007] and clothing [Chen and Tang 2010]. Freeform developables
occur also in architecture and art, such as F. Gehry’s designs which
are piecewise-developable, and the curved-fold example of Fig-
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ure 2 which is entirely developable. A topic with many contribu-
tions to developables is papercraft and origami.

We should emphasize that not only smooth developables but also
crumpled/buckled surfaces are relevant [Kergosien et al. 1994]. De-
velopables also occur in other places, for instance in connection
with folding maps in augmented reality [Martedi and Saito 2011],
3D reconstruction [Perriollat and Bartoli 2012], or mesh segmenta-
tion [Julius et al. 2005; Yamauchi et al. 2005].

Despite their obvious importance, developable surfaces still
present difficulties to today’s CAD systems, and geometric mod-
eling with developables in its full generality is not available, apart
from lofting, i.e., defining a developable by its boundary.

The reason for that undoubtedly is the highly nonlinear nature
of developability. Differential geometry provides us with a de-
tailed mathematical description of developables: Assuming piece-
wise curvature-continuity, they consist of ruled surfaces with the
additional property that the tangent plane along a ruling is constant
(see Figure 3).

Statement of the problem. In order to make high quality devel-
opable surfaces available to industrial design, we have to model all
degrees of freedom of composite surfaces whose individual parts

Fig. 1. We present methods for geometric modeling with developable sur-

faces. This includes composite piecewise-developables which approximate

reference shapes (see bunny at left) as well as interactive design of curved

origami. The right hand example is inspired by paper sculptures obtained

by folding a sheet of paper along concentric rings, which go back to 1927

Bauhaus classes.
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enjoy C2 smoothness and which are constrained by developability.
It is precisely this task which this paper is concerned with.

We propose an approach to developability based on splines,
which is the standard surface representation of computer-aided de-
sign. A main contribution of this paper is the ability to quickly
solve the constraints which express developability of such surfaces,
and other nonlinear constraints related to isometric deformations, to
curved origami, to approximation, and others.

Fig. 2. The “Arum” surface was designed by Zaha Hadid Architects in co-

operation with Robofold for the 2012 Venice Biennale. It consists of metal

sheets folded along curved creases.

Previous work. The literature on developable surfaces is quite
extensive. We already mentioned applications in the introduction
above. As to geometric modeling with developables, we start with
a discussion of discrete approaches to this problem. Mitani and
Suzuki [2004] compute triangle meshes with feasible cutting and
unfolding for arbitrary shapes. Wang and Tang [2004] deform a tri-
angle mesh in order to make the entire surface developable.

Also buckled surfaces have been modeled by triangle meshes,
see [Frey 2004]. Narain et al. [2013] go beyond developability,
modeling more realistic material behaviour. Solomon et al. [2012]
use a mesh approach to flexibly model the shapes achievable by
bending and folding a given planar domain without stretching or
tearing. Liu et al. [2006] treat developable surfaces as a limit case
of quad meshes. Finally, we mention that Rose et al. [2007] show
how to find ‘optimal’ developables from boundary curves. We
would also like to point to the extensive list of references given
by Solomon et al. [2012].

Geometric modeling with continuous developables is an old
topic, but contributions might be summarized by the statement that
the nonlinear nature of the developability constraint so far pre-
vented interactive design. The general geometric design problem
has not been solved, despite many contributions. Only very special
cases have been successfully treated:

Lang and Röschel [1992] give the conditions for developabil-
ity of rational Bézier (polynomial) surfaces for all degrees. This is
a system of cubic equations. Maekawa and Chalfant [1998] per-
form geometric modeling for spline developables for the special
case that boundary curves lie in parallel planes. G. Aumann [1991;
2003] studies the problem of finding a developable Bézier (poly-
nomial) surface through one open boundary curve. Chu and Séquin
[2002] discuss developability of spline surfaces and derive explicit
forms of the developability constraints for surfaces up to degree 3.
Chu and Chen [2004] continue this study and derive the number of
degrees of freedom available for modeling. Pottmann et al. [2008]
use splines for modeling developable surfaces based on the ideas
of [Liu et al. 2006]. They use optimization to achieve approximate
developability, using integrals for target functionals.

A different approach to modeling developables is to work with
the dual representation. Here a developable is represented as the
envelope of its tangent planes and is thus recognized as the pro-
jective dual of a space curve. This has been proposed by Boddu-
luri and Ravani [1993], has been studied by [Pottmann and Farin
1995; Hoschek and Pottmann 1995; Pottmann and Wallner 1999],
and is extensively discussed in [Pottmann and Wallner 2001]. The
dual representation, however, is not intuitive and it is difficult to
control singularities. Essentially also Peternell [2004] uses the dual
representation to solve a fitting problem. Developables have been
modeled as graphs of functions: The paper [Chen and Wang 2002]
attempts to model developable surfaces via polynomial functions,
which restricts its scope to cylindrical surfaces without singular
points; moreover, some of the analysis in that paper does not agree
with known properties of developables.

Closely related to developability is the topic of isometric map-
ping between planar domains and surfaces, i.e., the question which
shapes can be generated by bending a flat domain. We already men-
tioned Solomon et al. [2012]. Reconstruction of folded objects is
the topic of [Kilian et al. 2008]. A method of producing special
curved-fold objects by iterated reflection has been presented by
Mitani and Igarashi [2011]. There is, of course, an obvious con-
nection to computational origami, which is an active field of re-
search [McArthur and Lang 2012]. We exemplarily point to [Huff-
man 1976], [Mitani and Suzuki 2004], [Tachi 2010], [Tachi and
Miura 2012] and [Wang and Chen 2011], and especially to De-
maine et al. [2011b] and Dias et al. [2012] who treat an example
also found in this paper. Software capable of producing curved-
fold origami in special cases like rotational symmetry is available
from [Mitani 2012].

The contributions of this paper are the following:

—we perform interactive modeling of high-quality developable
surfaces;

—we use a combined primal-dual spline representation for devel-
opables which involves a normal vector field and which allows
us to express “developability everywhere” by a finite number of
constraints. We thus can solve for developability at interactive
speed;

—we interactively handle curved-folding objects and maintain both
local and global developability, giving the user a design tool for
curved origami;

—we extend our interactive tool to handle design of surfaces which
are isometric to a given domain;

—we perform approximation of reference shapes with developable
and piecewise-developable surfaces. Success of approximation
depends on the above-mentioned normal vector field.

The paper is organized as follows: In § 2 we discuss spline devel-
opables as the simplest building blocks of complex developable
surfaces. § 3 treats the algorithmic setup for modeling composite
surfaces, discusses a guided projection method for constraint solv-
ing, and extends the list of constraints we are imposing on splines.
In § 4 we deal with interactive modeling and the approximation
problem. Computing and updating developments are mesh-based
procedures treated in § 5. § 6 summarizes the tools we have pro-
vided for modeling curved-creased origami. Finally, § 7 discusses
performance and limitations, and concludes the paper.

