Research Repository UCD

Provided by the author(s) and University College Dublin Library in accordance with publisher
policies. Please cite the published version when available.

Title

Interactive EC control of synthesized timbre

Authors(s)

McDermott, James; O'Neill, Michael; Griffith, Niall J. L.

Publication date

2010

Publication information

Evolutionary Computation, 18 (2): 277-303

Publisher

MIT Press

Link to online version

http://www.mitpressjournals.org/doi/abs/10.1162/evco.2010.18.2.18205

Item record/more information

http://hdl.handle.net/10197/2536

Publisher's version (DOI)

10.1162/evco.2010.18.2.18205

Downloaded 2022-08-25T17:27:27Z

The UCD community has made this article openly available. Please share how this access

benefits you. Your story matters! (@ucd_oa)

https://twitter.com/intent/tweet?via=ucd_oa&text=DOI%3A10.1162%2Fevco.2010.18.2.18205&url=http%3A%2F%2Fhdl.handle.net%2F10197%2F2536

Interactive EC Control of Synthesized Timbre

James McDermott jamesmichaelmcdermott@gmail.com
Natural Computing Research & Applications Group,
University College Dublin, Ireland

Michael O’Neill m.oneill@ucd.ie
Natural Computing Research & Applications Group,
University College Dublin, Ireland

Niall J. L. Griffith niall.griffith@ul.ie
Department of Computer Science & Information Systems,
University of Limerick, Ireland

Abstract

Perhaps the biggest limitation of interactive EC is the fitness evaluation bottleneck,
caused by slow user evaluation and leading to small populations and user fatigue. In
this study these problems are addressed through the proposal of new user interface
techniques for interactive EC, which allow faster evaluation of large numbers of indi-
viduals and the combination of interactive with noninteractive evaluation. For the first
time in the interactive EC literature a set of rigorous usability experiments compares
these techniques with existing interactive EC and non-EC interfaces, for the application
domain of sound synthesis. The results show that a new user interface for interactive
EC improves performance, and further experiments lead to refinement of its design.
The experimental protocol shows, again for the first time, that formal usability ex-
periments are useful in the interactive EC setting. Statistically significant results are
obtained on clearly-defined performance metrics, and the protocol is general enough
to be of potential interest to all interactive EC researchers.

Keywords

Interactive EC, genetic algorithms, sound synthesis, graphical user interfaces, usability
experiments.

1 Introduction

Interactive EC is important in many aesthetic, subjective, and multi-objective domains
(Takagi, 2001). Perhaps its biggest open problem is the fitness evaluation bottleneck: human
evaluation of results is slow, so users become fatigued, small population sizes and a
limited number of generations must be used, and performance suffers (Takagi, 2001;
Biles, 1994; Johanson and Poli, 1998; Llora et al., 2005). Many papers are published
each year attempting to improve performance and on other interactive EC topics, but
an important step in the maturing of this young field has not yet been taken: there
has been little work using formal usability experiments to measure any performance
improvements. Such experiments are certainly difficult, by comparison with purely
computational experiments, and perhaps some researchers regard them as impossible.
Here, however, a rigorous protocol is used successfully for usability experiments, and

© 2010 by the Massachusetts Institute of Technology Evolutionary Computation 18(2): 277-303

J. McDermott, M. O’Neill, and N. Griffith

statistically significant results are obtained on clearly-defined performance metrics. The
experimental protocol is general enough to be of potential interest to all interactive EC
researchers.

These experiments are used to provide support for the other main contributions
of this paper: two new techniques for interactive EC which are intended to improve
performance by allowing faster evaluation of large numbers of individuals and
the combination of interactive with noninteractive evaluation. These techniques are
here tested on the problem of controlling a sound synthesizer, but are general enough
to be used elsewhere.

The control of sound synthesis is an interesting application domain for interactive
EC methods, for several reasons. Firstly, in this domain the quality of an individ-
ual’s phenotype—that is, an output sound—is amenable to evaluation both by signal-
processing methods (measuring sound similarity) and by users (via their ears). The
domain thus straddles the border between interactive and noninteractive EC, and in
this paper the latter is used in a role subordinate to the former.

Sound synthesis is also extremely popular: judging by web forum membership (see,
e.g., KVR Audio, 2008), it seems reasonable to guess that there are millions of software
synthesizer users worldwide. It is hard to think of another application domain in which
such a large number of users are faced with the control of nontrivial parametric systems,
and this represents, perhaps, an underexploited testing ground for EC ideas.

The problem of controlling a synthesizer genuinely is nontrivial: the numbers of
parameters range from a handful to the hundreds, though a few dozen is not atyp-
ical. That their names and numerical values tend to be rooted in underlying signal-
processing algorithms, rather than reflecting perceptual qualities of the output sounds,
only increases the difficulty of control for the (often untrained) users. The parame-
ters may behave nonlinearly and are often epistatic, meaning that the effect of one
may depend on the values of others. On the other hand, parameters’ behaviour and
interactions are not so chaotic and complex as to make EC no better than a ran-
dom search. There is exploitable structure in the fitness landscape, as is demonstrated
later.

1.1 Aims and Methodology

The aim of this work is to design a new interactive EC system leading to performance
improvements, and to measure any such improvements in a rigorous way. Such a system
must first include new techniques specific to the case of interactive EC. It must also be
suited to the particular characteristics of the problem domain: here, interactive EC is
applied to the problem of setting sound synthesis parameters. This problem presents
different challenges and opportunities from work in, for example, engineering design.
Analysis of the new techniques with reference to the problem domain is therefore
required (though the new ideas presented here may be applicable to other domains
also). Most importantly, the system must be tested in controlled experiments, and
refined in light of their results. These requirements dictate the structure of our research,
as follows.

Sound synthesis itself is first introduced in Section 2.1. The review of existing
work (Sections 2.2-2.2.2) gives an analysis of some of the most important problems in
interactive EC, and some previous work on their solutions. This review leads directly
to the requirement of new and better interactive EC techniques, and two of these are
proposed. Section 3 describes sweeping, a user-controlled interpolating operator for

278 Evolutionary Computation = Volume 18, Number 2

Interactive EC Control of Synthesized Timbre

interacting with and efficiently selecting from an evolutionary population. This is a
novel operator for this domain.

Background evolution is the second technique to be proposed, in Section 4. It is a
novel type of island-model algorithm, taking advantage of the nature of the problem
domain by using both human and machine evaluation of individuals. To run such an
algorithm it is necessary to establish that noninteractive evolution can be successful.
This question is also addressed in this section.

The bulk of the results are presented in Section 5 and concern a set of formal
interactive experiments run to measure the performance of these two techniques. Such
experiments, relatively rare in the interactive EC literature, constitute the ultimate test
of new interactive techniques. The experimental protocol adopted here can serve as a
template for researchers interested in supporting their innovations in interactive EC
with experimental data. The purpose of each experiment is to allow the refinement
of some methods and the rejection, at least in the scope of this paper, of others. The
rationale for the choice of experiments is given more fully in Section 5.

Section 6 contains discussion of the results and the possibilities for using these
new techniques in other domains, and finally Section 7 summarises a framework for
experiments in interactive EC and gives conclusions.

2 Background

21 The Control of Sound Synthesis

A sound synthesizer is any device or process, whether realised in hardware or software,
which produces an audio signal through some form of calculation or algorithm (as
opposed to mere reproduction). Modern synthesizers are most commonly implemented
as software.

The control of a synthesizer can be roughly divided into two parts. First, notes
of varying pitch, volume, and duration can be produced using a controller such as
a MIDI keyboard. Secondly, the timbre or character of the notes can be controlled by
varying the synthesis algorithms themselves and their numerical input parameters.
Most synthesizers are parametric—that is, the user can vary numerical parameters but
cannot add, remove, or recombine components of the synthesis algorithm. Setting the
parameters to the right values to give a desired output sound is the problem of interest
here.

Most synthesizer users work on controlling timbre interactively via a graphical user
interface (GUI) with one controller (such as an on-screen knob, switch, or slider) per
parameter. Setting the parameters manually can be a difficult task, because of the sheer
number of them, and because they are usually continuous-valued and may be epistatic.
In general there is no direct “backward” mapping from a sound to the patch (i.e., the set
of parameter values) that gives rise to it. The parameter space may be too large to be
searched exhaustively, whether manually or through machine methods. In this context,
EC is one natural solution.

2.2 Interactive EC

Interactive EC, simply, is EC with a human “inside the loop”: usually the user provides
either numerical evaluations of fitness, or direct selection of individuals, with other
parts of the EC algorithm running as usual. Other types of human involvement in

Evolutionary Computation = Volume 18, Number 2 279

J. McDermott, M. O’Neill, and N. Griffith

the algorithm are also possible, but much less common. In most cases, the user is not
required to understand the details of the evolutionary algorithm or the underlying
problem or representation, and therefore interactive EC is suitable even for untrained
users.

