Interactive Digital Photomontage

Aseem Agarwala¹
Maneesh Agrawala²
Alex Colburn²
David Salesin^{1,2}

Mira Dontcheva¹
Steven Drucker²
Brian Curless¹
Michael Cohen²

¹University of Washington ²Microsoft Research

Presented by: Gagan Bansal

Photomontage: What does it mean

Combining parts of a set of photographs into a single composite picture --- (of course with minimum visible artifacts !!!!)

Issues Involved

 How to select the seams where to cut the images so that they merge as seamlessly as possible in the composite image?

 How to minimize the remaining artifacts in the composite image?

<u>Video</u>

Overview of the Approach

- Choosing seams
 - Use Graph Cut

- Minimizing the remaining artifacts
 - Gradient domain fusion based on Poisson equation

Image Objectives

- Designated Color
- Minimum or maximum luminance
- Minimum or maximum Contrast
- Minimum or maximum likelihood
- Eraser
- Minimum or maximum difference
- Designated Image

Seam Objectives

- Colors match colors
- Colors and gradients
- Colors and edges prefer seams that lie along edges

Seam objectives are global

Graph Cut

$$C(L) = \sum_{p} C_d(p, L(p)) + \sum_{p,q} C_i(p, q, L(p), L(q))$$

Graph Cut

Data Penalty

- Designated Color Euclidean distance of color to be assigned from color in source image
- Designated Image 0 if same label
- Eraser Euclidean distance of source from current composite (?)

Graph Cut

Interaction Penalty – seam objectives
 = 0 if same labels

$${\sf Colors} - \quad \|S_{L(p)}(p) - S_{L(q)}(p)\| + \|S_{L(p)}(q) - S_{L(q)}(q)\|$$

Gradients

Colors and Gradients

Color and edges -
$$||S_{L(p)}(p) - S_{L(q)}(p)|| + ||S_{L(p)}(q) - S_{L(q)}(q)||$$

scalar edge potential computed using sobel

Gradient Domain Fusion

- Use labels on composite to determine the source gradient field.
- Same as in Perez et al.
- Add a constraint user chooses a pixel whose color constrained to color in source image

Selective Composites

- Selective Composites
- Extended depth of field

Result – used maximum local contrast

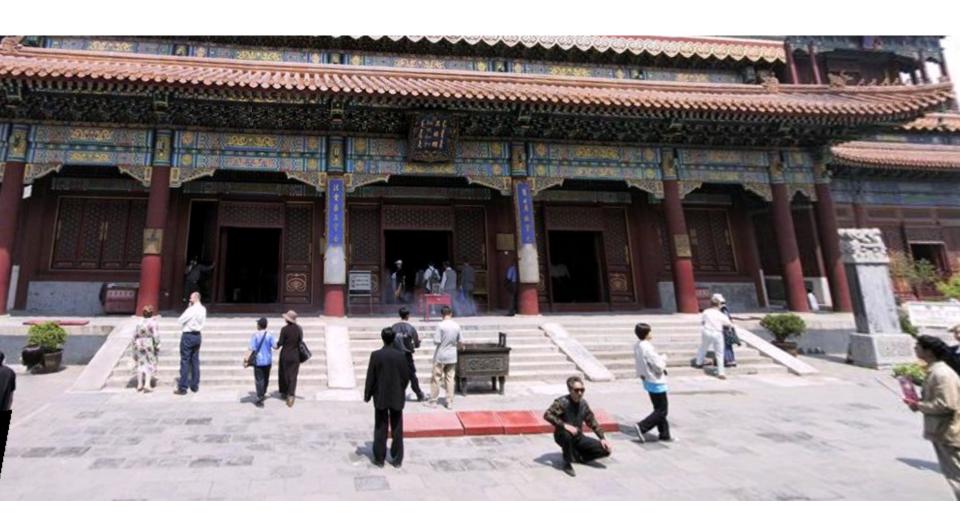
- Selective Composites
- Extended depth of field
- Relighting