2. SIMPLE DEVELOPABLES

An important step to achieve the goal of interactive modeling of
high-quality developables is a good understanding of simple sur-
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m = 2, k = 1

m = 3, k = 2

Fig. 3. Developables decompose into planar pieces and ruled patches. Cur-

vature continuity is relevant for surface quality since it becomes visible in

reflection patterns. The right hand images show spline developables of vary-

ing degree m and smoothness Ck .

faces which serve as building blocks for general developables.
Since the latter are composed of ruled surface parts (Fig. 3), and we
want to handle only finitely many degrees of freedom, the simple
parts we employ are ruled spline surfaces which are developable. In
the usual spline terminology, those spline surfaces are tensor prod-
uct surfaces of degree 1 × m. This restriction to splines does not
(for all practical purposes) diminish the variety of shapes available,
in the same sense as using splines does not restrict the available
shapes of freeform curves. This vague statement is made a mathe-
matical theorem by proving the approximation power of splines in
the curve case [de Boor 1978], and applying that result to the dual
representation of developables [Pottmann and Wallner 1999].

Before dealing with the special case of spline developables, we
start with some introductory paragraphs on developable ruled sur-
faces in general. A ruled surface connecting two parametric curves
a(u) and b(u) has the parametric form

s(u, v) = (1− v)a(u) + vb(u). (1)

It is developable if and only if, for all u, it has the same tangent
plane in the two points s(u, 0) = a(u) and s(u, 1) = b(u). There
are equivalent ways of expressing this condition. Equation (2) ex-
presses linear dependence of vectors directly with one equation in-
volving first derivatives, while (3) uses three equations involving
an auxiliary normal vector field n(u) to achieve the same purpose:

s developable ⇐⇒ d(u) := det(a− b,a′,b′) = 0 (2)

⇐⇒ 〈n,b− a〉 = 〈n,a′〉 = 〈n,b′〉 = 0, (3)

for all parameter values u. It turns out that it is useful to have two
points a

(1)

0 (u), a(1)

1 (u) which span the curve’s tangent line in the
point a(u), and similarly for the curve b(u). A trivial choice would
be a

(1)

0 = a and a
(1)

1 = a + a′, a more interesting one can be seen
in Figure 4. In any case developability is expressed as

s developable ⇐⇒ a
(1)

0 ,a
(1)

1 ,b
(1)

0 ,b
(1)

1 co-planar ⇐⇒

〈n,b(1)

1 − a
(1)

1 〉 = 〈n,a(1)

1 − a
(1)

0 〉 = 〈n,b(1)

1 − b
(1)

0 〉 = 0. (4)

These conditions are supposed to hold for all parameter values, but
we will see in §2.1 that it is actually sufficient to require them for a
finite number of parameter values. Condition (2) is useful for count-
ing degrees of freedom, but we prefer to use the equivalent condi-
tions (3) and (4) in our computations. This is because they lead to
quadratic equations expressing developability, while (2) generates
cubic equations.

Degenerate cases. We mention a special case: If b(u) = const.,
the surface s(u, v) is a cone with base curve a(u) and apex coin-

ciding with b
(1)

0 (u) = b
(1)

1 (u) = b(u) = const. The developability
condition is automatically satisfied, and a normal vector field exists.

2.1 Spline developables

When dealing with polynomial and piecewise-polynomial curves,
it is convenient to represent them in B-spline form. For that pur-
pose we consider the parameter interval [u0, un] = [0, 1] which is
subdivided into n nonempty sub-intervals [u0, u1]∪ [u1, u2]∪ . . .∪
[un−1, un]. We consider spline functions which enjoy Ck smooth-
ness and which are polynomial of degree m in each subinterval
(k < m). A spline curve is a curve whose coordinate functions are
spline functions. To describe a closed curve, we also require that all
derivatives up to order k are equal for u = u0 and u = un.

The construction of B-spline basis functions N1(u), N2(u), . . .
spanning a particular spline space is well known, see [de Boor
1978]. Splines are linear combinations of these basis functions:

a(u) =
∑

i
aiNi(u) (5)

The points a0,a1, . . . are called the control points of the curve
a(u). For any u, evaluation of the point a(u) is performed with
the de Boor algorithm (Figure 4) which for n = 1 reduces to de
Casteljau’s algorithm for Bézier curves. It iteratively computes cer-
tain affine combinations of points, starting with the control points
in the first round of iteration, and ending up with a(u) in the m-th
round. In its next-to-last round, it produces auxiliary “first deriva-
tive” points a

(1)

0 (u), a(1)

1 (u), suitable for the developability condi-
tion (4), which span the tangent line of the curve in the point a(u).

Computational setup for spline developables. Our computa-
tional setup for dealing with spline developables is the following:
We use as variables the B-spline control points for each of the
curves a, b. Within each parameter subinterval, developability is
characterized by vanishing of the degree 3m−3 polynomial d(u). It
is therefore sufficient to enforce developability for 3m−2 different
values of u. For each of these values of u we use as additional vari-
ables a normal vector n(u) and the points a(1)

0 (u), a(1)

1 (u), b(1)

0 (u),
b

(1)

1 (u). As constraints we impose the developability condition (4)
as well as the linear defining relations of auxiliary points which
originate in de Boor’s algorithm.

b
(1)

1b(u)b
(1)

0

a
(1)

1
a

(1)

1
a

(1)

1a
(1)

1a
(1)

1a
(1)

1a
(1)

1
a

(1)

1
a

(1)

1
a

(1)

1
a

(1)

1
a

(1)

1
a

(1)

1
a

(1)

1
a

(1)

1
a

(1)

1a
(1)

1a(u)a(u)a(u)a(u)a(u)a(u)a(u)a(u)a(u)a(u)a(u)a(u)a(u)a(u)a(u)a(u)a(u)a
(1)

0
a

(1)

0
a

(1)

0a
(1)

0a
(1)

0a
(1)

0a
(1)

0
a

(1)

0
a

(1)

0
a

(1)

0
a

(1)

0
a

(1)

0
a

(1)

0
a

(1)

0
a

(1)

0
a

(1)

0a
(1)

0

a
(2)

0

a
(2)

1

a
(2)

2

b0

b1

b2

b3

b4

a0
a1

a2

a3

a4

(recursive de Boor’s algorithm for

evaluating cubic B-spline curves)

Fig. 4. A spline curve a(u) is defined by its control points a0, a1, . . . .

