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1. Metatranscriptomics sheds light on microbial processes 
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(this Thesis) 

2. Current developments in microbiome research will lead to a 
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4. Overstating results will confuse scientists and will serve as 
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5. Many scientific findings, including own findings, cannot be 

trusted, due to lack of reproducibility. 

6. Current societal developments will impact the freedom of speech 

and thinking before they will impact the freedom of science.  

7. Miscommunication is never the fault of a single person. 

8. People who complain that it is difficult to manage one’s social life 

while managing their PhD are doing neither right. 
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How biology changes over time 

The field of systems biology is a research area that has emerged in over the last two 

decades. While biology (especially molecular biology) was initially dominated by a 

reductionist approach, with investigating and understanding the make-up and 

functioning of simpler, isolated parts of bigger systems, systems biology aims to provide 

a holistic view on all the interconnected parts of the system and its emerging properties 

[1, 2]. 

Nevertheless, systems biology cannot stand on its own. Most often it is the case that a 

system cannot be understood if one does not understand at least part of the basic 

functioning of its components [3]. While in computer science a “black box” approach can 
be utilized in many cases to replicate behaviours, this is not necessarily the case in 

biology [3]. It is not possible to form hypotheses and to test them, if there is not at least 

a minimum of understanding of a system (or a related hypothesis).  

But is this true if we look back into the history of science? 

If we want to e.g. understand human physiology, we need to understand the functions of 

organs, for which we need to understand the functions of cells, the functions of 

enzymes, etc. The level of depth, granularity and extend of the necessary understanding 

depends on the complexity of the investigated system. Early progresses on human 

physiology were not made by observing humans as a system, but scientists like 

Leonardo da Vinci investigated the functions of organs and tissues. Da Vinci realized that 

it is not possible to understand how the motion of arms and legs is realized, if the 

function of muscles and nerves is not understood [4]. But in the meantime, with all 

gained knowledge, medicine has over the centuries been able to get a holistic view on 

humans, and diseases are cured with having the whole human as a system in mind. This 

happens despite the fact that we do not understand humans as a system fully and even 

new organs are being discovered [5, 6], but our level of understanding has advanced 

enough to generate and apply concepts at the systems level. 

Systems biology and ecology 

While many disciplines started with the reductionist approach, one biological discipline, 

ecology, is based on understanding systems. Since its emergence in the 18th century [7], 

this field has dealt with the interconnections between individual parts within its systems. 

Also here it is still true that the identity and functioning of components need to be 

understood first. Animal ecology cannot be studied if nothing is known about the animals 

themselves. A top down approach can only work, if in the course of the research 

knowledge about the parts of the system under investigation is gained [8]. This normally 

involves an iterative cycle, where knowledge is gained (potentially via simulations), 

confirmed in the laboratory, and used to re-evaluate the simulations. As an example, 

abnormalities observed in a predator-prey system were modelled with different 

hypotheses, and the only matching simulation was further successfully evaluated in the 

laboratory [9].  

But is systems biology then equivalent to ecology? Many methodologies and thoughts 

are the same, as already outlined. Some of the early ecologists like e.g. Alexander von 

Humboldt could probably also be described as early systems biologists, since he showed 
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his research in a holistic way, and not with a reductionist approach. The difference, if we 

actually would like to make it, seems to be rather an excluding one, not an including one 

(i.e. they do overlap in many areas). If definitions for both ecology [10] and systems 

biology [1] are considered, it is hard to delineate them if a common area (e.g. a 

microbial ecosystem) is viewed. Non-common areas will allow the distinction more 

easily. For example, studying the metabolism of a single microbe with tools like 

metabolic simulations or genetic engineering can be categorized as systems biology, but 

not as ecology. On the other hand, cataloguing the plants and animals of a newly 

discovered ecosystem is clearly ecology, but cannot be considered systems biology. The 

last important difference is that in contrast to ecology, the field of systems biology itself 

only emerged recently [2], and has become necessary mostly due to the increase of 

complexity in the studied fields, which began to rise in the omics era. 

The matter of classifying research can be complicated, due to the fact that many 

research fields overlap, and it is probably also not possible to uniquely classify this 

thesis, in which microbial ecosystems were studied with systems biology approaches. 

Systems biology and microbiology 

The field of microbiology also started with a reductionist approach. Microbiology started 

when Antoni van Leeuwenhoek discovered microbes with his tiny microscopes, and at 

this time microbes also still needed to be understood themselves. It was necessary to 

isolate these microbes in order to allow testing hypotheses related to their physiology 

and behaviour. Since the field of microbiology is ever expanding - with only an estimated 

0.0001% of bacteria being discovered [11] and only a fraction of microorganisms being 

amenable to currently available cultivation methods [12] - this problem of culturing is 

also still a challenge today [13]. Despite this lack of knowledge of many details, 

microbiological knowledge and technologies have advanced enough to make systems 

understanding at least partially possible. The recently developed field of microbiome 

research is one of the currently most obvious illustrations. With the wealth of already 

present knowledge, it is possible to test hypotheses at the level of microbial ecosystems. 

The earliest research has already been performed in the 19th century, with pioneers like 

Sergei Winogradsky [14] and Martinus Beijerink [15] investigating microbial 

communities and basic microbial processes. Despite its long history, the field of microbial 

ecology has taken a big leap in terms of information, understanding and concepts with 

the rapid development of  sequencing technology over the past two decades. The 

decrease in price and increase in quality and output made it possible to sequence more, 

and more complicated nucleic acid compositions. The sequencing of community 

metagenomes is now one of the standards in microbiome research and contributed to re-

inventing the entire field. This allows researchers to come closer to true systems 

thinking, although many details are still missing. 

Systems biology and systems thinking versus specialization 

As already pointed out, systems biology is about studying systems. These systems vary 

in complexity, with some being increasingly more complex. The ultimate goal would be 

to have an approximation of everything, to integrate models of all different kinds of 

systems and scales (as e.g. mentioned in [16]). But can this even be done? Nobody has 

all the necessary knowledge to fully understand these models, or the underlying data. 

While in the middle ages every scholar was a polymath, proficient in many different 
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disciplines, this is not the case today. Also in later times, some outstanding scientists 

had wider knowledge. Da Vinci worked in many different fields from human biology to 

engineering, Leibniz in mathematics and history, Goethe in poetry and engineering, 

Darwin in geology and biology. Having such a diverse knowledge would enable those 

researchers to place findings in the right context. In contrast, today it is very difficult to 

keep up with new developments in a specific research field, sometimes not even with a 

subfield. As mentioned in chapter 2 of this thesis, even in the sub-sub-field concerning 

this thesis (microbial ecology as a part of microbiology or ecology as both part of 

biology, or of systems biology) there are more than a thousand publications per year, 

making it impossible to keep up with all details. Today, true systems thinking can rarely 

be done by individual researchers. With the increase of “big science” [17], it is rarely 

feasible that researchers are running a project single-handedly. The overall development 

of projects like space flight or the CERN would not be accomplishable by single 

individuals, and collaborations are necessary, sometimes reaching into hundreds of 

people being involved in the research alone. This also reaches to the field of biology, 

with big efforts like the human genome [18], or in connection to this thesis, the human 

microbiome [19]. A wide range of expertise is necessary to generate this data, and to 

interpret it. With collaborations, by recruiting the experts of different fields, true 

transdisciplinary systems biology at a higher level is possible. The more complex 

systems we investigate, the more effort becomes necessary to understand them. 

Common to most of these big scale projects in the area of biology is that they often rely 

on high throughput data such as those generated by today’s range of next generation 
sequencing (NGS) technologies. 

The rise of nucleic acid sequencing 

At the very beginning of the nucleic acid sequencing era in the 1960s and 70s [20], it 

was barely possible to sequence whole genes. Sequencing was labour intensive with the 

low throughput of the first generation sequencing technologies. The sequencing of the 

first genomes of viruses and bacteria were major endeavours and required a lot of time 

and money, whereas this is not anymore the case today. While high quality genomes are 

still a challenge with currently employed standard short read sequencing technologies 

(i.e. Illumina sequencing) [21-23], and plant and animal genomes are still a challenge 

due to size and structure, the generation of bacterial draft genomes has become a 

standard element of routine characterization of microbial isolates. The development of 

NGS strategies has enabled to produce millions of short nucleotide sequences (“reads”), 
in contrast to the 10.000s that were achievable with Sanger sequencing. Since the 

human microbiome can contain as many cells as the human body [24], a microbiome 

sequencing approach would not have been feasible with a low throughput technology. 

The average output of e.g. the Illumina HiSeq platform with 360 Million reads allows to 

have sensible coverage of some microbial communities without omitting critical parts. 

Within the last 50 years sequencing has evolved from being able to decipher short single 

nucleotide ranges up to 20 nucleotides in the very early stages, to generating millions of 

short reads with an increasing amount of nucleotides, or being able to sequence 

thousands of long reads with 50000 nucleotides and more. 
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What is being sequenced and which questions can this answer? 

The field of microbiome research has diverged into many different directions. The first 

publications in the field were all exploratory. Craig Venter sequenced the metagenomes 

of ocean water samples [25], and metagenomes associated with farm soil and whale fall 

[26] were also elucidated, in order to explore phylogenetic and functional diversity of the 

microbiota that is present in these either exotic or important habitats. Within less than 

15 years after these initial hallmark papers, many important habitats were investigated, 

providing important findings. 

The most publicly known investigations are probably those that target the human 

microbiome. The Human Microbiome Project [19] and MetaHit [27] were successful in 

unravelling the composition and genetic blueprint of the microbiota associated with 

human gut, skin, vagina and other body parts. Pioneering work by Turnbaugh et al. [28] 

showed that the microbiome is significantly different between lean and obese individuals, 

and with crossover experiments (i.e. exchange of one microbiota with another) it could 

also be shown that this is not purely correlation, but that the microbiota has a causative 

role in this process. Other investigations showed that in chronic gut diseases 

(Inflammatory Bowel Disease, Ulcerative Colitis, Crohn’s disease), and also in some 
more acute diseases like Clostridium difficile infections, the microbiota is significantly 

perturbed as compared to that of healthy individuals [29, 30]. This has led to efforts to 

mitigate the effects of these diseases with microbial interventions. The modern 

development of faecal microbiota transplant therapy [31] was only possible because of 

the direct indications of microbial involvement in these diseases, and the progress of the 

therapy could be studied with microarray- and sequencing technologies. Nevertheless, 

although a microbiome-inspired cure seems at reach for specific diseases [32], full 

understanding of the underlying mechanisms has not been achieved yet. 

Humans are not the only hosts for which microbiomes are under investigation. The 

microbiota of animals has been investigated for various reasons. Some of these 

investigations were also exploratory, e.g. showing that pets have a microbiota more 

closely related to that of their owners than to random humans, suggesting interchange 

of their microbiomes [33]. Other animal species under investigation are more relevant 

from industrial, agricultural and/or environmental perspectives, such as ruminant farm 

animals with respect to their methane emission and the resulting environmental 

footprint. 