Interactive EC is used especially in aesthetic domains in which a computational
fitness function is difficult to define, and is also common where the user must make
sense of multiple conflicting objectives. It has been used extensively in generative
graphics (Dawkins, 1986; Sims, 1991; Todd and Latham, 1992), engineering design
(Parmee, 2001), musical composition (Biles, 1994), and many other areas (Takagi, 2001).

2.2.1 EC Sound Synthesis

In particular, interactive EC has been applied to sound synthesis. A typical system
is described by Johnson (2003). Here, genomes are floating-point arrays which are
translated into sounds by (i.e., serve as input to) a parametric synthesizer. The user
interface consists of buttons (to hear the sounds) and sliders (to assign them fitness
values). After evaluating each generation, the user clicks an “evolve” button, causing
the next generation to be created using a combination of mutation and crossover. For
the population size of 9, each generation therefore requires at least 10 mouse clicks and
nine slider movements. This system is perhaps the most direct possible translation of a
typical GA into the interactive setting.

A relatively low number of generations is reported to be required for successful
evolution—three or four for some convergence, and a few more for more detailed
exploration of a subspace. Success is reported both in this respect and in the ability of
novice users to learn the capabilities of the synthesizer being controlled.

Several more interesting features are reported as being in development, including
a load/save facility; local search search by mutation of a single sound; and user control
of per-gene mutation rates.

MutaSynth (Dahlstedt, 2001) is an interactive EC application that can be applied
to different synthesis engines via MIDI control, and can also control the evolution of
score material. It has been used as a publicly-accessible installation, requiring that it be
usable and controllable even by very casual users. This system uses a population of nine
individuals, each represented on screen by turtle graphics derived from the parameter
values. This innovation provided the user with a potentially useful mnemonic for each
individual in the population, and allowed the user to immediately see relationships
within and between generations.

Two nonstandard crossover operators, called insemination and morphing, were in-
troduced on the assumption that the user’s intuition would be a guide to the type
of combination operator required to produce a desired result from a pair of parents.
Another nonstandard operator was manual mutation, or direct setting of individual
parameter values: parameter values could also be “frozen” manually by the user.

One great strength of this work is a consideration of the multiple synthesizer engines
to be placed under interactive EC control, and of the pros and cons of various ways
of avoiding typical problems associated with them. For example, the interdependence
between parameters in some synthesizer models is noted as a problem; a possible
solution, parameter mappings that avoid bad combinations of parameter values, is
proposed; and the resulting loss of flexibility is noted as a disadvantage. Another
solution is to start from good genomes and use only small mutations; but again there is
a loss of freedom.

280 Evolutionary Computation = Volume 18, Number 2

Interactive EC Control of Synthesized Timbre

An interesting insight is the claim that the more universal the synthesizer used, the
smaller the proportion of useful sounds that occur in the search space. More general
synthesizers, in other words, are much more difficult to control through EC methods,
whereas less flexible ones may not even require any extra method of control other than
their original parameters.

Genophone (Mandelis and Husbands, 2006) is a complex interactive system in which
a data glove, an evolutionary software interface, and a MIDI keyboard and synthesizer
are used together. The data glove is used to “perform” with synthesizer parameters
via user-variable performance mappings, while the keyboard can be used to perform
note data in the usual way. Evolution takes place at the level of synthesis parameters
and that of performance parameters: both are represented together in the genotypes,
and therefore the user in awarding fitness must take account of both the aesthetic value
of the current sound and the practical value of the current performance mappings. The
evaluation process therefore is necessarily time-consuming, since the user must (unless
the output sound is obviously poor) spend time learning the possibilities of the current
mapping.

In terms of EC, the process again involves nonstandard operators, including a
(noninteractive) interpolation and a fitness-weighted probabilistic crossover. The user
selects individuals interactively, but also specifies a fitness value for each. The mutation
and reproduction operators are then applied at the user’s discretion. Offspring are
awarded preliminary fitness values that depend on those of their parents. The user can
choose to “lock” certain synthesizer parameters, limiting the effects of later operations.

The overall process is not intended for target-matching uses, but for exploration.
In this context, it is difficult to carry out quantitative experiments. However, qualita-
tive experiments are described, in which users were encouraged to pursue their goals
through controlled techniques. Thus, for example, the different crossovers were com-
pared, and the standard one-point crossover was found to be the most predictable and
therefore most useful. The explanation offered for this is that interdependent param-
eters were very often located close together on the genome. The synthesizer in use in
Genophone was a commercial MIDI synthesizer, in which parameters were to some ex-
tent grouped by function, so the explanation is likely true; but the conclusion is stated
without quantitative support.

Overall, the system is seen to be a success: users enjoyed using it. The metaphor
of variation and inheritance was seen to be easily understood by nontechnical users.
This may be in contrast with systems based on alternative metaphors such as the neural
network. A related point is made by Gartland-Jones and Copley (2003, p. 45): “GAs map
human exploration processes,” in the sense that the GA paradigm reflects the creation,
exploration, and optimisation methods used in human innovation.

All three of these systems have been reported to be quite successful. They share
many common features: one notable one is the locking or freezing feature present in some
form in all three. It is also present in the Metasurface, a nonevolutionary interpolating
synthesis controller (Bencina, 2005). The apparently independent convergent evolution
of multiple systems on this feature is evidence that it is particularly appropriate to
these parametric systems. One disadvantage to this is a leakage from the evolutionary
abstraction, since the user is no longer insulated from low-level details; however, the
use of the locking feature is always optional. This means that the systems are capable
of being used at different levels of proficiency, from novice to expert.

The interactive EC systems discussed here have been used largely for exploratory,
rather than target-matching behaviour. This is certainly a reasonable goal for research,

Evolutionary Computation = Volume 18, Number 2 281

J. McDermott, M. O’Neill, and N. Griffith

particularly since it is a common use-case in real-world synthesizer use. However, it
seems natural to ask whether the systems can be used to match clearly-specified targets,
and if not, why not. One possibility is simply that interactive EC is an inadequate search
technique for this problem, given that a desired sound is likely to correspond to a very
small proportion of the search space. However, if the aim is to make synthesis control
easier for novices, then this use-case must be considered also.

2.2.2 Problems for Interactive EC, and Some Solutions

Takagi (2001) lists the significant problems characteristic of the interactive domain.
There is a fitness evaluation bottleneck (Biles, 1994)—human evaluation of solutions is
naturally far slower (at least for the vast majority of problem domains) than machine
evaluation. Not only must the individual solutions be considered (aurally, visually,
or otherwise, depending on the domain) and evaluated (generally using keystrokes or
mouse gestures), but users often choose to revisit each member of a population multiple
times to compare them with each other, before performing the final evaluation. Bad
user-interface design can slow a user down, perhaps by requiring too many mouse
gestures for each generation. Boredom can arise if a user is asked to evaluate too many
similar sounds. Frustration can occur when the system is not seen to be learning from
and responding to the user’s choices. The result of all these problems is that the large
populations and numbers of generations, typical of EC in general, are not feasible
in interactive EC. As a result, interactive evolutionary algorithms, viewed purely as
search algorithms, are at a severe performance disadvantage. Also, the user’s goal is
usually underdefined and somewhat changeable. This point is sometimes made by
characterising interactive EC as searching for a moving needle in a haystack. The user
may also become progressively more discriminating as evolution proceeds.

Many authors have worked on solutions to some of these problems. One possibility
is to somehow model the implicit fitness function being applied by the user, so that some
individuals can be evaluated automatically and some of the workload removed from the
user. Llora et al. (2005) had some success with this method, though on a toy problem.
Johanson and Poli (1998) used a neural network to model the user’s implicit fitness
function in a GP-style music composition system. Training such a system requires the
user to provide many fitness evaluations in a consistent setting (i.e., while the user’s
goals remain constant). Therefore, this method does not provide a shortcut to fast
evolution for later runs in different contexts, with different goals, or by different users.
Baluja et al. (1994) avoided this problem by collecting fitness evaluations from many
users in advance of a noninteractive run, but this meant that fitness was merely an
overall index of general quality, and not specific to a user or relative to a particular goal.

Another problem is specific to the audio domain. Sound is a time-based medium,
and there is no easy way to present more than one sound to a user simultaneously. This
is in contrast with the graphical domain, where thumbnails are routinely used, allowing
the user to judge an entire population quickly and focus in on a single individual when
necessary.

In this paper, two methods of avoiding the problems of interactive EC are proposed.
One, background evolution, is a new type of island model. It combines interactive and
noninteractive evolution: this can be seen as forming a type of fitness model analogous
to systems discussed above. It is specific to the problem instance and does not require the
gathering of training data in advance. The other, sweeping, can be seen as analogous to
the method of thumbnailing: it allows efficient evaluation of a population, a focussing-in

282 Evolutionary Computation = Volume 18, Number 2

Interactive EC Control of Synthesized Timbre

of attention where necessary, and fast selection. In the case of sound synthesis, it does so
by taking fuller advantage of the properties of the synthesizer and the auditory system.
Both background evolution and sweeping address the problem of the fitness evaluation
bottleneck. They are described in the following two sections.