It is equipped with auxiliary first derivative points a
(1)

0
(u), a(1)

1
(u) which

span the tangent line, and second derivative points a(2)

0
(u), a(2)

1
(u), a(2)

2
(u)

which span the osculating plane of the curve. These auxiliary points are

computed with de Boor’s algorithm. Developability of the ruled surface de-

fined by curves a, b is equivalent to coplanarity of a(1)

0
, a(1)

1
, b(1)

0
, b(1)

1
.
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It is actually possible to obtain developability by enforcing it for
a smaller number of parameter values. The corresponding counting
of degrees of freedom is performed in the appendix. This reduction
of the number of constraints is however not so convenient, since
the location of the parameter values has to satisfy the Schönberg-
Whitney conditions [de Boor 1978]. It is also not necessary.

2.2 Normal splines and dual representation.

A developable defined by linear interpolation of spline curves a,
b has the normal vector field n(u) = a′(u) × b′(u). It is of
polynomial degree M = 2m − 2 and smoothness K = k − 1.
Such vector fields can be added as additional information in form
of more control points. Additional constraints prevent the normal
vector field from degenerating: We require as a hard constraint that
n(u)Tn(u) = 1, for u = 0, and as soft constraint (with a very
small weight) that control points are unit vectors. We might even,
for additional regularization, use normal vector fields of lower de-
gree and higher smoothness. If such normal splines are used, then
control points are added as auxiliary variables, and the individual
normal vectors which occur in our equations are linked to the nor-
mal spline by a linear relation which expresses evaluation at a cer-
tain parameter value u.

The normal vector field of a developable is part of its dual rep-
resentation, which means describing the developable by its 1-pa-
rameter family of tangent planes (cf. [Bodduluri and Ravani 1993;
Pottmann and Wallner 1999]). By using the normal spline, we com-
bine the essential information contained in both the primal and the
dual representations. This combination will be important in § 4.2.

2.3 Extension to NURBS

A piecewise-polynomial spline curve in R
4 defines a piecewise-ra-

tional spline curve in three-space if it is interpreted as homogeneous
coordinates. It is therefore straightforward to extend the spline de-
velopables discussed above to the case of NURBS developables.
Developability is still characterized by the property that the auxil-
iary points a(1)

0 (u), a(1)

1 (u), b(1)

0 (u), b(1)

1 (u) lie in a common plane.
With u(u) as the homogeneous coordinate vector of that plane,
the developability condition now reads 〈u,a(1)

1 〉 = 〈u,a(1)

0 〉 =
〈u,b(1)

1 〉 = 〈u,b(1)

0 〉 = 0. The computational setup for NURBS
is exactly the same as for polynomial splines, with the exception
that we use u(u) instead of n(u) and the developability condition
is changed. The curve u(u) is the complete dual representation of
the developable.

3. COMPUTATIONAL SETUP

This section describes the algorithmic setup we employ for geomet-
ric modeling with developables. We use the detailed discussion of
simple developables in § 2 to grow a system of variables and equa-
tions, representing degrees of freedom and the constraints which
are imposed on them. Interactive modeling is possible because we
can solve this system quickly.

3.1 Setting up variables and equations

In order to set up geometric modeling with developables, we use
a mesh to store the combinatorial information on how its “simple”
pieces are connected with each other, see Figure 5. Each edge is
labelled either R (ruling) or S (spline). We allow only 4 types of
faces, classified according to boundary labels:

— S R S R : such a face corresponds to a spline developable;
— S R S : the same with a ruling degenerated into a point;

SSSSSSSSSSSSSSSSS

SSSSSSSSSSSSSSSSS
RRRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRRR

SSSSSSSSSSSSSSSSS SSSSSSSSSSSSSSSSS

R R

R

S

S

S

S

Fig. 5. The combinatorial setup of a composite seamless developable is

stored in a mesh, where edges are labelled either R for “ruling” or S for

“spline”. Faces accordingly correspond to spline developables, cones, or

planar parts. The example shown here has no cones. There is smooth transi-

tion between surfaces along all nine R -edges, and between boundary curves

in all 12 vertices.

— S R R : also a spline developable, but a spline boundary is degen-
erated to a point, so the surface is a cone;

— R R . . . R : such a face corresponds to a planar n-gon.

It is known that a developable is composed of surfaces of these
four types, but there could be an infinite number of them even for
finite developables [Pottmann and Wallner 2001]. For geometric
modeling we disregard this possibility.

Combinatorial consistency of spline data. In the mesh just in-
troduced, faces correspond to simple surfaces. We therefore assign
to each vertex of the mesh a location in space, and to each oriented
S -edge ~e a control point sequence (reversing orientation reverses
that sequence). For each face f , the boundary cycle ~e0~e1 . . . shall
be numbered such that labels are exactly as in the list above. We as-
sign spline space data to f , namely degree mf , smoothness kf , and
nf parameter intervals. Obviously, these data have to be consistent:

• Edge–face consistency: Any S -edge contained in a face f
must have the number of control points required by the spline space
associated with the face. Then the spline space of f defines spline
curves c~e0,f and c−~e2,f (if present) which correspond to the pair
of opposite edges ~e0, −~e2. They in turn define the spline surface
attached to the face f . If there is only one S -edge, we assign to the
face a cone with base curve c~e0,f and its opposite vertex as apex.
In order to assign curves also to the edges with reverse orientation,
we require c−~e,f (u) = c~e,f (1− u).

• Face–face consistency: For any S -edge ~e contained in faces
f1, f2, the curves c~e,f1 and c~e,f2 must be the same geometrically, if
not parametrically. This is guaranteed by mf 1

= mf 2
, kf 1 = kf 2 ,

nf 1
= nf 2

, and by the condition that the parameter intervals of f1,
f2 correspond under a linear parameter transform.

• Vertex–edge consistency: the control point sequence of an S -
edge ~e must start and end with ~e ’s initial and final vertex.

The coordinates of control points and vertices are variables in
our procedures. The above consistency conditions amount to the
identification of some of these variables.

Geometric consistency of spline data — constraint equations.
Besides the combinatorial consistency discussed above, the vari-
ables obey geometric consistency conditions:

—We impose developability on any ruled spline surface associated
with a face with two S -edges. We use auxiliary variables and
equations as described by § 2.
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—No conditions are imposed on cones, i.e., faces with one S -edge.
Normal vectors are available as auxiliary variables in the same
way as for spline developables.

—A face f without an S -edge is to be a planar n-gon. We introduce
its normal vector nf as auxiliary variable and impose equations
nT
f nf = 1 as well as 〈nf ,vi+1 − vi〉 = 0 for all edges vivi+1

of f .

Smoothness is an important property of a composite surface. It is
a design decision to impose smooth transitions between faces, or
between curves, see Figure 5. For two surfaces sharing a ruling, the
respective unit normal vectors to either side can be expressed in
terms of the auxiliary variables in our system, and a smooth transi-
tion is easily imposed by requiring equality of these vectors. Spline
curves with common endpoints might be required to have the same
derivative there. This condition is linear and is added to the system.
Without spelling out the details we mention that also the weaker
condition that two spline curves have the same tangent is express-
ible in terms of linear equations, after auxiliary normal vectors have
been introduced. Other geometric constraints, like those pertaining
to curved folding, or those involving user interaction, are discussed
later, in Sections 3.3 and 4.