The efficiency of feed for various animals is under investigation. It is not only 

investigated directly, by how feed can be utilized more efficiently [34], but also 

indirectly, in how feed-derived short chain fatty acids contribute to the caloric need of 

the animals [35]. The efficiency of these processes also directly relates to 

environmentally important research. Common waste products during digestion include 

various gasses. These can, like e.g. methane, contribute significantly to the greenhouse 

effect. A broad range of research on cows (e.g. [36] and chapter 5 of this thesis), sheep 

[37] and reindeer [38] has been performed to discover the underlying processes and to 

develop potential strategies to reduce the gas output by these animals. 

The role of the gut microbiome in animal health is also being investigated. As an 

example, losses in pig production due to diarrhoea, and particularly post-weaning 

diarrhoea, is a major concern, and pre- or probiotic supplements might help to 
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ameliorate this problem [39]. Biotechnological applications exist as well. The intestinal 

microbiota of various animals, which can degrade complicated carbohydrates, is under 

investigation as a resource for the discovery of novel enzymes for e.g. more efficient 

breakdown of organic waste streams and non-food biomass for the production of biofuel 

[40, 41]. The intestines of elephants [42], koalas [43], and termites [44] harbour 

microbes with a totally different capacity for polysaccharide and lignin breakdown, which 

could be utilized in such processes. The microbial fuel cell is also of industrial relevance, 

but not yet fully understood [45]. 

Besides health, environment and biotechnology (and various other areas within the fields 

of biology, medicine, agriculture and environmental sciences), also completely unrelated 

fields like history and space research are involved into microbiota research (due to 

similar reasons though). Investigations of the microbiota of ancient animals and humans 

[46, 47] showed that in general the gut microbiomes do not differ from current ones, if 

rural African populations are considered. In contrast, gut microbiomes resulting from a 

modern western lifestyle show a distinct pattern. This is also in agreement with 

investigations on the oral microbiome, which showed that it changed significantly over 

humans’ history [48], in connection with presumed changes in eating habits.  

In the rather unrelated area of space research, the humanities’ outermost outpost, the 
International Space Station (ISS), also has been sampled [49], together with potential 

Mars habitats [50]. In these cases it was mainly shown that human presence beyond 

planet Earth definitely leads to a spread of microbiota in the environment, and that even 

the possibly cleanest environments, like cleanrooms on earth [49], do harbour their own 

unique microbiota. Another experiment has shown that some microbes, like  e.g. 

Deinococcus radiodurans, can potentially survive extreme conditions in space [51], and 

for animals (the tardigrade) this has already been proven [52]. While someone might 

wonder, in how far this is relevant, the space agencies are undertaking great precautions 

not to contaminate other worlds already right now. The NASA steered their latest 

mission around Saturn, Cassini, into Saturn itself, so that it will not be possible for the 

space probe to crash onto one of the moons and to introduce potentially surviving 

microbes on its surface [53]. The contamination with earth microbiota might endanger 

the ecosystem on other worlds, in the same way that e.g. the introduction of rabbits, 

rats and other animals endangered the natural fauna in Australia.  

Besides these examples, numerous other habitats of varying importance are sampled, 

including, e.g. glaciers [54], ant fungal gardens [55], extreme environments like soda 

lakes [56], the Tinto river [57], contaminated environments [58], kitchen sponges [59] 

or washing machines (own unpublished work), to just name a few. The multitude of 

environments, going from the deep sea [26] to outer space [49], tells us about the 

importance of the microbiota in all fields of life. On this planet, everything is 

interconnected. We are living with our microbes, the microbes are living with us, and on 

most places without us. But we cannot survive without them, and we will benefit from 

understanding their inner and outer workings. 
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Aim and outline of this thesis 

The goal of this thesis is to explore the realms of microbial ecology with systems biology 

tools. Most of this work is done with next generation sequencing as the main way of data 

generation. An overview of the experimental chapters (chapters 3, 4 and 5), including 

information on the respective biomes under investigation and applied methods, is given 

in figure 1. 

 

 

Figure 1: An overview of the biomes, methodologies and the focus in the three 

experimental chapters. In chapter 3 the bacterium Romboutsia ilealis CRIBT, derived 

from a rat gut, was investigated with genomics, transcriptomics and metabolic 

modelling, with a focus on the carbohydrate degradation and SCFA production 

capabilities. In chapter 4, an in vitro fermentation system, inoculated with human faecal 

material, was investigated with metatranscriptomics with a similar focus. In chapter 5, 

the metatranscriptome of the cow rumen microbiota was sequenced, with a focus on 

carbohydrate degradation and methane production. 

 

In chapter 2, we review how this type of work and data is beneficial for the modern 

human. It focuses on obesity and the metabolic syndrome, which are unarguably 

widespread epidemics in today’s western society. Much of the ground breaking work in 
the microbiome field has occurred within the gut ecosystem, like demonstrating that the 

gut microbiota does not only change as an effect of diet, but that it can also change the 

metabolic state of its host and lead to obesity [28]. We summarize in this chapter how 
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such results can be achieved by investigating the underlying technologies, starting from 

the different sequencing approaches, over the advantages and disadvantages of 

genomics, transcriptomics and other –omics, and the different methodologies in 

statistics, computer science and machine learning. This chapter lays the fundament for 

the understanding of the different approaches applied in the following research chapters. 

In chapter 3, we dive deeper into this ecosystem, by investigating the capabilities of the 

ileum bacterium Romboutsia ilealis. This bacterium was found to be prevalent in rats, 

possibly related to health outcomes after gut inflammation. We in-depth characterized its 

metabolic capabilities, based on genomics and transcriptomics, and concluded that it is 

well adapted to its environment. R. ilealis mainly relies on the degradation of simple 

carbohydrates, which are abundant in the ileum, and furthermore also consumes the 

abundantly available vitamins and amino acids, without having the abilities to synthesize 

most of them.  

In chapter 4, we change the focus to a more complex setup. An in-vitro human gut 

community, derived from human fecal samples, is studied, not relying on simple 

carbohydrates, but on prebiotics with more complex structures. In this setup, it was 

possible to show with a metatranscriptomic approach that the prebiotics not only 

maintain normal gut functioning, but also promote the growth of bacteria, which are in 

general considered to be beneficial, like Bifidobacterium or Lactobacillus. It was also 

possible to detect how the measured outcomes of short chain fatty acid production were 

achieved by the community, pinpointing the key players, and the differences in their 

metabolism. We hypothesize that this outcome could not have been achieved with 

simple carbohydrates, as it has been mentioned in an unrelated context already in 

earlier literature [60, 61]. As the last step in this investigation, we were able to detect 

how the prebiotics were degraded by the community, and that both the abundant 

Bacteroides, as well as the mentioned Bifidobacterium and Lactobacillus were playing a 

part in this process, and were even cooperating in some steps, which neither of them 

would have been capable of performing in isolation.  

Chapter 5 describes an in-vivo study of cow rumen microbiota structure and function, 

being the most complicated research target tackled in this thesis. This is not only more 

complicated due to the fact that the animal is a less controlled environment than the in 

vitro fermentation setup employed in chapter 4, but also because the cow rumen is less 

well studied than the human gut. This lead to much unclassifiable data, however, we 

were still able to investigate the processes we were interested in. The setup had been to 

feed four groups of cows with diets, which differed in their maize and grass silage 

content, and thus in the proportions of readily digestible carbohydrates and fibres. In 

previous work performed by van Gastelen et al.[62], it was shown that the maize starch 

based diet lead to a reduced methane output of the rumen microbiota. This outcome is 

important, given that methane output of ruminants contributes considerably to the 

greenhouse effect (up to 35% of the anthropogenic methane production [63, 64]). 

Hence we were interested to elucidate the underlying biology. Using again a 

metatranscriptomic approach we were able to conclude that the reduced methane 

metabolism was an indirect effect of a metabolic change in the community. The 

methanogenic Archaea were not directly affected by the diet, however, for 

methanogenesis they rely on metabolites produced by other community members 

(presumably a member of the Clostridiales in this case), which were decreased due to 
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the change in diet. The most beautiful part of this work was, besides the fact that it 

potentially could contribute to the development of novel dietary strategies towards 

reduced methane emissions from cows, that the data was obvious. Despite the fact that 

a complex and not well characterized community was studied, the data clearly displayed 

how methanogenesis as a whole was affected by the experimental setup. On a personal 

note, I was surprised by this, and hope that much of my future work will be as nice, 

without the need to hunt for spurious associations in weak data. 

In chapter 6, the general discussion, I will discuss the strengths and weaknesses of this 

overall approach. I will also discuss the underlying problems, which resulted in the 

publications included in this thesis. 
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Chapter 2: Studying microbial functionality within the 

gut ecosystem by systems biology 

  

 

This chapter is adapted from: 

Bastian Hornung, Vitor A.P. Martins dos Santos, Hauke Smidt, Peter J. Schaap, 2018. 

“Studying microbial functionality within the gut ecosystem by systems biology”. In BMC 

Genes & Nutrition. https://doi.org/10.1186/s12263-018-0594-6 
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Abstract 

Humans are not autonomous entities. We are all living in a complex environment, 

interacting not only with our peers, but as true holobionts we are also very much in 

interaction with our coexisting microbial ecosystems living on and especially within us, in 

the intestine. Intestinal microorganisms, often collectively referred to as intestinal 

microbiota, contribute significantly to our daily energy uptake by breaking down complex 

carbohydrates into simple sugars, which are fermented to short-chain fatty acids and 

subsequently absorbed by human cells. They also have an impact on our immune 

system, by suppressing or enhancing the growth of malevolent and beneficial microbes. 

Our lifestyle can have a large influence on this ecosystem. What and how much we 

consume can tip the ecological balance in the intestine. A “western diet” containing 
mainly processed food will have a different effect on our health than a balanced diet 

fortified with pre- and probiotics. 

In recent years, new technologies have emerged, which made a more detailed 

understanding of microbial communities and ecosystems feasible. This includes progress 

in the sequencing of PCR-amplified phylogenetic marker genes as well as the collective 

microbial metagenome and metatranscriptome, allowing us to determine with an 

increasing level of detail, which microbial species are in the microbiota, understand what 

these microorganisms do and how they respond to changes in lifestyle and diet. These 

new technologies also include the use of synthetic and in vitro systems, which allow us 

to study the impact of substrates and addition of specific microbes to microbial 

communities at a high level of detail, and enable us to gather quantitative data for 

modelling purposes.  

Here we will review the current state of microbiome research, summarizing the 

computational methodologies in this area, and highlighting possible outcomes for 

personalized nutrition and medicine. 
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Background 

The gut is an essential part of the human body. It has so much influence on our 

wellbeing that it even has been dubbed a “second brain” by the media [65, 66], and in 

recent years this “superorgan” inhabited by trillions of microorganisms has triggered a 
large amount of scientific interest.  