New interactive EC methods which are claimed to improve performance require
experimental support. All three of the interactive EC synthesis systems described above
(Johnson, 2003; Dahlstedt, 2001; Mandelis and Husbands, 2006) are reported to be suc-
cessful and useful for exploration of the sound-space. However, little research has been
reported on attempting to find specific target sounds—an important use-case. Experi-
ments are also lacking which compare these methods with other possible methods of
control, including nonevolutionary methods. The same is true of the fitness-modelling
techniques described above (Llora et al., 2005; Johanson and Poli, 1998; Baluja et al.,
1994). This paper attempts to address this lack through controlled usability experi-
ments comparing the innovations with standard interactive EC and non-EC methods
of control. These experiments are described in Section 5.

3 Sweeping

One possible solution to the problem of small populations and poor performance in
interactive EC is to find methods that allow larger populations to be evaluated quickly
by the user. One such method is proposed here: sweeping. This is a user-controlled inter-
polation between members of a population in which the results are observable in real
time. A single controller affects multiple parameters, effecting a gradual transforma-
tion between individuals, and the user controls the movement with the benefit of direct
feedback. Eventually, the user finds one or more of the best individuals available in
the interpolation and selects them directly, without awarding numerical fitness values.
Sweeping thus avoids the need for explicit fitness and the traditional selection operator.

Sweeping where one controller corresponds to one synthesis parameter is ubiqui-
tous in nonevolutionary synthesis control, and has even given rise to musical motifs
characteristic of synthesized music, such as the resonant filter sweep. Authors and soft-
ware implementers including Bencina (2005) have also used mappings in which a single
controller corresponds to multiple synthesis parameters: these trade individual control
of parameters for user-interface simplicity. The idea has not previously been applied to
sound synthesis EC.

3.1 Benefits of Sweeping

Although it is generally necessary to listen closely to an entire sound (perhaps multiple
times) in order to judge it as good, it is often possible to judge that a sound is bad on
the basis of a superficial or incomplete listening. One major benefit of sweeping and
the direct selection method is that they allow the user to take advantage of this asym-
metry. By moving the interpolation controller quickly, the user achieves a superficial
impression of many individuals, and can choose to ignore poor-quality areas and focus
on better ones. The overall effect is to allow a more superficial method of control which,
it is hoped, is also more efficient.

Although the sweeping method allows the user to access only a very small portion
of the search space at any one time, it is emphasised that this portion is larger than that
accessible through the more typical discrete population. The number of individuals

Evolutionary Computation = Volume 18, Number 2 283

J. McDermott, M. O’Neill, and N. Griffith

accessible through the sweeping technique is much larger than suggested by the nomi-
nal population size (which will be just three in the first implementation).

The parameters of a synthesizer can be regarded as defining (via their Cartesian
product) a continuous, bounded, multi-dimensional timbre space. Research in the field
of auditory perception (Grey, 1975; Wessel, 1999, and others), has supported the idea
that listeners are capable of a type of geometric interpretation of such a space. Listeners
asked the question “what sound is to C as A is to B?” are able to respond, and responses
conform to a parallelogram law on the timbre space (Ehresman and Wessel, 1978;
McAdams and Cunibile, 1992). Grey (1975) suggests that interpolations in a timbre
space can be correctly interpreted by listeners. Interpreting the space geometrically
informs navigation within it.

It seems likely that listeners can use these abilities to imagine the results of move-
ments in an interpolation, with reference to known sounds, and to guess where a desired
sound is likely to be found. This can lead to improved performance (in sounds evalu-
ated per unit time, and in usability) over systems that do not allow the user to apply this
intuition in choosing what user interface gestures to make. At least three results of this
geometric intuition are hypothesised. A user listening to a poor quality sound will know
that a large jump is required to escape the poor quality area: a great number of poor
quality sounds can be avoided in this way, preventing user boredom and frustration.
Similarly, when the current sound is close to that desired, the user intuitively applies
small changes. This combination of coarse and fine control is a key advantage of the
sweeping user interface. Finally, the user may sometimes judge not only that the current
sound is undesirable, but that the most recent movement in the interpolation was in the
wrong direction, and that further similar movements are unlikely to be successful. This
ability allows the user, in many cases, to change direction and so avoid culs-de-sac.

3.2 Requirements for Effective Sweeping

The hypotheses mentioned above are based on the assumption that the mapping from
interpolation to phenotype is well behaved in certain ways. A small movement in the
controller should result in a small change to the phenotype; a further controller movement
in the same direction should result in a further change in the same (phenotypic) direction.

These requirements are fulfilled in the case of sound synthesis. They equate to
requiring continuity and monotonicity in the mapping from controller to perceived timbre
(Bencina, 2005; Goudeseune, 2003). This map is composed of two parts: the map from
controller to parameter space, and the map from parameter space to timbre space.
It is easy to see that the former (defined in Section 3.4 and Figure 1) is continuous
and monotonic. The latter component is much more complicated and depends on the
synthesizer in use. Most synthesizers are sufficiently well behaved that interpolation
is quite easy to use, in practise: the details are outside the scope of this paper but are
described elsewhere (McDermott, 2008).

A more practical consideration is that the mapping be computable in real time, that
is, fast enough for the user to take advantage of immediate feedback from each change.
Sound synthesizers are generally written to be controllable via real-time parameter
manipulation and therefore fulfill this requirement also.

3.3 EC View

The sweeping technique is incorporated into an EC algorithm as follows. The standard
selection method—awarding numerical fitness values to individuals as the basis for

284 Evolutionary Computation = Volume 18, Number 2

Interactive EC Control of Synthesized Timbre

Figure 1: The sweeping operator works by linear interpolation. When the slider is at
a proportion x of the distance from L to C, the output patch X = L 4+ x(C — L). The
corresponding equation is used when the slider is between C and R.

algorithmic (e.g., roulette wheel) selection—is replaced with a direct selection, per-
formed by the user, among the (relatively few) individuals of the population and
the (more numerous) individuals available via interpolation among them. After se-
lection, individuals may go directly into a new population, or they may be processed
by crossover and mutation operators. Only the former possibility is used in this paper.
Since the best individuals are always retained, the technique can be regarded as elitist:
in the absence of save/load facilities in the GUISs, it seems necessary that the user should
never find that the preferred individuals are lost between generations.

It will be apparent that an evolutionary algorithm that allows the user to intervene
directly at the genotype level, observing the phenotypic effects in real time, and that
allows the propagation of these genotypic changes to the next generation, is neither a
true GA, strictly defined, nor a close analogy to real-world genetic evolution. In fact,
the sweeping method may be regarded as Lamarckian, or as an example of the Baldwin
effect (Anderson, 1997).

The evolutionary mechanism behind the sweeping interface can also be compared
with an evolutionary strategy or ES (Beyer, 2001). Key characteristics of the ES include
small populations; an interpolating, multiple-parent recombination operator; and the
side-by-side evolution of both the candidate population and a “strategy set” that deter-
mines evolutionary parameters. The latter has not been explored in the present work,
but the other features have.

3.4 Implementation

The two dimensions of a computer screen make a two-dimensional implementation of
sweeping most natural. However, a one-dimensional implementation has also been im-
plemented, with the aim of running the simplest possible experiments. This is described
first.

3.41 One-Dimensional Sweeping

In one dimension, interpolation is simple. Given two patches L and C (which are
simply the floating-point array genotypes of two individuals), the output patch X (i.e.,
the genotype resulting from this operator) depends on the location of the controller,
expressed as a proportion x of the distance between them:

X=L+x(C-1L)
As stated earlier, this mapping is continuous and monotonic. The reason for the choice of
patch names is that in the GUI implementation, two such interpolations are juxtaposed,

as in Figure 1. The nominal population size is thus increased to three (L, C, and R).
The controller can be moved freely between the two interpolations (the mapping is

Evolutionary Computation = Volume 18, Number 2 285

J. McDermott, M. O’Neill, and N. Griffith

Interpolation: 0.00L 0.50C 0.50R

: 1

New Generation

Figure 2: Sweep GUI: the patches L, C, and R are at the left, centre, and right of the
slider, and their proportions in the current output patch X are indicated.

A B

Figure 3: Interpolation using a triangulation scheme. The output patch X = /—A +

#B + 557 C, where a, b, and c are defined as the lengths of the perpendiculars at
X. The coefficients of A, B, and C always sum to 1 and therefore the output is a weighted

sum of these patches.

continuous but nondifferentiable at the centre point C). When the user clicks “New
Generation” (see Figure 2), the current patch X replaces C—in other words, a single elite
point is selected and becomes centred in the next generation. In the firstimplementation,
new patches at L and R are generated randomly, though other possibilities are also
discussed later.