3.2 Solving constraint equations by guided projection

So far we have assembled a collection of variables which can be
seen as a vector x ∈ R

N , and equations which can be written in
the form φi(x) = 0, where i = 1, . . . ,M . The functions φi we
encountered so far are linear or quadratic, and they are all hard con-
straints, especially those expressing developability and planarity
of surfaces. Solving this system of nonlinear equations is non-
trivial, since there are redundant equations, and there is a higher-
dimensional solution manifold.

Tang et al. [2014] solve such a system of equations by an itera-
tive procedure which starts from an initial configuration x0 and it-
eratively computes x1,x2, . . . which converge towards a solution.
They linearize equations φi(x) = 0, and compute xk+1 as solution
of φi(xk) + 〈∇φi(xk),x − xk〉 = 0, i = 1, . . . ,M . This system
of linearized equations is symbolically written asH (k)

x = r
(k). For

the two reasons given it is not solvable (the presence of redundant
equations together with numerical inaccuracies inevitably causes
any solution of the system to widely diverge from any sensible so-
lution of the original problem). To circumvent this problem, Tang
et al. [2014] regularize and compute xk+1 by minimizing

‖H (k)
x− r

(k)‖2 + ε21‖K
(k)
x− s

(k)‖2 + ε22‖x− xk‖
2, (6)

where ‖K (k)
x− s

(k)‖2 is an energy functional and ε1, ε2 are small
weights. In this way the system {φj(x) = 0}j=1,...,M is solved
by a regularized Newton method, where an energy function guides
us towards a point on the solution manifold. As to the weights, ε1
initially dominates ε2, but later goes to zero (see §7 for details).

The energy employed in (6) is a sum of different terms: fairness
(e.g. squares of second differences) occurs together with other soft
targets like proximity to a reference shape. Since splines have a
certain kind of fairness already built in, fairness energies are not as
important as when modeling with meshes, but still for all control
point sequences {ai} we use the energy

∑
‖ai+1 − 2ai + ai−1‖

2

with a low weight to avoid degeneracies.

Using the constraint solver for modeling. The general frame-
work described here — variables, equations, and their solution,
is the algorithmic core of our applications which include approx-
imation, interpolation, and interactive geometric modeling of de-
velopables, in particular curved-folding developables. Various hard

(a) (b)

Fig. 6. Shapes foldable from a single sheet of paper consist of ruled de-

velopables. Secondly, smooth creases enjoy the “curved fold” property, and

thirdly the angle sum around each vertex equals 2π. These three conditions

are sufficient for local developability.

and soft targets which correspond to these different applications are
discussed in the next sections, and so is initialization of variables.

3.3 Further geometric properties of developables

Figure 6 illustrates shapes made by folding a single sheet of pa-
per along curved creases. It is well known that this property has
implications on the creases’ curvatures (curved fold condition, see
[Kilian et al. 2008]) and also on the angles between creases in ver-
tices. Conditions on vertices are postponed to § 5; in the following
we consider conditions on creases. Assume a crease c(u) which
serves as common boundary of strips ΦLeft and ΦRight to either side.
We are going to need its geodesic curvatures κLeft

g (u) and κRight
g (u)

w.r.t. ΦLeft and ΦRight, respectively. We are interested in cases where
c’s osculating plane bisects the tangent planes of ΦLeft and ΦRight,
which are thought to possess unit normal vectors nLeft(u), nRight(u),
respectively.

Curved folds and the geodesic property. There are two ways
how the osculating plane mentioned above can bisect the strips to
the left and to the right: Either nLeft+nRight or nLeft−nRight is a normal
vector of the osculating plane. The definition of geodesic curvature
(cf. [do Carmo 1976]) implies that these cases are equivalent to

κLeft

g (u)− κRight

g (u) = 0 (curved fold condition), (7∗)

κLeft

g (u) + κRight

g (u) = 0 (geodesic condition). (8∗)

In the first case, unfolding the two strips yields planar bound-
aries which fit together, so unfolding can be performed without
any cutting along the curve c (curved fold condition, see Figure
6), while the second case yields planar boundaries which are mir-
ror reflections of each other. This property has been called geodesic
by Pottmann et al. [2008] and is relevant for panelization of archi-
tectural freeform skins, see Figure 7.

The algorithm of de Boor for evaluating a B-spline curve c pro-
duces auxiliary “second derivative” points of the curve which we
denote by c

(2)

0 (u), c(2)

1 (u), c(2)

2 (u) and which span the osculating
plane of c(u), see Figure 4. Using them, we rewrite (7∗) and (8∗)
resp. as

〈c(2)

0 − c
(2)

1 ,n
Left + nRight〉 = 〈c(2)

1 − c
(2)

2 ,n
Left + nRight〉 = 0, (7)

〈c(2)

0 − c
(2)

1 ,n
Left − nRight〉 = 〈c(2)

1 − c
(2)

2 ,n
Left − nRight〉 = 0. (8)

To add either property to our computational setup, we require (7)
resp. (8) for sufficiently many values of u, each time adding the
objects involved as auxiliary variables, and adding as equations the
linear defining relations of c(2)

i , an appropriately relabelled Equa-
tion (4) which defines the normal vectors nLeft, nRight, and finally the
normalization constraints ‖nLeft‖2 = ‖nRight‖2 = 1.
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ΦLeft

ΦRight

Fig. 7. Here, unfolding neighbouring strips ΦLeft, ΦRight maps their com-

mon boundary to planar curves which are mirror reflections of each other.

This “geodesic” property makes the developments of strips straighter, which

is useful for materials like wood [Meredith and Kotronis 2012].

Remark: In § 2.1 we argued that enforcing (2) for 3m− 2 values
of u in each parameter sub-interval implies validity of (2) for all u.
The corresponding number of evaluations for (7) and (8) would be
too high, so these conditions are enforced only numerically.

Straight unfolding property. If the boundary c of the strip ΦLeft

has zero geodesic curvature, it unfolds to a straight line. This prop-
erty can be imposed in a manner analogous to (7) and (8): We
require that c’s osculating plane is orthogonal to ΦLeft: 〈c(2)

0 −
c

(2)

1 ,n
osc〉 = 〈c(2)

1 − c
(2)

2 ,n
osc〉 = 〈nLeft,nosc〉 = 0, where the auxil-

iary variable nosc is a normal vector of the osculating plane.

4. MODELING WITH DEVELOPABLES

In this section we deal with the two main applications of the setup
and algorithms described in §2 and §3, namely approximation of
reference shapes by developable surfaces, and interactive model-
ing. We start with interactive modeling, even if approximation is
part of it.