The microbial communities residing in the different parts of the gut are among the main 

contributors to its functioning, and therefore also directly influence health. The recent 

availability of high throughput methods (metagenomics, and other omics), have 

improved our insights into these ecosystems dramatically. Figure 1 summarizes the 

current state of meta-omics (all nucleotide sequencing approaches, as well as 

metaproteomics and meta-metabolomics) research with an intestinal focus (for details 

regarding the literature search methodology see additional file 1). Not surprisingly, the 

largest body of research has been focused on humans (Figure 1D), but other (model) 

organisms including pigs, rodents (mice, rats) and fishes (mainly zebrafish) have also 

been investigated. Non-model organisms are also under investigation, but for different 

purposes such as the potential biotechnological applicability of lignin degradation by 

termite gut microbial species [67].  

Over the trajectory of the human gut, the microbiome has a varying degree of 

complexity [68, 69] (Figure 1 B). In general, microbial density increases from the 

duodenum until it reaches its maximum in the colon and faeces. At the same time these 

two parts are also the most studied parts (Figure 1 A). While the high complexity of the 

community at these specific sites makes them interesting research sites, other parts of 

the (healthy) human gut remain grossly under-sampled, which is mainly due to 

inaccessibility. Along the trajectory of the human gut, the focus of microbial metabolic 

activities changes profoundly, with the small intestine having a higher capacity to 

degrade simpler carbohydrates [70], whereas in the colon mostly complex carbohydrates 

are degraded [71]. 

Most human omics studies are observational, aimed at studying microbial diversity and 

function as well as host-microbe interactions, however a number of studies directly aim 

at improving gut health (and in proxy, individual health, Figure 1 E). These 

interventional studies can be broadly classified into two categories: pre-clinical and 

clinical interventions. Pre-clinical interventions focus mostly on improving gut health via 

changes in nutrition. In this field, the concept of probiotics (administering of beneficial 

bacteria [72]) is probably the most widely known, also in the eye of the general public, 

due to a wide array of commercially available products. Most interventional studies have 

focused on these probiotics, with a smaller part investigating the benefits of prebiotics 

(substrates enhancing the growth of beneficial bacteria in the gut, review see [71]). 

Clinical interventions in response to conditions associated with a chronic disruption of 

intestinal homeostasis such as ulcerative colitis, and IBS with for example faecal 

transplants and bariatric surgery, have only been reported in a few publications [73, 74]. 

With all these studies, many important factors have been discovered regarding the 

ecology of the human microbiome. 
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Figure 1: The gut in the focus of meta-omics science. An overview of main sampling 
sites and microbial complexity is given. Number of the studied hosts and methods to 
improve gut health are indicated. All data was retrieved via pubmed searches for the 
corresponding terms. For the exact search terms, please see additional file 1. 
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The human microbiota: Symbiosis, competition and other relationships  

Our microbiota is an important part of our personal ecosystem, which is assumed to be 

composed of more than a trillion microbial cells [27], approximately equalling the 

amount of human cells in our body [24]. Whereas the microbial ecosystems associated 

with some niches of the human body like e.g. the vagina [75] have a low complexity 

with only a few different inhabitants, most body sites contain hundreds of different 

microbes [27]. Like in macro-ecology, they perform different roles and thus can have 

different relationships with each other and with the host. In the microbiota, a broad 

range of different interactions exist, ranging from mutualistic and commensal to 

predatory relationships, and competition for the same niche exists. The nature of these 

relationships has an impact on the habitat itself, and imbalances with respect to the 

abundance and function of specific members can lead to an imbalance of the whole 

ecosystem. Many bacteria like e.g. Akkermansia muciniphila [76] have a good symbiotic 

relationship with their host. They degrade the carbohydrates supplied by the host, and 

other bacteria benefit from the breakdown products of this degradation process. This 

leads to the production of host beneficial compounds like short chain fatty acids (SCFA; 

mainly acetate, propionate, butyrate) [35], which can be e.g. used by human 

colonocytes as energy source [77] or directly be incorporated into the human 

metabolism as additional carbon sources [78]. In other cases, this symbiosis applies to 

nutrition-derived carbohydrates that are not (fully) digested by host-derived enzymes in 

the small intestine such as resistant starch and other complex carbohydrates [71]. These 

might only be broken down by specific combinations of microorganisms for further 

catabolization. This can be exemplified by consortia of Bifidobacteria [79], which lead to 

the liberation of otherwise inaccessible substrates from e.g. indigestible plant biomass 

like cellulose components. In both scenarios, the liberated substrates can be further 

metabolized by other bacteria (e.g. [80]) to host beneficial compounds. Parasitic 

relationships also exist, like e.g. between Actinomyces odontolyticus and TM7 [81], 

where the parasitizing TM7 might eventually kill its microbial host. There are also 

predatory relationships, e.g. bacteria of the genus Bdellovibrio prey on other bacteria as 

source of energy and therefore help to regulate the diversity and balances of bacterial 

populations [82, 83]. Imbalances in the ecosystem might lead to bacterial overgrowth, 

which makes the ecosystem in general less resilient to perturbations [84]. Blooms of 

bacteria, e.g. Clostridium difficile, which infects more than half a million individuals per 

year and leads to 29.000 deaths in the US alone [85], will have a directly noticeable 

impact. The produced toxins in such an outbreak will not only affect the microbiota [86], 

but will also lead to a direct disease state of the host [87]. Therefore, understanding of 

internal and external factors that affect composition and functioning of this ecosystem, 

such as e.g. nutrition intake, antibiotic intake, symbiotic or predatory relationships, are 

essential for being able to characterize and predict the state and functioning of this 

ecosystem. All of these challenge the intrinsic emergent community properties such as 

resilience, stability and its efficiency to provide nutrients for the host. 
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Metabolic syndrome and the microbiome 

The metabolic syndrome is a complex disorder with high associated cost, and is mainly 

characterized by four sub-pathologies: Obesity, elevated blood sugar/insulin 

resistance/diabetes type II, elevated blood pressure, and dyslipidemia [88, 89]. 

Although genetics [90] and lifestyle [91] play major roles, the microbiome also 

contributes to all of these main sub-pathologies.  

Obesity might provide the most direct link. It has been shown that gut microbiota 

composition in obese and lean individuals is significantly different [92]. The microbiome 

is an important factor in carbohydrate degradation and uptake. Microbial metabolism on 

average contributes to up to 10% of the daily calorie intake [93], and potentially in 

obese subjects this contribution could be increased [28]. This is mainly due to 

degradation of carbohydrates, which due to the lack of necessary catabolic enzymes, are 

not directly accessible for the human host. These carbohydrates are converted by the 

microbiota into SCFA, thereby directly contributing to the energy intake of the host [94]. 

Since not all microorganisms are capable of such conversions, species diversity and 

abundance will directly influence the types of carbohydrates that can be converted into 

SCFA and therefore how much of the non-digestible carbohydrates will be utilized by the 

host-microbe holobiont. While some bacteria are specialized in carbohydrate breakdown, 

like e.g. Bacteroides thetaiotaomicron [95], others mainly rely on their peers to 

scavenge nutrients [96]. A microbial community consisting mainly of carbohydrate 

degraders will therefore be more beneficial for the host providing valuable nutrients. It is 

tempting to speculate that in case of obesity this beneficial trait has turned 

disadvantageous, and might contribute to an increased risk towards metabolic 

syndrome-associated pathologies.  

Such differences in microbial composition have also been causally linked to obesity. It 

has been shown that transplantation of an “obese microbiome” into germ free animals 
causes an increase in body fat as compared to control animals inoculated with a “lean 
microbiome” [28, 97, 98], indicating that the increased capacity to harvest energy is 

transferred with the microbiome. 

The involvement of the gut microbiome in the second most prevalent pathology, 

elevated blood sugar/insulin resistance leading to diabetes type II, can be explained via 

an indirect route, starting from inflammation. Even without an obvious disease 

phenotype, low grade inflammation might be present [99], caused by yet unidentified 

bacteria. This inflammation is hypothesized to be one of the causes of the metabolic 

syndrome [99, 100], and to be an early stage of Inflammatory Bowel Disease, including 

Ulcerative Colitis and Crohn’s Disease [101]. An invasion of bacteria into the intestinal 

tissue causes the presence of endotoxins (LPS, flagellin) in the blood stream, leading to 

chronic inflammation in the intestinal tissue. It has been suggested that as a 

physiological response to inflammation the blood glucose level is increased to serve as 

additional energy source for the various immune cells [102]. Since the inflammation is 

chronic, so will be the elevated glucose levels. In the long term this might lead to insulin 

resistance and Type II diabetes [103]. 

The connection between the composition of the human gut microbiota and the third and 

fourth pathology, elevated blood pressure and dyslipidemia, is less well characterized 

[104]. It has been demonstrated with cross-over experiments that gut microbiota from 
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rats with elevated blood pressure will transfer this physiological trait to receiving rats 

[105]. It has also been shown that inflammatory processes [106] and effects on the 

nervous system [107] will affect blood pressure, but a full understanding of these 

relationships is still missing. For dyslipidemia, the relationship is also rather unclear, due 

to its strong association with obesity [108]. The clearest mode of action until now are 

effects of the microbiota on bile acid metabolism, which is critical for the absorption of 

lipids [109], but the observed associations are currently not linked to known 

mechanisms [110, 111]. 

Top down: How to investigate the microbiome 

In contrast to macro-ecology, in microbial ecology it is possible to capture nearly the 

whole biodiversity of a habitat by sequencing its associated total DNA and/or specific 

phylogenetic marker genes. Different omics techniques can give the researcher 

information about species diversity and abundance, about their metabolic capabilities 

and associated symbiosis or pathogenicity factors. Technically there are different ways of 

obtaining this information but the ultimate goal of omics approaches is to answer the 

following set of questions: Who is there, what can they do, what are they actually doing? 

While in macro-ecology specimen can normally be collected and studied in captivity, this 

is usually not the case for microbial ecosystems. It is assumed that we can only cultivate 

less than 1% of the bacterial diversity [12]. The rest, the so called “dark matter” cannot 
be readily captured by cultivation [112], although much progress has been made in 

recent years with high throughput culturing, the so called “culturomics” [113]. While 

bacteria make up most of the diversity of the human microbiota, archaea are also 

present in humans [114], as well as a high diversity of phages [115]. Fungi and protozoa 

also exist in this ecosystem, but are less well studied [116]. Why the majority of this 

biodiversity cannot be cultured is not clear, but different hypotheses exist. One of these 

hypotheses is that these organisms cannot survive on their own because of community 

dependencies. They are for instance microorganisms that live in a strict syntrophic 

relationship and are sharing nutrients and metabolites [117]. Syntrophic relationships 

might be due to excretion and uptake of common metabolites, but also more intricate 

cross-feeding networks have been reported to exist [70, 118, 119]. Other types of non-

metabolic interactions also exist but are less easily quantifiable. Biofilms, which occur 

frequently in human associated microbiomes [120], are often not the product of a single 

species, but of a community [121]. They are not controlled by direct metabolic 

dependencies but by other mechanisms like quorum sensing [122].  