The simple GUI presented here can be extended as follows. Multiple independent
controllers can be created, each containing three individuals as before. The current
output patch is that defined by whichever controller was last touched by the user. The
“New Generation” button iterates the population for each of the controllers.

3.4.2 Two-Dimensional Sweeping

In two dimensions, an interpolation can be defined to make it possible to produce any
desired linear combination of three patches arranged in a triangle, but not any larger
number (howsoever arranged). The interpolation used here is quite simple, as defined
in Figure 3. The coefficients of the three patches always sum to 1 and therefore the
output is a weighted sum of these patches.

Again, multiple interpolations of the basic form are juxtaposed, to allow centering of
an elite individual and a greater choice within each generation. Six triangular interpola-
tions are juxtaposed to give a hexagonal arrangement as in Figure 4. This is comparable
to the triangulation method used by Van Nort et al. (2004). In this version of the GUI,

286 Evolutionary Computation = Volume 18, Number 2

Interactive EC Control of Synthesized Timbre

Figure 4: Hex GUIL The numbers at the top left indicate the current proportions
(a, b, and ¢ in Figure 3) associated with the vertices. Vertices are ordered starting at
the centre and proceeding to the rightmost and then anticlockwise. The proportions
(0.33,0.33,0.34, 0, 0, 0, 0) indicate the position (indicated by the cursor, in white) in the
centre of the first (top right) triangle. Several individuals, marked in grey, have been
selected for the next generation.

multiple patches can be directly selected (by right-clicking), to be passed through to
the next generation. When the current generation has been sufficiently explored, the
user clicks “New Generation” and saved patches are redeployed to the vertices (with
the first saved patch going to the centre, and the remaining ones going clockwise from
the rightmost). Any vertices remaining unfilled are filled with randomly-generated
patches.

4 Background Evolution

Another possible solution to the problem of slow evaluation in interactive EC is to
transfer some of the evaluation workload from the user to the computer. There are
several methods for achieving this, as discussed in Section 2.2.2, but the one proposed
here is a novel type of island-model algorithm: background evolution.

Theidea of background evolution is as follows: the user interacts through a GUI with
an interactive EC system, performing fitness evaluation or direct selection, while in the
background a noninteractive EC process runs, occasionally pushing good individuals to
be incorporated into the interactive EC (foreground) population. This scheme combines

Evolutionary Computation = Volume 18, Number 2 287

J. McDermott, M. O’Neill, and N. Griffith

the complementary strengths of human and computational evaluation and is possible
only in domains where the quality of an individual is amenable to both.

In the case of sound synthesis, background evolution works by first loading a target
sound recording, assumed to have some of the qualities desired for the output sound,
to function as a target. A noninteractive evolution process is started in which fitness is
calculated as similarity to the target (to be defined later). A second process starts a GUI
with which the user interacts, driving evolution as usual for interactive EC. The two
processes are independent except for occasional copying of good individuals from the
noninteractive background evolution to the interactive evolution, to be incorporated
into the user’s GUI for evaluation.

41 EC View

Since background evolution maintains separate populations with some migration be-
tween them, it can be regarded as a type of multiple-deme or island model GA, as
discussed by Martin et al. (1997). One way in which the background evolution scheme
differs from typical island model GAs is that here migration is one way: from the back-
ground process to the foreground. The alternative—that some individuals selected by
the user also pass into the background population—is a promising possibility, but is
left for future work.

4.2 Computational Measures of Sound Similarity

The key problem in using noninteractive EC to match target sounds is defining a
computational measure of sound similarity. Typically this is done by analysis of the
sound signals using DSP (digital signal processing) methods. A measure based on
the comparison of sounds’ spectra (via the discrete Fourier transform or DFT) is the
dominant method in the EC synthesis literature (Wun and Horner, 2005; Horner, 2003;
Horner et al., 1993; Mitchell and Sullivan, 2005). It may be possible to define measures
that are better correlated with human perception of sound similarity, and this may lead
to improved results. Different measures have different effects on the fitness landscape
and problem difficulty, and this also affects the quality of results.

Previous work (McDermott, 2008; McDermott et al., 2007) has offered a comparison
of four different computational measures of sound similarity:

DFT. The spectral comparison measure mentioned above.
Pointwise. A time domain sample-by-sample comparison.

Attributes. A method based on extracting 40 semantic attributes, such as attack
time and spectral centroid, from sounds and comparing the attributes after scaling
and normalisation.

Composite. A measure based on the average of the above three.

Experiments using these measures as fitness functions suggested that none was
unequivocally better than the others, when judged in terms of (computational) fitness
achieved. However, when listeners judged the results of evolutions, the time domain
comparison was found to have performed worst, and the other three were roughly
equivalent.

288 Evolutionary Computation = Volume 18, Number 2

Interactive EC Control of Synthesized Timbre

Table 1: Measures of problem difficulty summarised.

Difficulty measure Pointwise DFT Attribute Composite
FDC (higher is easier) low lowest higher highest
Epistasis (lower is easier) low low high high
Monotonicity (higher is easier) lowest medium higher highest

Another set of experiments analysed the difficulty of the fitness landscapes induced
by the above measures. Three measures of landscape difficulty were used: fitness distance
correlation or FDC (Jones, 1995), epistasis (Beasley et al., 1993), and monotonicity (Naudts
and Kallel, 2000). The results are summarised in Table 1: it shows that different measures
tend to induce different types of difficulty in the fitness landscape. The details can be
found elsewhere (McDermott, 2008).

Finally, experimental data were gathered on the correlation between listener’s
judgements of sound distance and the values returned by the four computational mea-
sures. The attribute distance function was shown to be the best correlated of the distance
measures. Overall, considering this result, the results on landscape difficulty and pre-
vious results on evolutionary success (McDermott, 2008; McDermott et al., 2007), the
attribute measure was chosen for sole consideration in later experiments. Note also that
since the background evolution must run in parallel with a real-time sound synthesis
task, it is desirable to avoid a CPU-heavy fitness function: the attribute function is mod-
erate in CPU use, compared to the composite function which requires calculation of all
the others.

4.3 Noninteractive Experimental Results

In order to run background evolution, it is necessary to show that noninteractive EC can
succeed in matching targets. A series of experiments was run to demonstrate this and
to investigate the best EC algorithms and algorithm parameters for use in noninterac-
tive target-matching. The synthesizer used in all following experiments was a slightly
modified version of the Xsynth synthesizer (Bolton, 2005). It has 29 parameters, of
which four are integer-valued (encoded as floating-point) and the others true floating-
point parameters. This makes the search space considerably larger than that used in
much existing EC synthesis work. The genome contained one floating-point number in
[0, 1] per parameter. This was mapped to the corresponding parameter’s range linearly
or logarithmically—some parameters are marked by the synthesizer as logarithmic,
meaning that controllers should perform such a mapping to achieve appropriately fine
control of the extremities of the parameter’s range.

4.3.1 Genetic Algorithm Versus Random Search

The first experiment was carried out to compare the performance of a random search
with that of a GA, with the hypothesis that the GA would perform better. The GA
was a steady-state GA over 100 generations with 100 individuals in the population.
The replacement proportion was 0.5, one-point crossover had a probability of 0.5, and
Gaussian mutation had a per-gene probability of 0.1. Selection was by the roulette
wheel algorithm. This amounts to a fairly typical floating-point GA. The random search
algorithm randomly generated a large number of individuals, returning the best. In
order to allow fair comparison between two search algorithms, it is only necessary that

Evolutionary Computation = Volume 18, Number 2 289

J. McDermott, M. O’Neill, and N. Griffith

1.00
R I
: I
0.98 }
0.96 ‘ 1
9o}
¢ 1
= 0.94 1 1
I
o
0.92 — o
0.90 — o
I | |
RS GA PS (best)
Algorithm

Figure 5: Random search versus GA. The GA achieves better (higher) fitness values.
The best result from a particle swarm optimisation—discussed later—is included for
comparison.

they perform equal numbers of fitness evaluations, that is, that they process the same
numbers of individuals. A steady-state GA with parameters as above will evaluate
5,000 individuals, so the same number was allowed for the random search.

The attribute distance function was used to define fitness as f = 1/(1 + d), where
f is fitness and d is the attribute distance between the candidate and target sounds. It
was used to drive evolution 30 times, once for each of 30 randomly-generated target
sounds. The results in the form of best final fitness values are shown in Figure 5: the
GA achieves better (higher) fitness values in each case than the random search. The
t-tests among the datasets show that for each of the four distance functions, the GA
out-performed the random search (p < .01). This is an encouraging result, showing that
the problem has at least some exploitable structure.