4.1 Interactive design of composite surfaces

We have implemented an interactive tool for geometric modeling
with composite developables, which includes creating them from
scratch. From the strictly algorithmic viewpoint, a user always
starts with a composite developable surface governed by a labelled
coarse mesh as discussed in § 3.1. This surface can be very simple
like a planar or cylindrical piece (see Figure 8), or it can be gener-
ated by an approximation procedure as described by § 4.2, or it can
be generated by lofting (cf. [Rose et al. 2007]) followed by approx-
imation in order to obtain a spline representation. The capabilities
of the modeling tool include:

—subdivision of patches by introducing new creases;
—relabeling edges and changing the role of patches
—dragging vertices to modify the shape of the surface;
—dragging a crease, changing the sizes of adjacent patches;
—selecting a target shape to be approximated;
—special cases of approximation, such as conversion of devel-

opables into spline representation, and putting strips onto ref-
erence shapes

—imposing properties like ‘curved fold’ on creases.

We have not implemented a full-fledged modeler, in particular
we lack the surface-surface intersection and trimming procedures
present in commercial software. We confined ourselves to func-
tionality not otherwise available (see accompanying VIDEO).

Implementation of user interaction. Implementing this tool
would be standard except for the nonlinear side-conditions which

Fig. 8. Interactive modeling under curved-fold side conditions. Starting

with a flat composite developable, on top we show dragging selected (white)

vertices upwards while other vertices (red) remain fixed. The bottom row

illustrates rotating selected vertices around a vertical axis. Control points

are connected by blue edges.

(a) (b) (c)

Fig. 9. These surfaces are the product of interactive modeling. They all

have the same combinatorics (in the sense of Figure 5). In subfigure (c),

control points are connected by blue edges.

occur: They are developability of individual surfaces, and may in-
clude further constraints like the curved fold property of creases.
Therefore each standard procedure (like dragging a vertex) has to
be augmented by repeated calls to the guided projection algorithm
of §3.2. From a high-level viewpoint, every intended modification
to the surface is expressed by a possible extension of the collection
“x” of variables, and the introduction of constraints ψi(x) = 0
and soft targets (energies). We now simply add these to the existing
constraints and soft energies, and apply guided projection.

Feedback to the user. Assuming the user uses the mouse for mod-
eling, as a rule of thumb we run 1 round of guided projection while
the mouse moves in order to give real-time feedback, followed by
another 10 iterations after the mouse is released. The software dis-
plays the extent to which the desired properties have been achieved.
In our experience, 10 iterations were enough. Figure 17 documents
the achieved surface quality.

4.2 Approximation

An important approximation task is to represent arbitrary target
shapes by composite developables, see Figure 10. Other examples
of approximation which occur within interactive modeling are men-
tioned in §4.1. We solve this task by guiding developables specified
by the user towards the target. We do not aim at finding the “best”
approximation in any well-defined mathematical sense. Our way of
representing piecewise-developables automatically produces wa-
tertight composite patches.

Since the target shape may be a noisy point cloud, we measure
the approximation error by distances of target points from the mov-
ing developable, and not the other way round. Another reason to
employ the moving developable’s distance field is its smooth na-
ture, and the assistance provided by a smooth normal spline. This
method is motivated by Wang et al. [2006] who approximated point
clouds by spline curves.
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(a) (b) (c)

Φ1

(d)

Φ1

Φ2

(e)

Fig. 10. Covering a complex shape by developable strips. (a) The user marks two areas on the bunny intended to be approximated by cubic developables.

PCA is used to fit initial flat strips, which are visualized as rectangles. (b) The result of approximation. (c) The two strips obtained in the previous step are

merged by putting together their respective control point sequences (averaging the end control points) and approximating again. (d) Having produced two

strips side by side, they are subjected to the approximation procedure, with proximity of boundaries as an additional optimization goal. Such strips serve to

initialize a composite surface. (e) The bunny is approximated by 6 composite surfaces shown in different colours. Figure 1 displays the same surface.

Equations expressing approximation. In order to bring the de-
velopable close to a reference shape, we represent the latter by a
point cloud. A preprocessing step thins out the cloud and computes
a “surface normal” mj in each remaining point qj of the reference
shape, by locally fitting a plane to the cloud. Thinning is done sim-
ilarly to Poisson sampling: When a data point is selected, points
within a local ball neighbourhood of fixed radius are used to com-
pute a normal vector and are subsequently discarded. The size of
the neighbourhood we employ for local fitting is adapted to the
level of detail we want to reproduce by our approximation. The de-
velopable s(u, v) is assumed to be defined by linear interpolation
of curves a(u) and b(u). For each qj we apply closest point pro-
jection onto the developable, which results in the point s(uj , vj).

Various aspects of proximity of reference point cloud and devel-
opable are expressed in the following equations.

s(uj , vj)− qj = o, (9)

〈mj ,a(uj)− b(uj)〉 = 〈mj ,a
′(uj)〉 = 0, (10)

〈s(uj , vj)− qj ,n(uj)〉 = 0. (11)

Equation (9) is the most direct expression of proximity but is given
only a low weight, since its strict enforcement prohibits tangential
motion of the developable along the target. Equation (10) is a sanity
check, expressing the fact that the developable is tangent to the
target. Equation (11) pushes qj towards the tangent plane of the
developable in s(uj , vj).

Performing approximation is extremely easy, and we do not have
to define a new algorithm for it. We only add equations (9)–(11) to
our system of constraints, giving a low weight to (9) and (10). The
variables in these constraints are the spline coefficients of curves a,
b and of the normal vector field n(u). The parameter values uj , vj
are updated after each round of iteration. The points qj and normal
vectors mj are fixed. However we should note that there are no
theoretical guarantees of convergence.

Approximation with composite developables. Figure 10 shows
a more complex example. If one already guesses at the final strip
layout shown by Figure 10e, it is not difficult to perform the itera-
tive procedure described in the figure caption, placing strips on the
reference shape, merging and optimizing them again. This paper
however does not propose any new method to tackle the difficult
task of finding a suitable strip layout. For that we refer to [Mitani
and Suzuki 2004] (if a surface is to be approximated) and to [Rose
et al. 2007] (if boundary curves are given).

after 1after 1after 1after 1after 1after 1after 1after 1after 1after 1after 1after 1after 1after 1after 1after 1after 1

iterationiterationiterationiterationiterationiterationiterationiterationiterationiterationiterationiterationiterationiterationiterationiterationiteration

after 2after 2after 2after 2after 2after 2after 2after 2after 2after 2after 2after 2after 2after 2after 2after 2after 2

iterationsiterationsiterationsiterationsiterationsiterationsiterationsiterationsiterationsiterationsiterationsiterationsiterationsiterationsiterationsiterationsiterations

after 8after 8after 8after 8after 8after 8after 8after 8after 8after 8after 8after 8after 8after 8after 8after 8after 8

iterationsiterationsiterationsiterationsiterationsiterationsiterationsiterationsiterationsiterationsiterationsiterationsiterationsiterationsiterationsiterationsiterations

Fig. 11. A simple approximation problem, where a reference shape (point

cloud) is approximated by a developable strip. The equations we use to ex-

press proximity make the strip grow so as to cover as much of the reference

shape as possible. The number of iterations refers to guided projection ac-

cording to § 3.2.