Omics approaches towards understanding of the who and what of microbial 

communities  

To answer the “who”, the “what can they do”, the “what are they actually doing” and 
“how do they respond to a diet or otherwise environmental change”, different 
approaches can be used. To answer the “who”, low cost amplicon sequencing of 16S 
ribosomal RNA (16S rRNA) encoding genes can be utilized. The 16S rRNA gene is 

present in all prokaryotes, and slowly mutating due to structural and catalytic 

constraints. Some of the secondary structure elements, called regions V for variable 1 to 

9, are less constrained and therefore over time accumulate mutations more rapidly than 

other more conserved regions. Together, sequence variation within conserved and 

variable regions can be transformed into an evolutionary distance, allowing interference 
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of the phylogeny of all members within a microbial community. As knowing the 

community composition in most studies is a prerequisite, next generation sequencing 

(NGS) of PCR amplicons targeting a selection of these variable regions is the most widely 

used approach. Despite the fact that no genomes are sequenced this is often falsely 

referred to as “metagenomics”. This should be avoided and proper terminology should be 
used [123]. Nevertheless, making use of the currently available information from 

genomes and metagenomes, species identification in part also allows for predictions of 

functional capabilities [124, 125], albeit with inherent limitations with respect to their 

accuracy especially for understudied environments that are less well represented in 

currently available (meta)genome databases [126]. To more comprehensively answer 

the question “what can they do”, metagenomics can be used. Metagenomics significantly 
increases both the amount and the complexity of the data. Besides the “who”, and the 
“what can they do”, community responses to diets or otherwise environmental changes 
can be studied by metatranscriptomics to answer the question “what are they doing”. 
Sequencing the full transcriptome of the community provides by proxy insights in which 

pathways/processes are actually active. The logical progression of technology also leads 

to metaproteomics, which due to lack of precisely matching reference genomes [127] is 

still not very widely used and despite interesting results [128, 129] still remains to 

represent a niche discipline [130]. Meta-metabolomics (also called metabonomics [123], 

although this term has been used for a different purpose [131]), is currently an even 

less used technique.  

A large body of research applying above-mentioned omics approaches is published in 

well-known journals. Figure 2A provides data up and until 2016. PubMed lists after the 

initial publications starting in the early 2000s an increasing amount of publications per 

year, reaching to more than a 1000 per year at the moment (Fig. 2B). The focus of most 

of these publications is on DNA-based approaches, including 16S rRNA gene sequencing 

and true metagenomics. This trend is followed distantly by metatranscriptomics, 

metaproteomics and meta-metabolomics. Since by far the majority of these publications 

are within the scope of some form of high-throughput nucleotide sequencing (16S rRNA 

gene, metagenomics, metatranscriptomics), in the following paragraphs we will focus on 

these omics approaches.  
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Figure 2: A) Journals with the most gut-related meta-omics publications. b Overview of 
gut-related omics publications per year. 16S rRNA gene sequencing and metagenomics 
are combined, since these cannot be easily distinguished via title/abstract searches due 
to the erroneous labelling of amplicon sequencing approaches as metagenomics by many 
researchers. All data was retrieved via PubMed searches for the corresponding terms. 
For the exact search terms, please see Additional file 1. 
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Differences within the omics technologies 

The methods used for amplicon sequencing, metagenomics and metatranscriptomics are 

summarized under the term NGS technologies (also called 2nd generation technologies; 

for a review see [132]), including highly automated technologies represented by Illumina 

sequencing machines like HiSeq or MiSeq, the Roche 454, Ion Torrent and SOLiD 

technologies. These technologies are a follow up of Sanger sequencing, which still has 

the highest level of accuracy but has a rather low throughput due to limited 

parallelisation possibilities. NGS technologies allow millions of fragments to be 

sequenced in a single run. The DNA is randomly sheared, and all resulting fragments are 

sequenced with fluorescent nucleotides, which emit at incorporation in the new formed 

DNA strand certain light wavelengths. These can automatically be recorded by current 

systems and allow high throughput sequencing information by generating millions of 

short reads. One lane on a typical Illumina HiSeq machine can generate up to 360 Million 

reads, currently with lengths up to 350 bases. The limitation in this approach is mainly 

the used DNA polymerase for the extension of the newly formed DNA fragments, which 

tends to lose precision with increasing read length, making longer reads more error 

prone. Especially in metagenomics obtaining longer read lengths is important. Besides 

providing more information per single read, which is in general desirable in many cases, 

specifically for metagenomics it will i) lead to a higher chance of uniquely assigning 

reads to a single microbial taxon leading to a better resolution in strain and species 

separation, ii) make it easier to capture gene functionality, and iii) allow for a higher 

confidence during the assembly of the data, especially in those cases when the 

community harbours phylogenetically close species.  

The new sequencing technologies (3rd generation sequencing) from Pacific Biosciences 

(PacBio) and Oxford Nanopore are ameliorating this problem. Both technologies can 

produce very long reads, up to 60000 bases (PacBio) and more (Nanopore). PacBio 

circumvents the loss of precision of the polymerase by repeatedly sequencing the same 

DNA fragment [133]. Oxford Nanopore channels single-stranded DNA through a pore 

which carries an electric current, and measures the change in current as the DNA passes 

by, with each of the bases causing a different change. This technology does not lose 

precision with increased length, but generating longer fragments and stably channelling 

them is the limitation [134]. Current drawbacks of both technologies as compared to the 

2nd generation technologies are a higher error rate, requirement of a significantly larger 

amount of template DNA and higher sequencing costs. PacBio [135-140] and Oxford 

Nanopore [141] have already been used in microbiota sequencing and their use will most 

likely increase when the technologies further mature.  

Extraction of information from 16S rRNA amplicon sequencing data 

The 16S rRNA molecule shows a high degree of structural and sequence conservation in 

all prokaryotic organisms. Being part of the ribosome, it is a crucial part of the 

translation machinery. Because the specific secondary structure and function constraints 

evolutionary drift, it is, albeit with some limitations [142], possible to work with 

“universal” or species independent primers and therefore amplicon sequence analysis 
remains the standard approach to investigate microbial diversity. If two or multiple 

complete rRNA gene sequences have more than 97% identity, they belong to the same 

species. The 97% identity threshold is due to historical reasons because this value was 
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found to be in agreement with DNA-DNA hybridization results, but otherwise no coherent 

species definition exists [143, 144]. In order to make clear that the actual 

species/genotype is often not known and might actually differ, 97% identity clusters of 

rRNA sequences are also referred to as “Operational Taxonomic Units” (OTU). 

The 16S rRNA gene is approximately 1500 nucleotides in size and for the highest 

confidence the complete sequence is required. Due to the read length limitations of 2nd 

generation technologies researchers have therefore investigated, which sequence range 

of the rRNA showed the highest degree of variability and will therefore result in the best 

resolution [143, 145]. Using 2nd generation sequencing techniques, these regions 

(variable regions V1-V9) are therefore preferentially sequenced (for a review see [146]). 

Here, region-primer combinations need to be carefully matched as these choices can 

have a high impact on the results [147].  

In eukaryotes, like e.g. fungi, the situation is more complicated. Sequencing 18S rRNA 

genes does not provide the required resolution, and often internal transcribed spacers 

(ITS) are sequenced instead [148].  

After the amplicon sequencing data has been generated, the next step is to derive 

corresponding information regarding community composition. In general, since 

sequencing of single phylogenetic marker genes (fragments) requires less throughput 

than whole genomes, also the costs per sample are considerably lower, providing the 

necessary statistical power for a more detailed analysis [149]. 

Using 2nd generation sequencing techniques, there are multiple considerations involved, 

e.g. how similar the sequences are expected to be in the variable regions of choice, 

which reference database to use (SILVA [150], RDP [151] or Greengenes [152]), the 

significance of base-calling error rates intrinsic to high-throughput sequences data [153] 

and how erroneous sequences can be detected. Due to these challenges, sophisticated 

pipelines for taxonomic assignment have been developed, like e.g. Qiime [154], Mothur 

[155], Phyloseq [156], MICCA [157] and NG-Tax [158], the latter of which has been 

developed in our laboratories and provides computationally efficient and accurate 

taxonomic assignments and quantification of OTUs per sample with improved robustness 

against choice of region and other technical biases associated with 16S rRNA gene 

amplicon sequencing studies.  

A range of different methods coming from macro-ecology is used to investigate a 

habitat’s diversity. The species richness or mean species diversity of a sample is often 
referred to as alpha-diversity and the amount of variation in species composition among 

the samples (beta-diversity) can also be investigated. A range of different alpha-

diversity measures is being used, including those that account for species richness 

(defined as the absolute count of individual populations per habitat), phylogenetically 

weighted richness (Faith’s Phylogenetic Diversity [159]), and species diversity, including 

Shannon index [160] and Simpson index [161] (for a review see [162]). Diversity 

indices also try to incorporate the evenness of the species distribution [163], because 

different conclusions need to be drawn if an ecosystem is dominated by a single species 

with a plethora of other rare species, or if the distribution is rather even. Another 

important aspect is under-sampling. To estimate if the true richness of species has been 

captured, different methods like rarefaction analysis, Chao1 [164] or ACE [165] 

estimators can be used (review see [166]). 
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Analyses of beta-diversity make use of a number of different measures of pairwise 

community similarity, including e.g. Jaccard index [167], Bray Curtis dissimilarity [168] 

and UniFrac distance [169], the latter of which is phylogenetically weighted.  

In most cases, a first look at the data is done with unconstrained multivariate statistical 

approaches such as Principle Component and Principle Coordinate Analysis (PC(o)A). 

These two methods try to fit highly dimensional data (e.g. a high amount of samples and 

different species in them) into a plot with two (or three) dimensions, trying to display as 

much of the variation in the data as possible. Factors that are potentially related to the 

observed variation, including e.g. environmental conditions, time points or the objective 

of the research, can be projected a posteriori, and their significance can be tested post-

hoc.  

Several of these statistical tools are standardly embedded in sequence analysis pipelines 

like Mothur [155], Qiime [154] or Phyloseq [156] and allow to capture measures of 

alpha- and beta-diversity. Choices can be made between default analysis routines and 

more customized procedures where users can adjust specific settings. 