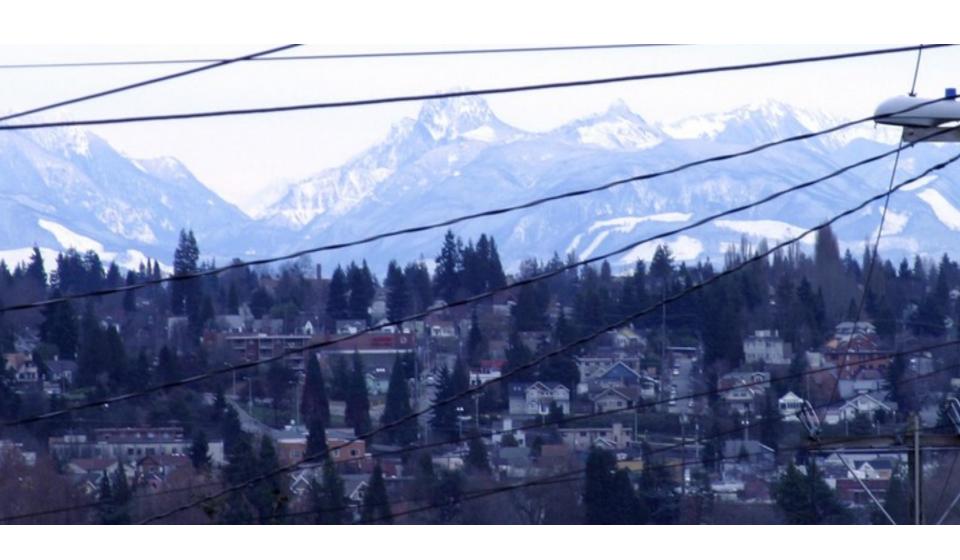
Result – using max or min luminance

- Selective Composites
- Extended depth of field
- Relighting
- Stroboscopic visualization of movement

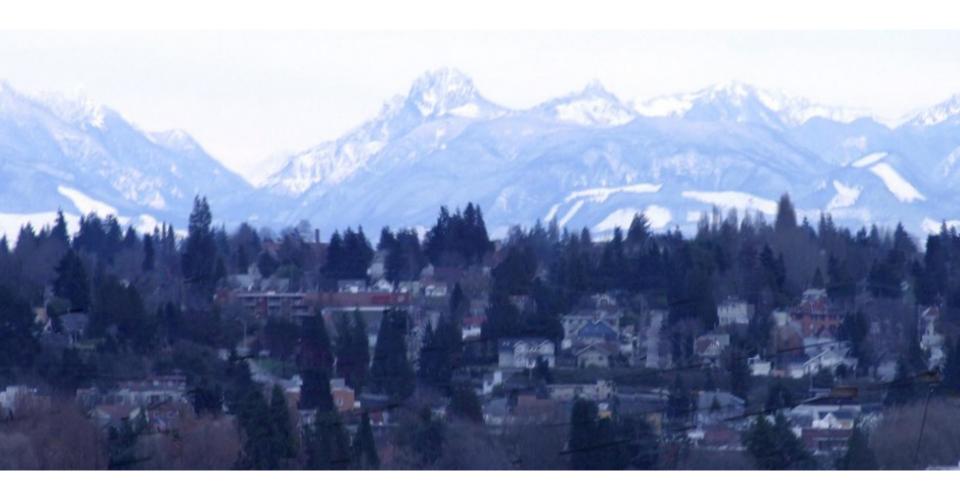
- Selective Composites
- Extended depth of field
- Relighting
- Stroboscopic visualization of movement
- Time lapse mosaics

- Selective Composites
- Extended depth of field
- Relighting
- Stroboscopic visualization of movement
- Time lapse mosaics
- Panoramic stitching





Result



- Selective Composites
- Extended depth of field
- Relighting
- Stroboscopic visualization of movement
- Time lapse mosaics
- Panoramic stitching
- Clean plate production

Result – using max or min likelihood