Figure 10 illustrates the process of creating a composite de-
velopable covering a reference shape. Here user-defined regions
Ψ1,Ψ2, . . . are approximated by strips Φ1,Φ2, . . . , respectively.
Each Φj is defined by boundary spline curves aj ,bj . We aim at
merging these strips so that eventually they form a seamless com-
posite surface: not only must these strips approximate Ψ1 ∪ Ψ2∪
. . . , but their boundaries have to approximate each other. These
latter proximity constraints are set up in a recursive manner as fol-
lows. The variables which represent the boundary spline curves of
all strips are already present in the system, and so are the con-
straints which express approximation of the reference shape. The
user now indicates a pairing between one boundary curve, say ai,
with another boundary, say bj . Sampling the curve ai(u) at regu-
larly spaced parameter values creates vertices vi,1,vi,2, . . . which
are new variables — each is connected to the remaining variables
by the linear evaluation relation (5). We then find the closest point
projection of all vi,k’s onto bj and compute the tangent line Ti,k

there. We add the linearized proximity constraints “vi,k ∈ Ti,k” to
our system. The user continues to identify pairings, until all vari-
ables and constraints have been set up. We then invoke our solver
and iterate (recomputing the Ti,k’s after each iteration).

5. GLOBAL DEVELOPABILITY

Intrinsically flat surfaces and developable surfaces. It is important
to appreciate the local nature of the developability conditions men-
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Fig. 12. This curved-crease sculpture is folded from an annulus. It has

been interactively created along the lines of Figure 8. The annulus unfolding

shown here actually is the mesh (V̄ , Ē, F̄ ) used for internal computations.

Its edges correspond to creases and rulings.

tioned in previous sections. All points of a smooth ruled strip obey-
ing (2), resp. (4) have a neighbourhood which can be unfolded to
the plane in an isometric way, without stretching or tearing. The
same is true for points on a smooth crease obeying (7). For a vertex
where creases meet, an additional condition is needed to ensure lo-
cal developability: The sum of angles between successive creases
(when circling that vertex) must equal 2π, meaning that the Gauss
curvature concentrated in that vertex is zero. A surface locally de-
velopable in this way is intrinsically flat.

However, global unfolding to the plane might fail for a variety
of reasons: overlaps may occur, holes introduce closure conditions
in the development, and the surface’s topology might prevent de-
velopability on principle. E.g. the “hexagonal column” of Figure
14 is unfoldable onto a right circular cylinder, and the flat torus of
Figure 15b is not globally unfoldable onto any simple surface. The
word “developable” unfortunately is applied to both the local and
the global property indiscriminately.

This section completes our algorithmic treatment of developa-
bility, by discussing the computation of developments, local de-
velopability around vertices, global developability, and isometric
mapping.

Conversion of surfaces to meshes. Since spline developables in
general do not have spline unfoldings/developments, we must con-
vert data to meshes if developments are going to play a role in
our modeling procedures: Each individual spline surface s(u, v)
is converted into a sequence of quads (or possibly triangles, if an
edge degenerates) by sampling boundary curves a(u), b(u) for
predefined values of u. This yields vertices s(ui, 0) = a(ui) and
s(ui, 1) = b(ui). Together with additional planar parts of our sur-
face we produce a quad-dominant mesh (V,E, F ) whose faces au-
tomatically are almost planar, as shown by [Liu et al. 2006]. An
approximate development in form of an entirely flat quad mesh
(V̄ , Ē, F̄ ) is easily found, by successively putting together de-
velopments of individual faces. If modeling starts with a flat sur-
face, such as in Figures 8, 12 or 14, initializing the development
(V̄ , Ē, F̄ ) is trivial.

Development management. As the surface and the associated
mesh (V,E, F ) evolves, the development (V̄ , Ē, F̄ ) has to be up-
dated. This could be done by recomputing the development in each
step. It turns out, however, that there is a faster alternative, as fol-
lows. We add to the guided projection procedure of § 3.2 the ver-
tices vj , v̄j of V, V̄ , resp., as variables. We add linear relations

Fig. 13. Folding paper along a curved crease, maintaining isometry to the

original rectangular shape, and maintaining the crease. In this case decom-

position of the developable into smooth simple ruled pieces is not the most

efficient way of computational handling of the problem. Instead we embed

this model into a bigger surface which consists of two ruled strips and which

develops onto a disk (the control net of the bigger surface is shown).

analogous to (5) which state how vertices vj are found by evaluat-
ing spline curves. Further, for every face f = (v1, . . . ,vn) we add
equations expressing isometric development,

‖vi − vj‖
2 = ‖v̄i − v̄j‖

2 (1 ≤ i < j ≤ n). (12)

Since these distance-based conditions do not prevent unwanted
overfolding of the development (V̄ , Ē, F̄ ), we punish their occur-
rence by adding a fairness energy to our guided projection proce-
dure, namely

∑
‖vi+1 − 2vi + vi−1‖

2 for for every discretized
spline curve v̄1, v̄2, . . . . Thus the development is updated every
time guided projection is called. Global developability is guaran-
teed if the development is maintained during modeling and if that
development does not have overlaps.

Only if the surface under consideration is simply connected, it is
sufficient to maintain local developability during modeling and to
check for overlaps at the end. This is shown by a standard topolog-
ical argument, see the appendix.

c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0
c1c1c1c1c1c1c1c1c1c1c1c1c1c1c1c1c1

Local developability in vertices. Developability around vertices
where creases meet, could be expressed by existence of the mesh-
development of a 1-ring neighbourhood of that vertex within
(V,E, F ). There is however a superior alternative which does
not suffer the discretization errors inherent in meshing. The first
edge c0c1 of the spline control polygon of a crease curve c(u) is
the initial tangent of that spline. Thus the condition “sum of an-
gles between creases equals 2π” can be
expressed as developability of a star of
triangles, whose vertices are spline con-
trol points, and whose edges include the
above-mentioned edges (see inset corre-
sponding to Figure 6b).

Isometric mapping. We also want to be able to model surfaces
generated by isometric folding and bending a prescribed domain D̄.
For that we must keep the boundary of the development (V̄ , Ē, F̄ )
confined to the boundary ∂D̄ of that domain. Figure 12 is an exam-
ple of this, and so is Figure 13: Here we maintain the development
of a disk-shaped domain with one crease, and impose the condition
that the boundary vertices of the development V̄ must remain on the
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Fig. 14. Interactive modeling of

a cylindrical curved-crease sculp-

ture. During modeling we maintain

the property of unfoldability onto

a cylinder (this is implemented via

cutting the surface open and requir-

ing a planar development with pe-

riodicity). From left: a user’s initial

sketch of the combinatorics, the fi-

nal sculpture with and without patch

boundaries, and the cylindrical de-

velopment.

circular boundary. Likewise, the vertices of V̄ which correspond to
the crease are confined to that crease.