With these methods it has been found that e.g. the alpha-diversity in the microbiota of 

obese subjects is significantly reduced in contrast to the alpha-diversity in lean subjects 

[170]. Other successful studies in this field have already revealed that gut microbiota is 

transmitted vertically and that obese mice have a considerably less diverse microbiota 

than their lean counterparts [171]. Furthermore it has been shown that the gut 

microbiota changes during human development starting at birth and is different 

depending on geographic location [172], during long term dietary interventions [173] or 

when consuming specific diets even during a single day [174]. 

 

 

 

 

Figure 3: Overview of the different steps in the meta-omics analysis workflow. The 
different workflows are depicted, from left to right for 16s amplicon data, metagenomics 
data and metatranscriptomic data. The main steps for 16s amplicon data is the definition 
of OTUs together with taxonomic assignment, followed by statistical analysis. For 
metagenome data, first steps involve quality control steps, followed by a metagenome 
assembly. The workflow splits afterwards into two directions, one being the taxonomic 
assignment, the other one the definition of metagenomic bins and the functional 
annotation. Genes can be predicted from the genome assembly, which can be 
functionally profiled. With the coverage information of the genes, it is also possible to 
define genome bins. After this step is done, the same statistics as for 16s amplicon data 
can be performed, as well as differential expression/abundance analysis together with 
pattern detection through machine learning, and finally analysis of the metabolism. The 
workflow for metatranscriptomic data is in general the same, except that rRNA, which 
does not provide any information in this setting, needs to be removed before most of the 
steps, and that no binning is possible with transcriptome data 
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Extraction of functional information from metagenome data 

In principle, full genomic information can be captured with metagenomics. Seminal 

projects in this area like MetaHit [27] and the human microbiome project [19] made 

great efforts to sequence the metagenomes of diverse cohorts with many subjects to 

investigate the full functional capacity of the different microbiomes. The amount of data 

required makes deeper sequencing necessary, which complicates the workflow to extract 

information from metagenomics data (Figure 3). 

High throughput sequencing data is noisy, and quality control is a critical first step 

(review see [175]). One crucial step for which settings have not yet been universally 

agreed upon is the quality trimming [176], and no consensus advice can be given.  

For simple read mapping there are a number of strategies that can be applied. BLAST 

[177] or Diamond [178] can be used to match reads directly to KEGG, to quantify the 

functions based on the number of matching reads (e.g. applied in [98]). A higher 

resolution is obtained when reads are mapped to a set of reference genomes [170, 179], 

which also allows for a taxonomic classification of observed functions [180]. If the 

phylogenetic distance between the reference set and the sample is small this has the 

advantage of speeding up the analysis. Furthermore, associated functional annotations 

can be directly utilized, making a separate annotation step unnecessary. A major 

drawback for this type of workflow is that only known species can be analysed, whereas 

new strains with novel functions, horizontal gene transfer and other evolutionary events 

will not be captured, and micro-diversity will be lost.  

An alternative approach therefore is to assemble reads into larger contigs and extract 

genomes directly from metagenome data [181] (Figure 3). Today obtaining a high 

quality single genome can still be a challenge [21], and with a community genome 

assembly approach these challenges can multiply. Examples are chimeric assemblies 

between genomes due to presence of multiple strains of the same species (although 

miss-assemblies should not occur very often [182]), and a low coverage of low abundant 

species. At this point, it is also important to consider the mapping rate after the 

assembly. While we expect for a single organism that after the genome assembly most 

of the reads will map to the assembly, this can deviate for metagenomics. This is mainly 

due to the species richness and species evenness of the community under investigation. 

A complex species-rich sample of high evenness (i.e. similar abundance of many 

community members) will require more data to assemble the top-ranking species than a 

sample where a few high-ranking species have much higher abundances. Therefore 

species richness and species evenness need to be taken into account to evaluate if the 

mapping rate is appropriate for further analysis. 

Some of these challenges have been tackled with specific metagenome assemblers like 

MetaVelvet [183], which take different properties of the sequencing data into account 

like e.g. the different abundances of the potentially present species. Currently a 

community derived assembly will also not lead to closed genomes. The next challenge is 

therefore to determine which of the assembled contigs/scaffolds belong to a single 

species. This process has been termed binning, and several tools such as MaxBin [184] 

or MetaCluster [185] have been developed to determine the amount of bins required and 

to assign contigs to bins. To do so these tools take different types of information into 

account, such as k-mers frequency in the data or contig read coverage. The quality 
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control of this step is critical, since this process is also error prone, especially when 

phylogenetically close organisms of similar abundance occur in a community. 

The most widely used method to test for correctness of binning is based on single copy 

marker genes, like in e.g. CheckM [186]. Based on the presence of these necessary 

genes, both the coverage of a genome in a bin as well as the amount of contamination 

from other genomes can be determined. A problem with this approach is that it is limited 

to contigs/scaffolds containing these core functions. 

Next the taxonomic origin of the various bins can be determined (Figure 3). All programs 

and workflows which can perform this are reference based, but work with different 

mechanisms. One approach is to use BLAST [177] to compare all the metagenomic 

contigs against a database, like the NCBI NT database, or specialized databases like e.g. 

the human microbiome project [27]. The accuracy of the taxonomic assignments is 

proportional to the similarity score of the alignments. One of the first programs to deal 

with this problem is MEGAN [187], which also gives the user a graphical interface for 

direct analysis. The biggest drawbacks of this method are that i) it can be 

computationally prohibitive to use a large database, and ii) that closely related species 

cannot be differentiated from each other. A computationally more efficient alignment 

free method for the taxonomy determination is to compare the k-mer profiles of the 

metagenomics contigs with k-mer profiles obtained from a reference database. This has 

been implemented in tools like Kraken [188] or PhyloPythia [189] (for a review of 

programs see [190]),  

To understand the underlying causes of a community change and potential effect, 

functional profiling needs to be performed (Figure 3). This part of the analysis is for a 

metagenome mainly different to a single genome in regards to the quantity, but the 

basic processes are the same. First gene prediction needs to be performed with gene 

callers like e.g. prodigal [191], which have special settings for this kind of data. A low 

level profiling can be obtained with a COG analysis [192]. The COG ontology consists of 

limited number of broad categories, which allow the detection of extensive changes. 

When more data is available a higher resolution can be obtained. These can be e.g. i) EC 

number prediction, which can be obtained via PRIAM [193] and can be linked to 

metabolic pathways using databases like KEGG or Metacyc [194], ii) lists of carbohydrate 

active enzymes [195] can e.g. be obtained via dbCAN [196], and iii) full domain profiles 

including GO terms [197] via e.g. InterproScan [198] or via second generation 

annotation tools [199]. With these so called full functional profiles, it is possible to 

reconstruct the metabolism of the bin [200-202], and e.g. bin-specific auxotrophies or 

special metabolic capabilities can be investigated. If someone wants to draw statistical 

conclusions for the difference in the metabolism by e.g. investigating for 

overrepresented functions (e.g. GO enrichment [203]), it should not be forgotten that, 

even for genomic information, replication is necessary [204]. If it is not possible to 

obtain all this data, due to lacking computational resources, also web services like 

IMG/M [205] or EBI metagenomics [206] can be used, which normally also have a user 

friendly interface, but only offer a limited depth of analysis.  
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Extraction of functional information from metatranscriptome data 

The transcriptome approach will allow the investigator to focus on functions that are 

actually expressed in a given sample. A highly abundant species may show a low 

expression of functions of interest and vice versa (e.g. [207]). In fact, since DNA is also 

highly stable, the metagenomics approach might also take non-viable cell populations 

into account, which could falsify the conclusions, but also separate measures, like 

removal of non-viable cells, can be taken to prevent this [208]. Thus the 

metatranscriptome provides a more accurate account of actual functionality. 

Most relevant steps, including QC, are the same as for single organism transcriptomics 

(for a review see [175], workflow see Figure 3). Not mentioned in [175], but necessary 

for metatranscriptome data is the in silico removal of spurious rRNA reads [209] as in 

vitro removal of rRNA prior to sequencing will most likely not remove all of it.  

Like in metagenomics mRNA reads can either be mapped or de novo assembled. 

Mapping can be done if a set of reference genomes is available. If binning has been 

performed before, then the transcriptome should not be mapped to the different bins 

separately. If bins were separated before mapping, then the assignment of reads would 

be skewed if phylogenetically related bins are present (incorrect multiple assignment of 

reads). If no reference metagenome is available, it can be attempted to map the RNAseq 

data to related datasets. In this case again the absolute mapping rate of the data needs 

to be cautiously taken into account, because an unsuitable reference (due to large 

phylogenetic distance or missing species) will exhibit low mapping rate and will prevent a 

full analysis of the data. Alternatively, a de novo transcriptome assembly can be 

performed. Specific metatranscriptome assemblers have been developed to deal with the 

complexity of such data (for a review see [210]). Subsequent mapping of the same 

mRNA reads onto the de novo assembly allows for differential expression analysis, which 

can be performed with known tools like e.g. edgeR [211] or DESeq2 [212]. 

In many regards metatranscriptome analysis can function as a substitute for a 

metagenomics analysis while adding an additional layer of information. For instance, 

metatranscriptome analysis has already revealed that activity of carbohydrate degrading 

enzymes can be underestimated if only genomic information is considered, or how the 

activity of the gut microbiome responds to different diets [213, 214]. In principle similar 

conclusions could also be obtained from a combined metagenomics/metaproteomics 

approach [215] albeit at lower resolution.  

A pure transcriptome assembly has the drawback that binning is not possible, since 

many of the binning approaches rely on the fact that in a metagenome all contigs from 

one species will exhibit similar coverage, which is not the case for a transcriptome. It will 

also not be possible to assemble very long contigs, because many intergenic regions will 

not be transcribed. Important changes at the ecosystem level can be assessed by 

analysing the expression levels of the microbiota in the community provided that species 

abundances are also taken into account; a 50% increase in abundance might appear as 

a 50% higher gene expression, but in this case does not reflect a transcriptional 

response on a per-microbe basis, but rather a compositional response at community 

level.  
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From information to understanding 

As exemplified above many computational tools and pipelines exist that are able to 

extract biological information from high throughput data. Understanding the unique 

chemical and functional capabilities of the human microbiome and deciphering the 

biological roles of individual species is much more difficult. Linking microbial activities 

with gene expression and enzyme functionalities is just the first step. In early years of 

genomic research, “hairball” graphs had their appearance in many publications, showing 
connectivity within the available pile of data, rather than focusing on the biologically 

informative parts. With the increasing number of samples being analysed e.g. from 

patients, from replicates, from different conditions, different types of sequencing data 

combined with different types of computationally derived data such as EC number and 

domain predictions, which methods can be used to gain useful information? 

The most obvious approach, especially with pure abundance data, is looking for 

correlations (also possible via regression [216]). It can be assumed that correlating 

species/OTUs have a symbiotic relationship with each other and/or with a third OTU, 

whereas anti-correlation can (but does not have to) indicate antagonistic behaviour. 

There are, however, several pitfalls. For example, OTUs, which are present only in very 

few samples, will be highly correlated due to the common absence in multiple samples. 