43.2 Genetic Algorithm Parameter Tuning

Next, an experiment was run to test the performance of a GA with various values for the
crossover and mutation probabilities. The setup was similar to the previous experiment,
using the same number of runs, the same target sounds and the same population size
and number of generations. It was hypothesized that both the mutation and crossover
probabilities would affect the performance of the GA, as measured by the attribute
distance function. The results are shown in Figure 6.

According to a two-way ANOVA, there were significant effects due to the crossover
probability (p < .05, F = 4.3), the mutation probability (p < .01, F = 6.0), and the in-
teraction between the two (p < .05, F = 3.1). A Tukey honest significant differences
test was run to compare the setups pairwise, and showed that among the crossover
probabilities, 0.5 was significantly better than 0.1 (the other differences being insignif-
icant at the p < .05 level). Among mutation probabilities, 0.1 was shown to be better
than either of 0.01 and 0.3. Among the combined factor levels, the (crossover, mutation)

290 Evolutionary Computation = Volume 18, Number 2

Interactive EC Control of Synthesized Timbre

— —
0.99 o T | ! 0.99 — ! | ‘
0.98 : E 0.98 E E

2 n

¢ oo —— [‘ £ 007 - ;

= 0.96 — ! 1 l Z 0.96 — ! ! !
095 4 —— 1 © 0.95 ! © —

.
0.94 — © 094 - o
I I I I I I
0.1 0.5 0.7 0.01 0.1 0.3
Crossover Probability Per—gene Mutation Probability
(a) Crossover (b) Mutation

Figure 6: Performance analysed by crossover and mutation probabilities. The typical
values of 0.5 for crossover and 0.1 for mutation are the best.

combinations (0.5, 0.3), (0.1, 0.1), (0.7, 0.01), and (0.5, 0.1) were shown to perform better
than (0.1, 0.01). This worst-performing combination featured the lowest probabilities
of crossover and mutation, leading to the interpretation that insufficient introduction
of diversity and mixing of genes took place in the populations under those conditions.
It is noted that the best-performing levels of the factors—0.5 for crossover and 0.1
for mutation—are the most typical of continuous GAs. These values are used in the
remainder of the study.

Several other experiments on noninteractive evolution were also run (McDermott
et al., 2007; McDermott, 2008). In every case, the aim was to improve performance in
order to run more successful background evolution. Among the possibilities examined
were:

® Alternative fitness functions, as described above.

® Alternative search algorithms, including the comparison of particle swarm and
genetic algorithms (the best particle swarm results obtained are shown in Figure 5,
for comparison).

® Increasingly discriminating fitness functions, where an attribute-based fitness function
was composed initially of only a few attributes, but of an increasing number as
evolution proceeded (the aim being to allow the population to evolve good building
blocks on easy subproblems and later work to combine them).

¢ The weighting of components in the attribute fitness function.

However, in no case were clear-cut improvements found over the best GA setup
described above. Therefore the GA with the attribute fitness function was chosen for
the practical implementation of the background evolution idea, described next.

44 Implementation of Background Evolution

The following implementation was used: individuals are pushed from the background
evolution to a stack whenever a new individual exceeds the previous best fitness
achieved in the background population; individuals are popped (last-in, first-out) from
this stack to the GUI whenever the user requests a new generation in the foreground

Evolutionary Computation = Volume 18, Number 2 291

J. McDermott, M. O’Neill, and N. Griffith

evolution. If the user requests a new generation when the stack is empty (either be-
cause no individuals have yet been pushed onto it, or because all existing individuals
have been popped off and no new ones yet pushed on), then a random individual is
generated instead.

Pilot experiments and the results given above on automatic target-matching inform
this design in several ways. The population size (50) in the background evolution is cho-
sen to give a regular stream of improvements (too large a population would cause long
gaps between new generations) and the best overall performance within the time frame
envisaged for trials of the target-matching experiments described below (3—6 min).

A buffer of good individuals is necessary for cases when the user requests several
new generations (and thus individuals from the background process) in quick succes-
sion. A last-in, first-out buffer (i.e., a stack) is the best choice, since the most recent best
individual found by the background process is the most likely to be of use to the user.

In the next section, the sweeping and background evolution techniques described
above are tested in a series of formal usability experiments.

5 GUI Experiments

A series of three usability experiments was run to test the performance of the sweeping
and background evolution techniques proposed in previous sections, and to inform
their further design.

These experiments are intended to allow the refinement of some methods and
the rejection, at least in the scope of this paper, of others. However, it is not practical
to attempt experimental investigation of every variation on the interactive methods.
This is because interactive experiments are very time-consuming, relative to purely
computational ones, but moreover because they tend to yield less clear-cut results.
The GUIs tested here are deliberately kept simple: implementation details (such as
synthesizer-specific ones) and convenience features (such as loading and saving) are
not treated here. This approach is chosen because it allows the statement and testing of
clear hypotheses concerning minimal GUISs, it imposes as little cognitive load as possible
on users, and it prevents extranaeous issues from interfering with the core results. Each
experiment therefore tests the simplest possible conditions. Thus, the experimental
process is not intended to lead necessarily to the best possible design of an interactive
EC synthesis system, but to explore fundamental design choices.

51 Measuring Success

A key question is how performance can be measured. Attention is restricted to a single
type of task—target-matching—which does not represent the totality of possible syn-
thesizer use-cases, but is at least somewhat amenable to objective methods. Multiple
subjects perform multiple tasks in a factorial experimental design, so that the effect of
the GUIs on performance can be isolated. For each target-matching task, there are two
main measures of success, as follows. After the task, the user is asked to give an estimate
(from a scale of 1-7) of the similarity between the final, best sound achieved and the
target. This estimate is purely subjective, and subjects are likely to differ in the criteria
on which their estimates are based. However, there is no reason to suppose that this
subjectivity biases results for or against any of the GUIs being tested. The second mea-
sure of success is the elapsed time. Several computational measures of sound similarity
were also calculated between each result and the corresponding target sound; however,
these are not regarded as capable of overruling human perception of sound similarity.

292 Evolutionary Computation = Volume 18, Number 2

Interactive EC Control of Synthesized Timbre

5.2 Experimental Setup

The three experiments were very similar in their setup. For each, 20 subjects volunteered.
Roughly equal numbers of male and female subjects volunteered, their ages ranged
from early 20s to mid-40s, and their self-reported abilities and knowledge in music
and synthesizers varied from none to expert level. There was some overlap in subjects
between the three experiments. Some of the subjects were students or graduates of a
course in music technology, and some were personally known to the authors. Each
subject received a nominal payment of €5.

Two target sounds were chosen from among the preprogrammed sounds created by
the synthesizer author. They were thus relatively desirable or “musical,” in comparison
with the majority of available sounds. A third sound, used only in the final experiment,
was created from scratch in order to test the ability of GUIs to find sounds with a
particular set of perceptual features.

The first two experiments compared four GUIs, while there were three in the final
experiment. Since there were two target sounds for the first experiments, and three for
the final one, each subject performed a total of eight or nine target matching tasks in
total. The order of presentation of the GUIs was varied between subjects, so that effects
of learning or fatigue did not bias the results for or against any GUI. Subjects were
advised to take as long as they wished on each task, but warned that a fixed number of
tasks was to be completed. A period of 3-6 min per task was suggested, chosen as being
sufficient for a typical synthesizer user to achieve a reasonable first approximation to a
desired sound under normal circumstances.

5.3 Three Experiments

In addition to the target-matching tasks, subjects performed short preliminary listening
tests, for example, choosing which pair of three sounds was the most similar, and rating
the similarity of pairs of sounds. These experiments gathered data useful in the study
of the search space (McDermott, 2008) and had the effect of “warming subjects up” to
the fine discrimination and careful listening necessary in the main tasks.

5.3.1 Non-EC, Interactive EC, and Interactive EC Innovations

In this first experiment, four GUIs were tested; the first two functioned as controls
against which to measure the success of the two new interactive EC techniques. The
simplest possible implementations of these techniques were used, in order to avoid
ambiguity in the interpretation of results.

Slider. A typical non-EC GUI in which each synthesis parameter was controlled
independently by a slider.

IGA. A typical interactive EC GUI (shown in Figure 7), similar to that of Johnson
(2003), with a population of eight, numerical fitness values in a scale of 1-7, one-
point crossover with probability 1.0, and Gaussian mutation of deviation width
0.75 and probability 0.3.

Sweep. A simple sweeping GUI, with random generation of end points at each new
generation.

Evolutionary Computation = Volume 18, Number 2 293

J. McDermott, M. O’Neill, and N. Griffith

() Fitness

() Fitness

() Fitness

R
I

() Fitness

i

(») Fitness

[

() Fitness

() Fitness
() Fitness

New generation [

Figure 7: Typical interactive GA GUL

H o= o BN W W e

elE LTI

7 - 0 — 1500 9]
6 _ _ _ | =

a0 , ' ' -

2 5 ‘ £ 1000 o

5] ' R}

I - s -

LER 2 500 1 ‘ —_ °
1A { T T 1 0~ { T T 1

Standard IEC Sweep Background Standard 1IEC Sweep Background
GUI GUI

(a) User rating (b) Elapsed time

Figure 8: Results analysed by GUI. For user rating, higher is better; for elapsed time,
lower is better.