This is implemented as follows: We assume a piecewise-smooth
boundary ∂D̄. Some boundary vertices vj correspond to a corner
of the domain. In this case the corresponding vertex v̄j is simply
kept fixed in that corner, which amounts to two linear equations be-
ing added to the guided projection procedure. Other boundary ver-
tices vj correspond to smooth parts of ∂D̄: for those we compute
the footpoint of v̄j on ∂D̄ and the tangent Tj there. The nonlin-
ear condition “v̄j ∈ ∂D̄” is being linearized to “v̄j ∈ Tj”. This
linear equation is added as an additional constraint to the guided
projection procedure. Tj is updated after each round of iteration.

6. TOWARDS CURVED ORIGAMI

Curved origami refers to shapes foldable from paper along curved
creases, which translates to surfaces which are globally devel-
opable, see Figure 6. Sections 2–5 in a cumulative manner collected
all the algorithmic ingredients for their interactive modeling. How-
ever the individual examples below may still require further exten-
sions and modifications of these algorithms.

Examples of simple topology. In Figure 6 we already encoun-
tered shapes which can be folded from a single sheet of paper. Since
those surfaces are simply connected, local developability implies
global developability (apart from overfoldings).

Example: Folding annuli. Both Figure 1 and Figure 12 show
a curved-crease sculpture created from an annulus. Such surfaces
are an active topic of study: For shapes obtained by folding along
concentric circles, structural analysis has been performed by [Dias
et al. 2012]. It has been conjectured that such surfaces do not ex-

(a) (b)

Fig. 15. (a) Creases which enjoy the “geodesic” property are as far re-

moved from the curved-fold property as possible, but can be simulated by

three curved folds in close proximity. (b) This surface, whose outer faces

are planar and have been removed for better visibility, has the topology of a

torus and is intrinsically flat.

ist in the strict mathematical sense [Demaine et al. 2011b]. This is
confirmed by our own observations during modeling: If the folds
are restricted to be concentric circles (by imposing distance con-
straints on the development’s vertices), we do not achieve quite the
same quality of developability as when this restriction is relaxed
and is only imposed on the inner and outer boundary.

Examples of cylinder topology. The curved-crease sculpture
presented by Figure 14 is inspired by David Huffman’s hexago-
nal column design [Demaine et al. 2011a]. This surface does not
enjoy developability onto a plane, but onto a right circular cylinder
of radius r. To maintain developability during modeling, we cut
that cylinder open and unroll it onto the plane. The coordinates of
vertices of the development (V̄ , Ē, F̄ ) are considered modulo the
vector (2πr, 0). Another cylindrical example is shown by Figure
15a.

Example: Flat torus. Figure 15b shows a curved-crease sculp-
ture of torus topology. It has been initialized from a flat torus poly-
hedron, and has been modeled under constraints (2), (7) which
express local developability in faces and creases. As to vertices,
the Gauss-Bonnet theorem says that the surface’s total curvature is
zero. By symmetry, all vertices carry zero Gauss curvature.

7. DISCUSSION

Computational Efficiency. We adopt the method of Tang et al.
[2014] to solve the constraint equations related to developability.
They argue that their method works best if the constraints are linear
or quadratic (which is true in our case), and if the system is sparse.
Sparsity holds only to a limited extent, but we are still fast enough
for interactive modeling — for details see Figure 17. We verified
that using cubic constraints such as (2) causes bad performance: 1
order of magnitude more iterations achieve surface quality which
is 1 order of magnitude less than when using quadratic constraints.
More details on the comparison between quadratic and cubic con-
straints are provided by Tang et al. [2014].

Note in particular that using splines allows us to deal with
smooth surfaces without the need to go to higher resolutions, which
is different from mesh-based methods. An obvious deficiency of the
spline representation in presence of non-smooth side conditions is
their parametric smoothness. However, some simple tests we made
in this regard were reassuring: As illustrated by Figure 16, the effect
of enforced non-smoothness is that spline control points coalesce,
in agreement with known properties of splines.

An important ingredient in our work is the dual representation,
i.e., the normal spline. Modeling developables entirely with the
dual representation is not intuitive and makes it difficult to con-
trol singularities. In combining it with the primal representation we
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Fig number of . . . weight of constraints related to . . . normal face flatness crease flatness vertex flatness Titer

No. ctrl.pts strips variables (4,5) (7) (12) v-dev. isom. ∗∗ ε1 ε2 spline? δmean/δmax |K|mean/|K|max |K|mean/|K|max [sec]

6a 91 18 12249 1 1 1 [0.9i/10]i≤5 .01 yes 1.5E-4 / 5.0E-4 2.3E-4 / 7.2E-4 3.6E-5 / 4.7E-5 0.16
6b 101 20 13509 1 1 1 1 [0.9i/10]i≤5 .01 yes 1.3E-5 / 6.4E-4 8.4E-6 / 2.2E-5 5.6E-4 / 5.6E-4 0.21
8 60 9 6147 1 1 1 1 [0.9i/10]i≤5 .01 yes 4.7E-5 / 1.6E-4 1.0E-6 / 1.1E-5 2.8E-5 / 4.4E-5 0.06

9b 57 5 5466 1 0 .001 no 2.5E-5 / 1.7E-4 n/a n/a 0.05

10† 303 94 12777 1 ∗∗ 0.001 .001 yes 5.6E-5 / 4.0E-3 n/a n/a 0.5
12 270 48 29574 1 1 1 1 [0.5i/10]i≤5 .01 yes 1.8E-3 / 5.8E-3 1.2E-3 / 8.2E-3 n/a 0.36
13 36 2 3795 1 1 1 1 [0.8i/10]i≤5 .01 yes 1.4E-4 / 4.4E-4 4.0E-5 / 6.4E-4 n/a 0.04
15a 320 32 39648 1 1 .01 yes 7.2E-5 / 7.5E-4 1.8E-5 / 7.0E-5 n/a 0.8
15b 140 30 17850 1 1 1 ∗ .01 yes 1.5E-5 / 2.2E-4 1.8E-6 / 1.3E-5 ∗ 0.23

18‡ 24 8 1116 1 0.001 .001 no 2.2E-4 / 7.8E-4 n/a n/a 0.13
†blue part ‡upper part ∗∗weights 1E-3/1E-4/1E-2 resp. for (9)–(11) ∗ in this special case vertex flatness is implied automatically