While this general conclusion can be true, it needs to be considered that absence in 

sequencing data does not have to mean absence of the organism. It can also indicate 

abundance below the detection threshold, or simply a failure in detecting the organism 

with the current pipelines.  

The same methods described above for the analysis of 16S rRNA gene amplicon 

sequence data can also be utilized for metagenomics data. Multivariate visualization 

tools such as PCA can be used to see if specific sample groups, e.g. defined by specific 

interventions or states of health, cluster together, or if other factors are more prevalent 

in explaining the observed variation in the data. Nevertheless, for the in-depth analysis, 

more sophisticated methods should be used such as e.g. pattern recognition, which 

enables the researcher to find useful information in big data. This field is broadly 

classified into two approaches, i.e. supervised and unsupervised learning. In supervised 

learning, the researcher tries to classify unknown samples into categories for which 

already known samples exist. If, for example, samples from lean and obese subjects 

have been obtained, an algorithm can be trained to determine if samples of unknown 

origin were obtained from a lean or obese person. While supervised learning has been 

already used in microbiome research with great success, e.g. [29, 217] (for reviews of 

the methodologies see [218] [219]), and is currently researched for the application in 

many different fields and termed “life changing” for the general public (e.g. deep 
learning [220]), this approach is often hampered by the fact that samples from different 

studies are not comparable due to different methodological approaches with respect to 

e.g. DNA extraction or sequencing method and depth. 

Unsupervised learning, also called clustering, does not rely on prior information. 

Clustering algorithms, including e.g. hierarchical clustering, k-means and dbscan, try to 

find unknown patterns in the given data, e.g. different patterns of gene expression over 

multiple conditions. This approach has also been used e.g. to determine the enterotypes 

[221], but also suffers from a wide array of challenges. The choice of clustering 
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algorithm is not trivial and depends on the structure of the data, which can often not be 

determined in an easy way [222]. Furthermore these algorithms often rely on user-

defined parameters such as the amount of clusters to find. Determining the best 

parameter set is its own research field, given that more than 30 different algorithms for 

this purpose exist [223], and not all are applicable to all clustering algorithms [222]. If 

at the end wrong parameters are chosen, it might lead to erroneous conclusions, like 

e.g. if not the optimal amount of clusters (in this case enterotypes [224]) is selected. 

Otherwise, a cluster might be split into multiple, or multiple distinct clusters might be 

treated as one. 

Having said that, many of these algorithms have been implemented in different 

programs like ELKI [225] or WEKA [226], and can also be utilized by inexperienced 

users, although the final evaluation still often requires expert knowledge. 

If useful patterns have been obtained after the machine learning, the last level is the 

biological understanding and interpretation. Simple approaches include just mapping 

extracted functional information such as EC numbers and KO numbers to pathway 

databases like KEGG [227]. More sophisticated solutions try to automatically extract the 

useful information from these networks, e.g. MetaModules [228]. If also other non-

metabolic functions should be investigated, then a broader type of classification can be 

used. The most common analysis is the GO enrichment analysis, which aims to identify 

overrepresented functions in the dataset [203].  

It also needs to be considered that the microbiome data does not have to stand on its 

own. If clinical or nutritional data is available, these can be used as well. Correlating 

such metadata with microbiome data has shown that e.g. factors like age or stool 

consistency are highly related to microbiome composition [229], as well as the hosts 

genetics [230]. Furthermore it is also possible to revert this, and use microbiome data 

together with clinical data to predict a persons’ glycemic response to food intake [231]. 

Since this type of data can be highly connected, visualization of this connectivity might 

be necessary for a better understanding. While some visualization forms are standard, 

e.g. depicting the distribution of species/OTUs per sample in a bar chart, and metabolic 

networks as networks, sometimes more sophisticated methods are necessary. For 

analysis purposes, the Krona library [232] can be a useful visualization tool to explore 

quantitative hierarchical relationships between taxonomical groups. In many cases, there 

are no standard recipes for the analysis workflow, and custom solutions have to be 

developed. For these cases it is necessary to consider what type of data should be 

shown, and with which method they are obtained. Several visualization methods are 

available [233, 234], but standard packages for many of these are not necessarily 

developed yet or easily accessible. 
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Bottom up: Mechanistic insights into the microbiome 

The next step after collecting data and investigating the communities is building models 

and testing hypotheses. While with single species this is very well doable, microbial 

communities pose more challenges to the researcher. For a single culturable species, it 

will be possible to collect the necessary data. It is possible to reconstruct the full 

metabolism (according to current knowledge), manually curate it, and measure a vast 

array of metabolites. In contrast, all these factors pose challenges in a community like 

the intestinal microbiota. 

The sum is more than its parts 

A community is more than an accumulation of multiple single organisms. The different 

microbes interact within a dynamic environment, they will behave differently, depending 

on who is in the surrounding, and what they are doing. Even for a single species, species 

abundance can lead to emergent properties such e.g. via quorum sensing, which can 

alter the behaviour of individual cells and the entire population dramatically [235]. In 

biofilms, for example, the formation itself is an emergent property, which would not be 

possible to observe if only single cells are considered. It also leads to the change in 

behaviour of the different cells, as some will get advantages in this environment 

(protection), whereas the cells on the surface are less protected, but also have more 

access to nutrients. Other forms of symbiotic relationships can also lead to emergent 

properties where e.g. some species in the community provide the means to overcome 

amino acid auxotrophies or vitamin deficiencies of others or of the host [236-238]. 

Another unrelated example from the oceanic microbiome is the detoxification the 

environment [239]. This case is commensalistic, since a big part of the microbial 

community benefits from the ability of one member to detoxify oxygen radicals, giving 

the other members a benefit, which lead in this case to genome streamlining by loss of 

genes related to oxidative stress. The authors even expanded their observation into the 

“Black Queen Hypothesis”, stating that this streamlining together with a dependency on 
a helper organisms with leaky beneficial functions might be an universal concept. This is 

only possible to observe at the community level, and the investigation of a single species 

would not lead to such conclusions.  

Numerous additional examples exist, also in the gut environment (for a more complete 

review see [240]).  

How to predict the sum from its parts 

How should the behaviour of such a community be predicted? The apparent approach is 

to model the metabolism of the whole community as a single entity or “supra-organism”, 
neglecting species boundaries [241]. While this can give an idea about the metabolic 

capabilities, it is an oversimplification and will miss critical steps like metabolite 

exchanges and interdependencies between organisms. The extension of this approach 

would be to model single organisms, and connect these models to one community 

model.  

Producing a good model of a single organism is the first step in this process. There exist 

high-throughput methods, like ModelSEED [242], Pathway Tools [243] or KBase [244], 

which can automatically construct a genome scale metabolic model (GSMM) from the 
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given genomic information. Although such reconstructions can be of high quality, it is 

still likely that the model will contain errors or gaps, which need to be solved by manual 

curation [245]. 

If different models for the relevant organisms can be obtained, the next challenge is 

combining them. If the models are based on different databases/coming from different 

sources, then this could result in incongruences in the final model. While this should in 

general be avoided, it is sometimes necessary, because high quality models of different 

organisms exist (e.g. Homo sapiens [246], Escherichia coli [247]), and it is not feasible 

to integrate this work into the high-throughput frameworks. For such cases an 

integration of different model sources needs to be performed. The challenge is to match 

all the metabolites that need to be shared between all relevant models. Due to different 

problems, like the lack of unique identifiers, matching these names is not a trivial task, 

can be very error prone and requires the application of specialized tools (e.g. [248]). 

Different hypotheses can be tested after a multi-organism model has been finally 

generated (e.g. [249, 250]). One of the first approaches should be to investigate 

ecological compatibility. This can be done e.g. via reverse ecology [251], by matching 

the metabolites in the different organisms to each other to see possible interconnections 

and metabolic dependencies. More advanced challenges are to actually simulate this 

metabolism. Finding the target, the objective function of a model, will depend on the 

underlying biology. Maximization of biomass is often used in single-organism models 

[252] (among others), and has also been used in multi-organism models (e.g. [249, 

253]). This is not applicable in all cases, because e.g. competition or parasitic 

relationships can exist in an ecosystem and often the objective is not to maximize the 

biomass of the competitors in the surrounding. Therefore more sophisticated methods 

like D-OptCom [254] have been developed, which break the community optimization 

problem into multiple single problems. These consist of smaller optimization problems 

for each community member, and the main problem is to optimize the community. 

Others have extended this to even include spatial structures [255]. This allows the 

simulation of each bacterium‘s growth independently, giving a more realistic result than 

simulating community growth. 

Metabolic models are not the only models which can be employed, metabolism is also 

not the only type of process which can be simulated, and the bacterial level is not the 

only scale which can be considered. Different kinds of kinetic models of the metabolism 

have been developed, some especially for the gut [256, 257], and also for related 

ecosystems [258], but this field is still in its infancy. The mentioned models also 

simulate metabolism, predicting the flow of carbohydrates into acids or extracellular 

polysaccharides, including different non-metabolic parameters like e.g. peristaltic 

movement of the gut. Also non-metabolic models exist, with the focus on antibiotic 

resistance in the gut [259] or the succession of organisms in the gut [260]. As it can be 

seen, the field is still far away from a comprehensive virtual gut model. In fact, already 

the whole cell model [261] is extremely complex, and contains e.g. different scales 

which might be lacking full integration into the model. With all the different factors to 

consider, integrating more data into the models with proper feedback systems, until up 

to the ecosystem level, will probably be a research objective for many years to come 

[16].  
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How to change the sum, and its parts 

Modelling cannot be only done in silico. With synthetic biology, artificial model systems 

of the gut environment have been created [262]. These models vary in their complexity 

and capabilities to simulate the environment. It is important to differentiate which part 

of the gut is modelled, if there need to be multiple compartments, and if e.g. each of 

them needs to be pH controlled. These systems were shown to simulate parts of the gut 

appropriately [263], and e.g. [264] showed the contributions of intestinal movement to 

the development of inflammation in the gut.  

But since these systems do not (yet) perfectly model the gut, final proof has often to be 

provided from animal models. Gnotobiotic animals [265] offer the possibility for 

controlled interventions. In contrast to the in vitro systems, the in vivo system will be 

able to incorporate all the necessary factors to evaluate gut functioning. Inoculation of 

the sterile animals with a defined microbiota (“synthetic ecology”) allows studying the 
niches of specific bacteria [266, 267], the development of the microbiota over time 

[260], during development [268] and the interactions between different bacteria [117, 

119, 269]. Gnotobiotic animal models have also been used, as mentioned earlier, to 

show that the microbiota does not only change with obesity, but that it also contributes 

to it [28, 97, 98, 270].  