Sweep with Background Evolution. A sweeping GUI where one of the two end
points at each generation was copied from a background evolution, as explained
in Section 4.4.

The results are given in Figure 8. They were analysed using two-way repeated mea-
sure ANOVAs. There are no statistically significant differences in user rating between
GUIs (F = 0.38; p > .1). However, there are significant differences by target (F = 34.8;
p < .001) and by GUI against target (F = 3.14; p < .05). The user rating results sepa-
rated out by target sound suggest that the GUI against target sound interaction effect
is that the sweep GUIs are more suitable to target O than target 1. This is reflected in
the statements by two expert synthesizer users that the sweep interfaces were more ap-
propriate for timbral matching (the main difficulty in target sound 1), while the sliders
GUI was more appropriate for envelope matching (the main difficulty in target 0). Thus,
there is evidence that the sweep interfaces are useful in particular circumstances. The
addition of background evolution (i.e., the contrast between the third and fourth GUIs)
was not found to increase performance—this is despite the first-hand impression of the

294

Evolutionary Computation = Volume 18, Number 2

Interactive EC Control of Synthesized Timbre

6 - 700 9]
I I I — 00 °
e : ‘ : % 600 0
g I ' I o 500 — ° °
5 4 ‘ ‘ ‘ 2 400 - — Q °
E £ 400 ‘
5 34 ¢ 300 | ‘ ! —
=) 5
2 3
: : 2 10 1 —1 ===
14 . N | p—— . . i
{ T T 1 0 { T T]
Random Nearby Distant Multiple Random Nearby Distant Multiple
Algorithm Algorithm
(a) User Rating (b) Elapsed Time

Figure 9: Results of the second experiment, analysed by algorithm.

first author that the background evolution technique did make better “raw material”
available for evolution.

Figure 8(b) suggests that there was a strong effect of GUI on elapsed time, and the
ANOVA confirms this (F = 12.1; p < .001). In this case, the post-test pairwise z-tests
show that subjects used the two sweep GUISs for significantly shorter times than the
other two GUIs. This is a positive result for the sweep GUISs, since achieving the same
quality of match in a shorter time benefits both the serious and the casual user. The
addition of background evolution (i.e., the contrast between the third and fourth GUIs)
did not have a significant effect on elapsed time.

The subjects’ self-reported ability in music and synthesis (encoded as three levels—
beginner, intermediate, and advanced) was shown not to have any effect on performance
at the p < .05 level. This is a somewhat surprising result, since one motivation for
interactive EC techniques is that they hide complexity and are therefore more suitable for
novices. It is possible that the more expert subjects’ better abilities were partly cancelled
out by their stricter standards of similarity. In any case, subjects” questionnaires did
reveal that of the nine subjects who chose to express a preference, six said that one of
the sweep GUIs was the best. One subject remarked, “there was a sense of progression
with the sweep GUI, whereas the [non-EC] GUI didn’t have that.”

There was a lack of evidence supporting the background evolution method. Al-
though it is argued later (in Section 6.2) that the idea is not without merit, the evidence
suggested that the idea not be pursued further in the course of the current research. The
sweeping idea, on the other hand, achieved promising results, and the next stage of the
research focussed on refining it.

5.3.2 End Point Generation Methods

Perhaps the aspect of the sweeping operator most amenable to variation is the method
of generating end points. It was hypothesized that more sophisticated end point gen-
eration algorithms might lead to better performance than the random generation used
in the previous experiment. Four different algorithms were implemented in otherwise
identical sweeping GUIs:

Random. Random generation (as before).

Nearby. Random generation with a constraint that end points be relatively similar
(at a parameter distance of 0.06, as discussed below) to the centre point.

Evolutionary Computation = Volume 18, Number 2 295

J. McDermott, M. O’Neill, and N. Griffith

Distant. Random generation with a constraint that end points be dissimilar (at a
distance of 0.45).

Multiple. Random generation with the constraints that they be somewhat dissimi-
lar from each other and from individuals of previous generations (at a distance of
more than 0.06 in each case).

The similarity constraints were defined numerically using a measure of distance in
the synthesizer’s parameter space. For two points, each parameter value was mapped
(linearly or logarithmically, as appropriate) to the range [0, 1], and then the difference
between corresponding values was taken and the results averaged, giving an overall
measure of distance, itself in the range [0, 1]. The distance 0.06, used above, was chosen
as just large enough to enforce discriminability between end points (McDermott, 2008).
The value 0.45 was chosen as being close to the maximum distance (0.5) constructible
in general from a given input point.

The motivating hypotheses for the choice of end point algorithms were that increas-
ing diversity, and enforcing distinctions between end points and previous generations,
would improve performance. Thus, this is an attempt to discover the correct balance
between exploration and exploitation. We note that the “distant” method not only tends
to increase population diversity, but also means that a given movement in the interpo-
lation always corresponds to the same distance in parameter space—that is, it leads to
diversity and consistency.

There were significant differences (p < .01, F = 4.3) in user rating by algorithm.
Post-test pairwise t-tests showed that the “distant” algorithm performed better than the
“nearby” and “multiple” algorithms at the p < .05 confidence level, after a Bonferroni
correction of a factor of 20 to allow for multiple statistical tests on the same data. The
differences between the “random” algorithm and all of the others were not found to
be significant. Neither the algorithm nor the target affected the elapsed time results
(elapsed time by algorithm: p > .1, F = 0.44; elapsed time by target: p > .1, F = 3.7).
The effect of the interaction between target and algorithm was not significant either
(p>.1,F=138).

The fact that statistical significance is found in some results is evidence that perfor-
mance improvements can be detected where they exist, and gives strong support for
the methodology adopted in this experiment.

The idea of multiple constraints between the end points and previous points, and
between the end points themselves, was shown to decrease performance. It is possible
that this occurs because the enforcement of novelty with respect to previous generations
sometimes moved the population away from promising areas being explored by the
user. The difference in performance between the “nearby” and “distant” algorithms
shows that increased diversity improves performance. The distance constraint enforced
in the “distant” algorithm (0.45 in parameter distance), cannot be increased greatly for
further gains, since 0.5 is the largest possible distance achievable in general from a given
input point. Nevertheless, the relative success of the “distant” algorithm suggested that
it be used in all further experiments.

5.3.3 Extended Sweeping Methods

As stated earlier, a one-dimensional sweeping method was used initially for the sake
of simple, controlled experiments. However, a two-dimensional method is the most
natural for a typical screen and mouse interface. Again, the simplest possible extension

296 Evolutionary Computation = Volume 18, Number 2

Interactive EC Control of Synthesized Timbre

7 1400 —)

]

=)

S
|

g ‘ ! S 1000 i
E £ 800 S
5 g 600 !
8 % —_ |
3 | R B T
2 7 ! ! 2200 ‘ 1
LA \ \ \ 0~ \ \ \
Sweep—1 Sweep—3 Hex Sweep—1 Sweep—3 Hex
GUI GUI
(a) User rating (b) Elapsed time

Figure 10: Results analysed by GUI for the third experiment.

was chosen. The hexagonal system, described in Section 3.4.2, consists of juxtaposed
triangular interpolations, just as the system used in the earlier experiments consists
of juxtaposed linear interpolations. The two were here compared directly. To try to
disentangle two effects—the number of dimensions, and the nominal population size—
a third interface was tested which still used only one-dimensional interpolation, but
increased the number of individuals available per generation.

In both of the previous experiments, target sound 0 was found to be much eas-
ier to match. This result was confirmed by a noninteractive method of sampling the
search space and calculating the mean similarity to the target sounds, using DSP-based
measures. A third target sound was defined in order to gather more data on this phe-
nomenon. To keep the overall experiment duration relatively short, the number of GUIs
tested was reduced to three.

Sweep-1. A sweeping GUI using the “distant” end point generation algorithm, as
above, functioning as a control.

Sweep-3. A GUI using three independent sweeping elements, as described in Sec-
tion 3.4.1.

Hex. A two-dimensional sweeping GUI, formed of six triangular interpolation ele-
ments in the shape of a hexagon, as described in Section 3.4.2.

Thus, the experiment tested two alternative methods of extending the sweeping
method—an increased population for more parallel search, and a two-dimensional
approach—comparing both to a control.

