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ABSTRACT

This demo presents a system for journalists to explore video footage
for broadcasts. Daily news broadcasts contain multiple news items
that consist of many video shots and searching for relevant footage
is a labor intensive task. Without the need for annotated video
shots, our system extracts semantics from footage and automatically
matches these semantics to query terms from the journalist. The
journalist can then indicate which aspects of the query term need
to be emphasized, e.g. the title or its thematic meaning. The goal of
this system is to support the journalists in their search process by
encouraging interaction and exploration with the system.

CCS CONCEPTS

· Information systems→ Search interfaces; ·Human-centered

computing → Systems and tools for interaction design.
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1 INTRODUCTION

Journalists produce hours of video content every day. A typical news
broadcast has several news items, consisting of both raw footage
from reporters and existing footage e.g. from news wires or old
news items. All the raw footage and edited news items are archived
for future reuse. Nowadays, documentation departments manually
annotate this footage. Editors, or even a dedicated search team, can
search such archives for relevant videos related to news events.
Because this process is time consuming, we aim to automate the
annotation process and optimize the search for journalistic footage.

We present a comprehensive system that offers a way to search
through videos for relevant footage without the need to manually
annotate any of these videos. The framework consists of two main
components: multimodal semantic extraction and interaction, see
Fig. 1. We extract semantics from videos and match them with
composite query terms. Next, the framework provides the jour-
nalist an interactive way to explore retrieved footage, either by
updating queries or by altering control sliders for relevant concepts.
Several multimodal video retrieval systems have previously been
proposed [2, 4, 9]. In these systems the interactive component is
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Figure 1: Overview of the framework. Part 1 focuses onMul-

timodal Semantic Extraction. Part 2 lets the user interact

with the system to retrieve results.

either missing [2] or in the form of relevance feedback [4] to im-
prove future model results. In [9], the user is able to refine results
to indicate the importance of different features. Contrarily, our
system places exploration as its central component. Users interact
with the system by deciding on the importance of both features
and their semantics. This is vital for journalistic footage, as search
can be direct or semantic. Consider the word ’fire’, which can be
used for a real fire, but also for the expression ’being under fire’. In
journalistic footage, it is a priori unknown which type is desirable.
We emphasize exploration to handle query diversity.

2 FRAMEWORK

First, we extract semantics from video footage, followed by a phase
of interaction between the user and the system. This consists of
semantic query matching and exploration of the retrieved footage.

2.1 Multimodal Semantic Extraction

For multimodal semantic extraction, we focus on four types of
recognition to get an overview of the most important aspects of
the video. These are scenes, objects, optical characters, and actions.
These are extracted for every tenth frame of each video, except for
actions where a spatio-temporal approach is used.

For Scene Recognition, we employ a ResNet18[3] architecture
pre-trained on the Places365 dataset [12]. Each frame obtains a
classification as an indoor or outdoor scene, a probabilities for 365
scenes (e.g. baseball field, hotel room), and a probabilities for 102
scene attributes (e.g. water, mountains). These probabilities are
averaged for each shot to obtain shot-level predictions. Shots are
detected based on frame differencing. Object Recognition is done by
employing a ResNet101 architecture pre-trained on 1,000 ImageNet
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Figure 2: Illustration of the search process in journalistic footage. A: A user enters the query ‘vuur ’(fire) and the first matching

results are presented. The system focuses on query terms in news titles, with top results about people being ‘onder vuur

’(under fire). B: The importance of news titles is reduced and the scene semantic item ‘vulkaan ’(vulcano) is emphasized, with

drastically different results, highlighting the importance of exploration. C: Separate view of the most relevant video, with the

shots and the most important multimodal semantics related to the video.

categories [10]. This results in a 1,000-dimensional probability dis-
tribution and converted in a probability on shot level akin to scenes.
Optical Character Recognition is mainly used to extract the subtitles
in the videos. We employ the open-source OCR engine Tesseract
[11]. After cleaning the results by confidence score thresholding,
fuzzy matching is performed to a large dictionary, which is a com-
bination of the words in FastText [6] and OpenTaal 2.10. Results are
concatenated on shot level. The spatio-temporal nature of videos
is investigated by Action Recognition. For this task, the I3D net-
work architecture [1] pre-trained on the Kinetics-400 dataset [7] is
used. This results in a score for 400 actions in each video shot (e.g.
motorcycling, riding a bike) with at least 64 frames.

2.2 Interaction

2.2.1 Semantic Query Matching. Given the multimodal semantic
extraction for videos, we match the video semantics to query terms.
Two types of matching can be distinguished: textual and semantic.
Textual matching relies on OCR recognition and semantic matching
on the scenes, object, and action recognition. For both, the Elas-
ticsearch search engine is used to index and search the video files,
resulting in a textual and semantical search functionality. BM25 is
used as the Elasticsearch matching algorithm [5]. The BM25 search
matches every textual field in the video file, attributing it a score.
The score for each field (OCR, title, and description) is raised by
a factor on the user-defined score. The final score is given by the
sum of the individual scores. For the semantic search, the frame-
work relies on the gensim [8] implementation of FastText word
embeddings. By retrieving the word embeddings from the Dutch
textual representation of each concept from the video models, a
visually semantic search from the query embedding is performed
and the top-k concepts for each field are retrieved. This search
focuses on visual semantics. The cosine distance between the query
and textual concept embeddings is used as a score function.

2.2.2 Exploration. The ranked match between user queries and
video shots is presented in the interaction component of the system.
This consists of a front-end environment that lets the user interact
with the results. Fig. 2 presents several views of the framework.
We aim for high recall, since journalists should not miss relevant
available footage in their search. Apart from changing the query
term, a set of sliders is presented to interact easily with the results.
Sliders exist for top-k results for scene categories, scene attributes,
objects, text related components, and actions. This slider-based
approach enables the user to specify the importance of components
of top results. For example, the action in the video might be more
important than the scene, which cannot easily be specified by a
query. Changing a slider immediately affects the results presented
below the sliders, which results in fast and easy browsing through
large scale video datasets. Hence this interactive component is
necessary to re-rank the results to retrieve the most suitable footage.

3 CONCLUSION

This system presents a way for journalists to search in videos that
are not annotated for reference materials. User queries are matched
with video and textual semantics and it presents top-k results in an
interactive visualization. Users explore the visualization by empha-
sizing semantics from different sources. This facilitates journalists
in their search for suitable shots. The system enables an efficient
exploration for videos and alleviates the need for manual labeling.
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