At the end, it still needs to be taken into account that animal models do not represent 

humans, and ways to influence our gut microbiota in a rational way are only partially 

understood. One of these rational methods is the gastric bypass. It is one of the last 

resorts for morbidly obese patients to lose weight, will have a significant effect on a 

subjects carbohydrate consumption and will alter the gut microbiota in different ways 

[271-274] (mainly an increase in Gammaproteobacteria), due to different changing 

factors like e.g. the distribution of bile acids. This is the most drastic method for a 

targeted microbiota change besides antibiotics and faecal transplantation. The latter has 

been used to treat severe diseases like Clostridium difficile infection (e.g. [31, 275]) or 

Ulcerative Colitis [276]. Faecal transplantation replaces a patient’s gut microbiome with 
that of healthy donors, however, mechanisms underlying success or failure of the 

treatment have not yet been fully understood in all cases. The main factors do not only 

include the gut microbiota itself or the host genetics [230], but potentially also other 

factors like excreted metabolites [277, 278]. Due to the difficulties of understanding the 

mechanisms, it has not yet been possible to rationally design a medicine from this 

therapy, which would simplify the production and legal issues [32, 279], but progress is 

likely to be made within the coming years [240, 280].  

Microbiome changes do not only have clinical impact. Pre-clinical applications are also 

possible. Nutritional methods can be rationally employed, without having dramatic 

impact on the everyday life and include mainly pre- and probiotics. The substances and 

microorganisms consumed are not new, and have been already consumed for millennia, 

e.g. as fermented milk products. But also their mode of action is not fully understood, 

and in some cases their usefulness is even debated [281]. Probiotics like Lactobacillus 

and Bifidobacterium (e.g. [282, 283]) might act in different ways. Tested hypotheses are 

that they might change the gut environment to make it inhospitable for pathogens [284, 

285], produce antimicrobial compounds like SCFAs [286-288], alter the composition by 

releasing compounds from otherwise indigestible substrates (e.g. prebiotics) [282, 289] 
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or reverse/prevent dietary effects [290, 291]. But even in such controlled setups it is too 

simple to attribute changes to single organisms, since the breakdown of e.g. prebiotics 

(leading to “postbiotics”, which might be the actual bioactive compound) can involve 

multiple organisms (see e.g. the summary about quercetin in [292]).  

Conclusions 

The currently available body of research has shown that it is important to take the 

ecosystem as a whole into account to understand its health implications. Recently this 

trend is increasingly being picked up. After the first human genomes were sequenced, it 

was believed that it would change how medicine works. It was thought that every aspect 

of a human would be understood and that all treatments would be personalized [293, 

294]. Although personal genome sequencing is still on the rise [295], this prediction has 

not turned out to be fully true [296], although it should be noted that there have also 

been significant successes (see e.g. table 1 in [297]) . While we for sure do not yet fully 

understand the human genome [298], we need to be aware now that it is not the only 

factor. The personal wellbeing is not only influenced by our genetic traits. Our complete 

ecosystem, the whole holobiont, needs to be taken into account. It is already clear that 

we cannot understand obesity if we do not understand our microbiome, and if we do not 

understand its connections to the host. With discoveries like the enterotypes [221] 

(caution for the results [224], as they have been discussed widely, with the notion that 

gradients are more likely than separate clusters), the next step after the personal 

genome might even be the personalized metagenome (and the first companies are even 

trying to market it). If people have different microbiomes, they might need to be treated 

differently to combat e.g. obesity. With enough data, and the understanding of its 

meaning, it might also be possible to prevent this lifestyle epidemic, in combination with 

personalized nutrition, as it is even already becoming potentially feasible [231]. We 

might also be able to go further, and even prevent diseases. The preventive measures 

are normally not part of the regular mainstream medicine, but ideas exist how 

incorporate preventive measures, pioneered as “4P medicine” (predictive, preventive, 
personalized, participatory) [299, 300]. If we know a person’s microbiome, we will be 
able to predict if they are e.g. more prone to obesity or other risk factors (which is for 

some disease states already possible [29, 217]). If we understand the functionality, we 

will be able to take countermeasures with dietary interventions like pre- and probiotics. 

Since all these ecosystems are different, this approach will need to be personalized. Not 

only to take the personal genome and the personal microbiome into account, but also 

the compatibility with lifestyle, because even the best treatment might not suffice if a 

subject consumes by default a high fat “western diet” without any exercise. And this is 
all not possible, if the population does not participate. This approach will rely on 

everyone’s personal data, which needs to be acquired. And it will only work, if the results 

are communicated clearly. 

All of these points are future challenges. We do not yet fully understand the microbiome. 

With diet we are taking counter measures, but not always in rational ways. Medicine is 

already personalized, but not all treatments have the necessary data to be personalized. 

And while communication can already work (e.g. the whole “quantified self” movement is 
relying on achievements being communicated back), it is not always the case, and wrong 

communication, resulting in wrong expectations, will even discourage the users (e.g. 
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[301]). The researchers in the microbiome field need to be aware that this hype can also 

happen to the microbiome [302, 303]. 

Current microbiome research aims to overcome some of these challenges. Obesity 

research is likely to contribute in the close future to a better understanding of the 

underlying mechanisms, and the 4P medicine might partially become achievable in not 

too distant future, leading to better health and combating epidemics like obesity. 
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Abstract   

Background. The microbiota in the small intestine relies on their capacity to rapidly 

import and ferment available carbohydrates to survive in a complex and highly 

competitive ecosystem. Understanding how these communities function requires 

elucidating the role of its key players, the interactions among them and with their 

environment/host.  

Methods. The genome of the gut bacterium Romboutsia ilealis CRIBT was sequenced 

with multiple technologies (Illumina paired-end, mate-pair and PacBio). The 

transcriptome was sequenced (Illumina HiSeq) after growth on three different 

carbohydrate sources, and short chain fatty acids were measured via HPLC. 

Results. We present the complete genome of Romboutsia ilealis CRIBT, a natural 

inhabitant and key player of the small intestine of rats. R. ilealis CRIBT possesses a 

circular chromosome of 2,581,778 bp and a plasmid of 6,145 bp, carrying 2,351 and 

eight predicted protein coding sequences, respectively. Analysis of the genome revealed 

limited capacity to synthesize amino acids and vitamins, whereas multiple and partially 

redundant pathways for the utilization of different relatively simple carbohydrates are 

present. Transcriptome analysis allowed identification of the key components in the 

degradation of glucose, L-fucose and fructo-oligosaccharides.  

Discussion. This revealed that R. ilealis CRIBT is adapted to a nutrient-rich environment 

where carbohydrates, amino acids and vitamins are abundantly available. 
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Introduction 

Intestinal microbes live in a complex and dynamic ecosystem, and to survive in this 

highly competitive environment, they have developed close (symbiotic) associations with 

a diverse array of other intestinal microbes and with their host. This has led to a 

complex network of host-microbe and microbe-microbe interactions in which the 

intestinal microbes and the host co-metabolise many substrates [304, 305]. In addition 

to competition for readily available carbohydrates in the diet, intestinal microbes are able 

to extract energy from dietary polysaccharides that are indigestible by the host [71]. 

Furthermore, intestinal microbes can utilize host-derived secretions (e.g. mucus) as 

substrates for metabolic processes [306]. In turn, the metabolic activities of the 

intestinal microbes result in the production of a wide array of compounds, of which some 

are important nutrients for the host. For example, short chain fatty acids (SCFA), the 

main end-products of bacterial fermentation in the gut, can be readily absorbed by the 

host and further metabolized as energy sources [307, 308]. All together, the metabolic 

activity of the intestinal microbiota has a major impact on the health of the host, and 

recent studies have indicated an important role for microbial activity in  diseases such as 

inflammatory bowel disease, irritable bowel syndrome and obesity [309, 310]. 

We only have a limited understanding of the heterogeneity in microbial community 

composition and activity in different niches along the length of the intestinal tract. To 

unravel the functional contribution of specific intestinal microbes to host physiology and 

pathology, we have to understand their metabolic capabilities at a higher resolution. It is 

still difficult, however, to associate a functionality in this ecosystem to specific sets of 

genes and in turn to individual microbial species, and vice versa. To this end, the 

combination of genome mining and functional analyses with single microbes or with 

simple and defined communities can provide an overall insight in the genetic and 

functional potential of specific members of the intestinal microbial community [95, 249, 

311].  

As mentioned above, intestinal microbes have adapted or even specialized in foraging 

certain niche-specific substrates. However, little is known about the adaption of intestinal 

microbes to the conditions in the small intestine [312-314]. Community composition and 

activity in the small intestine is largely determined by the host digestive fluids such as 

gastric acid, bile and pancreatic secretions. The small intestine is a nutrient-rich 

environment, and previous studies have shown that the microbial communities in the 

(human) small intestine are driven by the rapid uptake and conversion of simple 

carbohydrates [70, 179]. Genomic studies of small intestinal isolates have indicated 

environment-specific adaptations to the small intestine with respect to their 

carbohydrate utilization capacities, which was evidenced by the presence of a wide array 

of genes involved in nutrient transport and metabolism of, mainly simple, carbohydrates 

[315].  

Here we describe a model driven genomic analysis of the small intestinal inhabitant 

Romboutsia ilealis CRIBT  [316]. R. ilealis CRIBT is currently still the only isolate of the 

recently descibed species R. ilealis, a species that belongs to the family 

Peptostreptococcaceae, of which many members are common intestinal microbes 

including the well-known species Clostridioides difficile (previously known as Clostridium 

difficile) and Intestinibacter bartlettii (previously known as Clostridum bartlettii) [317]. 

An overview of the metabolic capabilities and nutritional potential of the type strain of R. 
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ilealis CRIBT is provided here to identify potential mechanisms that enable this organism 

to survive in the competitive small intestinal environment.  

Materials and methods 

Genome sequencing, assembly and annotation 

R. ilealis CRIBT (DSM 25109) was routinely cultured in CRIB medium at 37 °C as 

previously described [316]. Genomic DNA extraction was performed as previously 

described [315]. Genome sequencing was done using 454 Titanium pyrosequencing 

technology (Roche 454 GS FLX), as well as Illumina (Genome Analyzer II and 

HiSeq2000) and PacBio sequencing (PacBio RS). Mate-pair data was generated by 

BaseClear (Leiden, the Netherlands). All other data was generated by GATC Biotech 

(Konstanz, Germany). The genome was assembled in a hybrid approach with multiple 

assemblers. In short, after estimation of the genome size, assembly of the genome was 

performed with two different assemblers in parallel using the different sequence 

datasets. After merging the two assemblies three rounds of scaffolding were performed, 

once with paired-end data and twice with mate-pair data. Gap-filling was performed 

after each scaffolding step. 