Figure 10 gives the results for each of the three GUIs. They suggest the trend that the
more complex the GUI (from Sweep-1 to Sweep-3 to Hex), the longer subjects spent with
it, though without achieving better results. This impression is confirmed by statistical
analysis, which shows that the GUI did not have a significant effect on user rating
but did on elapsed time: subjects spent longer using the Hex GUI than either Sweep-1
or Sweep-3 (p < .01 after a Bonferroni correction with a factor of 10 to allow for the
ANOVA and several pairwise ¢-tests). Note that one trial using GUI 0 was recorded
as having continued for almost 1,400 s, and is marked as an outlier in Figure 10(b). It
is likely that this trial lasted so long due to an error of some sort, perhaps the subject
choosing to take a break during a trial rather than between trials. When this subject’s

Evolutionary Computation = Volume 18, Number 2 297

J. McDermott, M. O’Neill, and N. Griffith

data is temporarily excluded from the dataset, the difference in elapsed time between
Sweep-1 and Sweep-3 is also shown to be significant at the p < .01 level, after Bonferroni
adjustment.

Of the eight subjects who expressed a preference in their post-test questionnaires,
seven preferred the Hex GUI—though one of these claimed that while the Hex GUI was
the most interesting and enjoyable to use, the Sweep-3 GUI was the most successful.
Two subjects said that the Sweep-1 GUI was too simple.

6 Discussion

It is to be expected that the subjective nature of the domain and the noise inherent
to user experiments will not always lead to strong, clear-cut conclusions. However,
a tentative suggestion can be made as to the “best” system to emerge from these
experiments. It is clear that the sweeping technique is feasible and attractive to users.
An algorithm enforcing diversity and consistency of behaviour through selection of
end points seems to be useful and well worth incorporating. On the other hand, the
technique of background evolution was not supported by this work, and is perhaps not
worth implementing in a real-world system—at least not in this domain, or not without
further research. The two-dimensional sweeping method appeals strongly to users, but
the one-dimensional method produced equivalent results faster. In practice, it may be
worthwhile to provide both, and this is the approach taken by the first author in code
for a real-world music composition program (Ritter and Holtzhausen, 2008).

6.1 Effective Sweeping

The novel GUI based on sweeping was shown to be competitive with typical interactive
EC and non-EC GUIs, and overall subjects said that they preferred it. Some methods
of generating the end points for interpolation were investigated, and a method giving
a type of consistency of behaviour and increased population diversity was shown
to give improved performance over two methods lacking these characteristics. Two
possible extended sweeping methods were investigated, and subjects found that two-
dimensional sweeping was viable and interesting.

Sections 3.1 and 3.2 set out the requirements for sweeping to be effective in a given
domain. It must be possible for the map from representation to solution (i.e., from
genotype to phenotype) to be computed in real time, and it must be possible for the
user to experience and judge the solution in real time also. Sound synthesis fulfills these
requirements, at least for short sounds, whereas entire musical compositions would
take too long to be evaluated.

The mapping from interpolation to phenotype must be perceived to be well-
behaved, that is, monotonic and smooth, and the user’s geometric intuition in the
search space must not be violated. Otherwise, the interpolation degenerates to ran-
dom search. That these conditions are fulfilled in other application domains appears
plausible—for example in the case of graphics it is possible to imagine the result of
interpolating between individuals (e.g., Hart, 2007). However, a new argument, taking
account of the details of each domain and of human perception of its phenotypes and
phenotypic changes, must be made in each case.

It was argued in Section 3.1 that sweeping allows fast, superficial evaluation of
many bad individuals, saving the user time, but still allows focussing-in on good areas
of the interpolation. This was facilitated by the asymmetry that exists in the evaluation

298 Evolutionary Computation = Volume 18, Number 2

Interactive EC Control of Synthesized Timbre

of sounds: it is often possible to judge a bad sound as being bad on the basis of a
superficial or incomplete listening, while judging a sound as good may require more
careful listening. This asymmetry (which is largely absent in noninteractive EC) also
exists in other aesthetic domains, including graphics.

The sweeping technique appears potentially useful in many domains where solu-
tions are amenable to either graphical or instantaneous sonic representation. Areas such
as generative graphics, image processing, industrial design, and hearing aid fitting are
among those listed by Takagi (2001, p. 1277) and potentially amenable to the sweeping
technique. We can add sound synthesis to this list, and suggest new areas such as data
visualisation and sonification. Our own research continues into the use of sweeping
in other aesthetic domains, and into the underlying representations most suitable for
this operator. The sweeping idea, implementation details, and experiments therefore
constitute a contribution to the overall state of interactive EC knowledge.

6.2 Background Evolution in Other Domains

The method of background evolution was not shown to improve performance in the first
experiment, and was not investigated further in the later ones. As originally presented,
background evolution is likely to be only occasionally applicable in real-world uses:
it can only be helpful when the user possesses a recording that demonstrates some
of the qualities desired for the output sound. This may seem unrealistic, in that a
user might prefer to simply use the recording, rather than looking for a resynthesised
version of it. However, synthesis gives flexibility in pitch, duration, and expression (plus
the possibility of further timbral manipulation), which may not be available through
playback techniques. Many synthesizer users never attempt any type of resynthesis of
an existing file, and so this type of usage is rare; but it may be argued that this is partly
due to the difficulty of manual resynthesis, and that the technique might become more
popular given a good automatic tool.

The ability to add knowledge to an evolution by setting a target may be useful as a
new workflow in synthesis and other types of design software. A user of graphical EC
might load a picture with a desired palette as the background target, even though it has
none of the structural features that the user will select for in the foreground. The idea
is that migration and crossover will later combine a good palette and good structures.

Another possibility comes from the domain of 3D design. 3D modelling software
typically includes a library of prebuilt designs, and many architects and designers
are familiar with a workflow in which these designs are taken as starting points in
the creative process. However, background evolution allows a designer to specify a
target that is not included in the library and does not exist in a representation editable
within the software. A photograph or a hand-drawn sketch could be made the target of
evolution, so that a successful evolution results in an editable (and further evolvable)
representation of an otherwise inaccessible design. Similar techniques may be applicable
to other aesthetic, subjective, and multi-objective domains.

Background evolution is not limited to cases where a desired object already exists.
Instead, it is possible to define the computational fitness function without reference to
any target. It is quite common to define fitness functions in aesthetic domains in terms
of abstract measures such as symmetry, size, density, and variation (Dahlstedt, 2007;
O'Reilly and Hemberg, 2007). Using these measures, the user can direct background
search while retaining interactive control of the foreground population. Computational
fitness functions might also be defined in terms of automated feature recognition in

Evolutionary Computation = Volume 18, Number 2 299

J. McDermott, M. O’Neill, and N. Griffith

graphics, or structural analysis in the case of architectural design (Machwe and Parmee,
2007).

Fitness functions based on measures rather than explicit targets might also provide
a solution to a problem which arose in some interactive experiments. Some subjects
reported that occasionally too many sounds in the populations were very quiet or
even silent. This suggests first that the volume parameter, being easy to understand,
could be removed from EC control and placed under direct control of the user. A
more interesting idea is to use background evolution or a similar idea to avoid this
problem. The system could perform a simple local search or filtering to remove from
the population candidate sounds—here, silence and near-silence—which are obviously
bad, before the user encounters them. This idea would help to avoid user fatigue, a
key problem in interactive EC, and it is surprisingly general: even purely aesthetic
domains, apparently inaccessible to computational fitness functions and measures of
similarity, may allow some filtering of obviously-bad individuals. This point is related
to that of the asymmetry in evaluation time between good and bad solutions, made in
the previous section.

7 Conclusions

This paper makes two main contributions to the field of interactive EC—new techniques
intended to improve performance, and for the first time in the literature, a rigorous
experimental protocol intended to measure any such improvements.

Previous work on interactive EC and sound synthesis has been reviewed, identify-
ing the main problems and lack of formal usability experiments. The idea of sweeping
has been introduced with support from the literature on human audio perception and
investigation of the genotype-phenotype mapping. It allows efficient interaction with
and selection from the population. The idea of background evolution, which combines
interactive with noninteractive EC, is informed by experiments on and analysis of
the noninteractive target-matching problem. These new techniques have been tested
against other interactive EC and non-EC methods of control, and further refined, in
three sets of formal usability experiments. The sweeping technique was found to im-
prove performance and to appeal to users, and the experimental approach found to be
successful in terms of delivering significant results.

Several possibilities have been suggested for future work within this domain, and
in extending the new techniques to other interactive domains. It is emphasised that
arguments specific to sound synthesis can be reformulated for other applications. In
every case the argument requires some domain-specific knowledge, but might follow
the framework set out in this paper.

® A continuous representation is used.

¢ The behaviour of the genotype-phenotype mapping is investigated with regard to
interpolation usability, and it is noted that it can be computed in real time.

¢ The literature on human perception in the domain is used to argue in favour of an
interpolating approach.

® Noninteractive EC using computational measures of similarity on the domain is
demonstrated to be viable, as a precursor to the implementation of background
evolution.