Fig. 17. For each example, these statistics show the number of control points, of simple spline developables (“strips”), and of variables which are manipulated

by the guided projection procedure. Meshes are rescaled to have diameter 1. We list the weights given to individual constraints: developability of spline strips

and of creases, global developability, local vertex-developability, isometric mapping to a prescribed development, and approximation. User-defined constraints

like fixed vertices are given the weight 1. The regularizing energy frequently is set to zero (by letting ε1 = 0) after 5 iterations to save time. We also show the

time per iteration, referring to an Intel-core i5 3320m processor. The surface quality achieved after 10 rounds of iteration is illustrated via the auxiliary mesh

(V,E,F ) of § 5. We measure face flatness by δ = (distance of diagonals)/(avg. of 2 short edge lengths). Developability around vertices (corresponding to

creases or vertices of the surface) is measured by Gauss curvature K (angle sum minus 2π).

experienced great benefits to approximation, and also to modeling
complex shapes like Figure 12 (for simpler shapes, apparently the
individual normal vectors which occur in our equations can be con-
sidered independent). We used C2 cubic spline surfaces, which in
theory would imply C1 degree 4 normal splines. In practice how-
ever we restricted the normal splines to degree 3 and smoothness
C2, using fewer control points and reducing computation times to
almost half. This did not impair quality.

Robustness. We made a few tests concerning the robustness of
our method, and we did not experience strong sensitivity to the
choice of parameters. Changing the importance of the energy func-
tional by changing ε1 influences the shape of the final result. E.g.
in Figure 15b the curved folds become straighter if ε1 is increased.
However changing ε1 seems to have no influence on the achieved
surface quality.

The parameter ε2 which governs the importance of the second
regularizing contribution to (6) apparently can be chosen in the in-
terval [10−6, 10−3] (or [10−6, 10−2], if curved-folding constraints
are present) with only small changes in the final surface quality. A
smaller value slightly improves the convergence rate, but we used
a larger value to favor proximity to the starting configuration. In
several cases documened by Figure 17 we set ε1 to zero after 5
iterations to improve convergence and to save time, since this reg-
ularizer seems to have no effect in later stages of iteration.

1 iteration 8 iterations

Fig. 16. Spline developables can approximate shapes with edges, if the

normal spline is not enforced to have higher order smoothness and if n(uj)
in (11) is considered fixed in each iteration of constraint solving. This image

colour codes the distance of a developable spline strip from the reference

shape.

The actual values of ε1, ε2 used for the figures contained in this
paper are documented by Figure 17. They are the result of nu-
merical experiments. We observed the following trends: Firstly,
a greater number of constraints (in particular curved-folding con-
straints) requires higher values of ε1. Secondly some constraints
like a prescribed development already have a regularizing effect, so
ε1 can be made smaller in that case.

Limitations. The limitations of our method are mostly the need
to decide the “decomposition combinatorics” of a complex surface
before modeling. This is felt mostly when exploring shapes with
prescribed development, even if sometimes a workaround can be
used (see Figure 13). This limitation applies in a similar manner
to previous work, e.g. [Solomon et al. 2012]. However, having to
choose combinatorics is not a limitation when our aim is to explore
the possible shapes of composite developables which have exactly
those prescribed combinatorics.

Conclusion. We have presented methods for interactive model-
ing of piecewise-developable surfaces and especially curved-crease
origami. Our approach is based on a spline representation of simple
developables, combined with previous work on solving certain non-
linear systems quickly (by “guided projection”). We have shown
how to express local and global developability, and how to solve
approximation problems with developables, utilizing their smooth
and one-dimensional normal vector field. Our method is illustrated
by means of different examples, some of which correspond to ex-
isting work in real-life origami.

Future work. The topic of piecewise-developables and curved-
crease sculptures is not yet exhausted. We have not touched
upon computation of an optimal decomposition into simple devel-
opables. Neither have we considered the topic of continuous un-
folding, and we have no algorithmic treatment of overlaps in the un-
folding (which would amount to collision detection in our regularly
updated development). Unsolved problems remain, e.g. how to find
the closest curved-crease surface which is globally developable and
which is closest to a given target shape. This question includes
the problem of Origami tessellations with curved folds. Finally,
the present method has much potential for extensions. One is en-
abling real-time modeling with developables: we propose to study
a multiresolution approach together with parallelization. Other di-
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rections concern more flexibility in modeling by changing the com-
binatorics, and to include other constraints like statics or shading.

APPENDIX

Counting degrees of freedom of spline developables. The spline
functions of Ck smoothness and polynomial degree m in n seg-
ments form a linear space, here denoted by Sn

m,k. It has dimension

dimSn
m,k = n(m + 1) − (n − iopen)(k + 1), where iopen = 1

for open curves, and iopen = 0 for closed curves. This number fol-
lows from m + 1 polynomial coefficients per interval, minus the
conditions imposed by equality of derivatives.

Let us now impose the developability condition (2) on a surface
defined by two spline curves a, b. The determinant d(u) in (2)
enjoys Ck−1 smoothness and is piecewise-polynomial of degree
≤ 3m−2. Actually the degree is ≤ 3m−3, since it is not difficult to
see that the coefficient of u3m−2 in the expansion of d(u) vanishes.
Thus (2) amounts to dimSn

3m−3,k−1 conditions. Subtracting this
from the 6 dimSn

m,k variables stored in a, b yields at least

n(3m− 5k + 2) + iopen(5k + 6)

degrees of freedom for spline developables. In the important case
of cubic splines with C2 continuity (m = 3, k = 2, see Fig. 4)
we get n + 16iopen degrees of freedom. For n = 1 (polynomial
“Bézier” developables) the formula reduces to 3m+ 8 d.o.f.

Rational surfaces. A similar d.o.f. count yields 4m+9 degrees of
freedom for rational degree m Bézier developables, and n(4m +
3 − 5k) + iopen(6 + 5k) degrees of freedom for a Ck NURBS
developable consisting of n segments of degree m.

Remark: The d.o.f. counts for both the Bézier and the cubic
spline cases have been derived by [Chu and Séquin 2002] and
[Chu and Chen 2004], respectively. As n grows, cubic spline devel-
opables appear to have fewer d.o.f. than cubic spline curves them-
selves, which is at odds with the well-known existence of devel-
opable cylinders and cones for every spline curve. This discrepancy
is explained by the fact that our d.o.f. count did not take depen-
dencies of equations into account. The solution manifold contains
components corresponding to solutions of simple geometry which
have a higher dimension than its ‘freeform’ components.

Simple connectedness. We want to show that local developabil-
ity of simply connected surfaces implies developability (if one dis-
regards overlaps), i.e., local developments can be pasted together
consistently. We must verify that sequentially pasting together the
local developments of patches which cover a loop in the surface,
will eventually lead back to the local development we started with.
Small loops contained in a single developable patch surely are
“good loops”, meaning that they have this property. Loops do not
lose this property upon deformation, since for small enough defor-
mations the same patches can be used. Thus all loops deformable
into small loops are good loops. In a simply connected surface, all
loops can be deformed into a point, which concludes the argument.
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