300 Evolutionary Computation = Volume 18, Number 2

Interactive EC Control of Synthesized Timbre

® Possible sources of targets for noninteractive EC in the domain are suggested.

® Performance measures including elapsed time and user-perceived similarity to
targets are defined.

¢ A factorial experimental design is carried out, with both novice and expert users
as appropriate, and statistical analysis of results.

A similar approach to experiments may be of benefit in investigating the performance
of other interactive EC innovations, whether domain specific or not.

It will be noted that the GUIs presented here are deliberately simple: more sophis-
ticated implementations of (non-EC) interpolation and of interactive EC synthesis have
been presented elsewhere, as described in Section 2.2. The motivation for this simplicity
is to allow the statement and testing of clear hypotheses concerning minimal GUISs, to
impose as little cognitive load on the user as possible, and to prevent extranaeous issues
from interfering with the core results.

This approach has been vindicated: despite the level of noise and uncertainty in-
herent to an interactive and subjective domain, statistically significant differences in
performance (as measured by user rating and elapsed time) were detected in several
cases. This is the first time that a rigorous experimental protocol has been used success-
fully in this domain. It is to be hoped that similar methods will be applied and results
obtained in other applications of interactive EC in the future.

Acknowledgments

The first author was supported under the Embark scheme (grant number RS/2003/68)
by the Irish Research Council for Science, Engineering and Technology. Many thanks
go to Dr. Jean Saunders and Brian Sullivan of the UL Statistics Consulting Unit and
Dr. Fred Cummins of UCD for advice on statistics and experimental design, and to all
our volunteers for experiments. Thanks also to the anonymous reviewers.

References

Anderson, R. W. (1997). The Baldwin effect. In T. Back, D. B. Fogel, and Z. Michalewicz (Eds.),
Handbook of evolutionary computation, Chap. C3.4 (pp. 1-7). Oxford, UK: IOP Publishing Ltd.
and Oxford University Press.

Baluja, S., Pomerleau, D., and Jochem, T. (1994). Towards automated artificial evolution for
computer-generated images. Connection Science, 6(2-3):325-354.

Beasley, D., Bull, D. R,, and Martin, R. R. (1993). An overview of genetic algorithms: Part 2,
research topics. University Computing, 15(4):170-181.

Bencina, R. (2005). The Metasurface: Applying natural neighbour interpolation to two-to-many
mapping. In Proceedings of NIME 2005, pp. 101-104.

Beyer, H.-G. (2001). The theory of evolution strategies. Berlin: Springer.

Biles, J. A. (1994). GenJam: A genetic algorithm for generating jazz solos. In Proceedings of the 1994
International Computer Music Conference, pp. 131-137. Danish Institute of Electroacoustic
Music, Denmark. International Computer Music Association.

Bolton, S. (2005). XSynth-DSSI. Retrieved March 2, 2006, from http:/ /dssi.sourceforge.net/.

Evolutionary Computation = Volume 18, Number 2 301

J. McDermott, M. O’Neill, and N. Griffith

Dabhlstedt, P. (2001). A MutaSynth in parameter space: Interactive composition through evolution.
Organised Sound, 6(2):121-124.

Dahlstedt, P. (2007). Autonomous evolution of complete piano pieces and performances. In Pro-
ceedings of Music AL Workshop.

Dawkins, R. (1986). The blind watchmaker. Harlow, UK: Longman Scientific and Technical.

Ehresman, D., and Wessel, D. (1978). Perception of timbral analogies. Technical Report 13/78,
IRCAM, Paris.

Gartland-Jones, A., and Copley, P. (2003). The suitability of genetic algorithms for musical com-
position. Contemporary Music Review, 22(3):43-55.

Goudeseune, C. (2003). Interpolated mappings for musical instruments. Organised Sound, 7(2):85-
96.

Grey,]. M. (1975). An exploration of musical timbre. PhD thesis, CCRMA, Department of Music,
Stanford University.

Hart, D. A. (2007). Toward greater artistic control for interactive evolution of images and an-
imation. In M. Giacobini (Ed.), Applications of evolutionary computing, vol. 4448 of LNCS,
(pp. 527-536). Berlin: Springer.

Horner, A. (2003). Auto-programmable FM and wavetable synthesizers. Contemporary Music
Review, 22(3):21-29.

Horner, A., Beauchamp, J., and Haken, L. (1993). Machine tongues XVI: Genetic algorithms and
their application to FM matching synthesis. Computer Music Journal, 17(4):17-29.

Johanson, B., and Poli, R. (1998). GP-Music: An interactive genetic programming system. In J. R.
Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel, M. H. Garzon, D. E.
Goldberg, H. Iba, and R. Riolo (Eds.), Proceedings of the Third Annual Conference on Genetic
Programming, pp. 181-186.

Johnson, C. G. (2003). Exploring sound-space with interactive genetic algorithms. Leonardo,
36(1):51-54.

Jones, T. (1995). Evolutionary algorithms, fitness landscapes and search. PhD thesis, University
of New Mexico, Albuquerque.

KVR Audio. (2008). KVR Audio forum member list. Retrieved May 20, 2008, from http:/ /www
Kkvraudio.com/forum/memberlist.php?mode=joined&order=ASCé&start=153420.

Llora, X., Sastry, K., Goldberg, D. E., Gupta, A., and Lakshmi, L. (2005). Combating user fatigue in
iGAs: Partial ordering, support vector machines, and synthetic fitness. In GECCO, pp. 1363
1370.

Machwe, A. T., and Parmee, L. C. (2007). Towards an interactive, generative design system: Inte-
grating a “build and evolve” approach with machine learning for complex freeform design.
In M. Giacobini (Ed.), Applications of evolutionary computing, vol. 4448 of LNCS (pp. 449-458).
Berlin: Springer.

Mandelis, J., and Husbands, P. (2006). Genophone: Evolving sounds and integral perfor-
mance parameter mappings. International Journal on Artificial Intelligence Tools, 15(4):599-
622.

Martin, W. N, Lienig, J., and Cohoon, J. P. (1997). Island (migration) models: Evolutionary algo-
rithms based on punctuated equilibria. In T. Back, D. B. Fogel, and Z. Michalewicz (Eds.),
Handbook of evolutionary computation, Chap. C6.3 (pp. 1-16). Oxford, UK: IOP Publishing Ltd.
and Oxford University Press.

302 Evolutionary Computation = Volume 18, Number 2

Interactive EC Control of Synthesized Timbre

McAdams, S., and Cunibile, J.-C. (1992). Perception of timbral analogies. Philosophical Transactions
of the Royal Society, 336(Series B):383-389.

McDermott, J. (2008). Evolutionary computation applied to the control of sound synthesis. PhD
thesis, University of Limerick, Ireland.

McDermott, J., Griffith, N. J. L., and O’Neill, M. (2007). Evolutionary computation applied to
sound synthesis. In . Romero and P. Machado (Eds.), The Art of artificial evolution: A handbook
on evolutionary art and music (pp. 81-101). Berlin: Springer.

Mitchell, T. J., and Sullivan, J. C. W. (2005). Frequency modulation tone matching using a fuzzy
clustering evolution strategy. In Proceedings of the 118th Convention of the Audio Engineering
Society.

Naudsts, B., and Kallel, L. (2000). A comparison of predictive measures of problem difficulty in
evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 4(1):1-15.

O'Reilly, U.-M., and Hemberg, M. (2007). Integrating generative growth and evolutionary com-
putation for form exploration. Genetic Programming and Evolvable Machines, 8(2):163-186.

Parmee, I. C. (2001). Evolutionary and adaptive computing in engineering design. Berlin: Springer.

Ritter, L., and Holtzhausen, P. (2008). Aldrin modular sequencer. Retrieved October 27, 2008, from
http:/ /www.bitbucket.org/paniq/aldrin/.

Sims, K. (1991). Artificial evolution for computer graphics. In SIGGRAPH "91: Proceedings of the
18th Annual Conference on Computer Graphics and Interactive Techniques, 319-328.

Takagi, H. (2001). Interactive evolutionary computation: Fusion of the capabilities of EC opti-
mization and human evaluation. Proceedings of the IEEE, 89(9):1275-1296.

Todd, S., and Latham, W. (1992). Evolutionary art and computers. San Diego, CA: Academic Press.

Van Nort, D., Wanderley, M. M., and Depalle, P. (2004). On the choice of mappings based on geo-
metric properties. In Proceedings of the 2004 Conference on New Interfaces for Musical Expression,
pp- 87-91.

Wessel, D. L. (1999). Timbre space as a musical control structure. Technical Report 12/78, IRCAM.
Originally published in 1978.

Wun, S., and Horner, A. (2005). A comparison between local search and genetic algorithm methods
for wavetable matching. Journal of the Audio Engineering Society, 53(4):314-325.

Evolutionary Computation = Volume 18, Number 2 303