Genome annotation was carried out with an in-house pipeline. Prodigal v2.5 was used for 

prediction of protein coding DNA sequences (CDS) [191], InterProScan 5RC7 for protein 

annotation [198], tRNAscan-SE v1.3.1 for prediction of tRNAs [318] and RNAmmer v1.2 

for the prediction of rRNAs [319]. Additional protein function predictions were derived via 

BLAST identifications against the UniRef50 [320] and Swissprot [321] databases 

(download August 2013). Afterwards the annotation was further enhanced by adding EC 

numbers via PRIAM version March 06, 2013 [193]. Non-coding RNAs were identified 

using rfam_scan.pl v1.04, on release 11.0 of the RFAM database [322]. CRISPRs were 

annotated using CRISPR Recognition Tool v1.1 [323]. 

Qualitative metabolic modelling has been performed with Pathway tools v18.0 [324]. A 

generic default medium consisting out of ammonia/urea, sulfite, hydrogen sulfide and 

phosphate was assumed, and the qualitative possibility to produce all necessary biomass 

metabolites was tested with the supply of different carbohydrates, which had been 

tested before in vitro. 

See the Supplemental Methods in Text S1 for details on the genomic DNA extraction, 

genome sequencing, assembly, annotation, and metabolic modelling. 

Whole-genome transcriptome analysis 

R. ilealis CRIBT was grown in a basal bicarbonate-buffered medium [325] supplemented 

with 16 g/L yeast extract (BD, Breda, The Netherlands) and an amino acids solution as 

used for the growth of C. difficile [326]. In addition, the medium was supplemented with 

either 0.5 % (w/v) D-glucose (Fisher Scientific Inc., Waltham, MA USA), L-fucose 

(Sigma-Aldrich, St. Louis, MO, USA) or fructo-oligosaccharide (FOS) P06 (DP 2-4; 

Winclove Probiotics, Amsterdam, The Netherlands). The final pH of the medium was 

adjusted to 7.0. For each condition, triplicate cultures were set up. For RNA-seq analysis, 

the cells were harvested in mid-exponential phase (OD600nm = 0.25-0.55, ~8-10h 

incubation) (Table S1).   
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Total RNA was purified using the RNeasy Mini Kit (QIAGEN GmbH, Hilden, Germany). 

Depletion of rRNA was performed using the Rib-ZeroTM Kit for bacteria (Epicentre 

Biotechnologies, Madison, WI, USA). The ScriptSeqTM v2 RNA-seq Library Preparation Kit 

in combination with ScriptSeqTM Index PCR primers (Epicentre Biotechnologies) was used 

for library construction for whole-transcriptome sequencing (RNA-seq). The barcoded 

cDNA libraries were pooled and sent to GATC Biotech (Konstanz, Germany) where 150 

bp sequencing was performed on one single lane using the Illumina HiSeq2500 platform 

in combination with the TruSeq Rapid SBS (200 cycles) and TruSeq Rapid SR Cluster Kits 

(Illumina Inc., San Diego, CA, USA). Reads were mapped to the genome with Bowtie2 

v2.0.6 [327] using default settings, after quality control (rRNA removal, adapter 

trimming, and quality trimming) had been performed. Details on the RNA-seq raw data 

analysis can be found in Table S2 and Supplemental Methods in Text S1.  

Gene expression abundance estimates and differential expression analysis was 

performed using Cuffdiff v2.1.1 [328] with default settings. Differentially expressed 

genes were determined by pairwise comparison of a given condition to the other three 

conditions for a total of six pairwise comparisons. Genes were considered significantly 

differentially expressed when they showed a ≥1.5 log2(fold change) in any of the 
conditions with a false discovery rate (FDR)-corrected P value (q value) ≤ 0.05 (Tables 
S3-S6). Principal component analysis was performed with Canoco 5.0 [329] on log-

transformed gene transcript abundances using Hellinger standardization. Gene 

expression heatmaps were generated based on gene transcript abundances using R 

v3.1.0 and R-packages svDialogs and gplots. 

See the Supplemental Methods in Text S1 for details on growth on different 

carbohydrate media and whole genome transcriptome analysis. 

Metagenomic investigations 

The datasets PRJNA237362 [330] and PRJNA298762 [331] were analysed as relevant 

representative publicly available 16s rRNA gene amplicon datasets for the presence of 

16S rRNA gene sequences closely related to that of R. ilealis with NG-Tax version 0.3 

[158] with the –classifyRatio argument set to 0.9. 

Nucleotide sequence accession number 

All related data have been deposited in the European Nucleotide Archive. The raw reads 

for the genome of R. ilealis CRIBT can be accessed via the accession numbers 

ERR366773, ERX397233, ERX397242 and ERX339449. The assembly can be accessed 

under LN555523-LN555524. The RNAseq data have been deposited under the numbers 

ERS533849- ERS533861. 
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Results 

 

Genome analysis  

 

Global genome features 

R. ilealis CRIBT contains a single, circular chromosome of 2,581,778 bp and a plasmid of 

6,145 bp (Table 1 and Fig. 1). The chromosome contains 2,351 predicted protein CDS, of 

which 321 were annotated as hypothetical and for 91, only a domain of unknown 

function could be assigned. The plasmid carries eight predicted protein CDS, of which 

none was recognized for having a metabolic or replicative function. Furthermore, it 

appears to be a non-mobilizable plasmid, given that it lacks any known mobilization-

associated genes. The overall G+C content of the genome is 27.9 %, which is in good 

agreement with a G+C content of 28.1 mol% previously determined for R. ilealis CRIBT 

by HPLC methods [316]. 

Table 1: General features of the Romboutsia ilealis CRIBT genome 

 Chromosome  Plasmid 

Size (bp) 2,581,778 6,145 

G+C content (%) 27.9 29.3 

Protein CDS 2,351 8 

     Pseudogenes 12 0 

Coding density 1.10 1.02 

Average gene size 

(bp) 

899 531 

rRNA genes   

     16S rRNA 

genes 

14 0 

     23S rRNA 

genes 

14* 0 

     5S rRNA genes 14 0 

tRNAs 109 0 

ncRNAs 28 0 

CRISPR repeats 1*71 0 

* An additional 23S rRNA gene is expected in one of the gaps.  
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Figure 1: Circular map of the R. ilealis CRIBT genome. 
Both chromosome and non-mobilizable plasmid are shown. For the chromosome tracks 
from inside to outside are as follows: 1, GC skew; 2, G + C content; 3, RNAs [rRNAs 
(blue), tRNAs (orange) and ncRNAs (purple)]; 4, all predicted protein CDS [with 
predicted function (light-blue), hypothetical proteins and proteins to which only a domain 
of unknown function could be assigned (grey)]; 5, genes or gene clusters of interest 
[(mobile genetic elements (red), Cas proteins (pink), urease gene cluster (yellow), 
choloylglycine hydrolase (black), gene clusters involved in carbohydrate utilization 
(green)]. For the plasmid tracks from inside to outside are as follows: 1, GC skew; 2, G 
+ C content; 3, all predicted CDS. 

 

With a total of 14 copies of the 16S ribosomal RNA (rRNA) gene, R. ilealis CRIBT is 

among the species with the highest number of 16S rRNA gene copies reported up to this 

date [332]. High numbers of rRNA operons have been proposed to be indicative for fast 

growth and to allow microbes to respond quickly to changes in available resources [333]. 

In addition, a high copy number of the rRNA operon has been suggested to be essential 

for successful sporulation and germination [334]. This is also reflected in the observation 

that in general the species that contain the highest number of reported rRNA operons, 

including R. ilealis CRIBT, belong to the spore-forming bacterial orders Bacillales and 

Clostridiales. Not all of the 16S rRNA gene copies in R. ilealis CRIBT are embedded in the 

conserved 16S-23S-5S rRNA operon structure. Of the fifteen locations containing rRNA 

genes, ten are in the classical order 16S-23S-5S. The other five operons are 

characterized by duplicated or missing rRNA genes, or a different order of the genes. It 

should be noted that the current assembly contains three gaps, all of which are located 



48 

 

within rRNA operons. Diverging rRNA operon structures have been reported for other 

genomes containing multiple rRNA operons, as a result of duplications [335, 336]. 

A cluster of orthologous genes (COG) category [337] could be assigned to 1,647 of the 

predicted proteins (70 %) including 372 proteins (16 %) assigned to the categories R 

(general function prediction only) and S (function unknown) (Fig. S1). With InterProScan 

a predicted function could be assigned to 82 % of the predicted proteins. Based on the 

InterPro and PRIAM classifications [193], an enzymatic function could be predicted for 

more than 500 proteins.  

General metabolic pathways 

Analysis of the CDS predicted from the R. ilealis CRIBT genome revealed the presence of 

a complete set of enzymes for the glycolytic pathway. In line with the anaerobic lifestyle 

of the organism, enzymes for the oxidative phase of the pentose phosphate pathway 

could not be detected. Additionally, the genes that encode enzymes involved in the 

tricarboxylic acid cycle were lacking. Subsequently a metabolic model was constructed 

with Pathway tools v18.0. A flux balance analysis with the model was performed, 

suggesting that R. ilealis CRIBT is a mixed acid fermenter as previously reported [316]. 

Predicted end products of fermentation are a mixture of acetate, formate, lactate and 

ethanol, with the possibility of gas formation (CO2 and H2). In addition to ethanol, which 

can be produced during mixed acid fermentation, 1,2-propanediol was predicted to be 

formed via the L-fucose degradation pathway. The fermentation end products formate, 

acetate and lactate are predicted to be produced from pyruvate. No other solvents were 

predicted to be produced by the metabolic model. The only metabolite produced by R. 

ilealis CRIBT that was not accounted for by the metabolic model, was propionate. None of 

the three established pathways for propionate production in the intestinal tract, i.e. the 

succinate, acrylate or the propanediol pathway [338], could be identified at the genetic 

level in the genome of R. ilealis CRIBT. Although propionate is only produced in low 

amounts (max. 3 mM in 24 h) it is noteworthy because propionate production was 

observed repeatedly during in vitro growth in this study (see Table 2) and as previously 

reported [316].  

The analysis of the genome and the prediction by the model indicated that fermentation 

is probably the main process for energy conservation in R. ilealis. However, the presence 

of a sulfite reductase gene cluster (CRIB_1284-CRIB_1286) of the dissimilatory asrC-

type [339] points at possible anaerobic respiration. Similar siroheme-dependent sulfite 

reductases are found in many close-relatives of R. ilealis such as I. bartlettii, Clostridium 

sordellii and C. difficile [340]. Sulfite reduction by R. ilealis CRIBT, and close relatives, 

has been previously demonstrated in vitro [316], and increased growth yield and 

metabolite production was observed in the presence of sulfite for R. ilealis CRIBT (Table 

S7). In the intestinal tract, sulfite is derived from food sources that contain sulfite as a 

preservative, and it has been shown that neutrophils release sulfite as a part of the host 

defence against microbes [341].  
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Metabolism of growth factors and cofactors 

Complete pathways are present for the biosynthesis of the amino acids aspartate, 

asparagine, glutamate, glutamine and cysteine, using carbon skeletons available from 

central metabolites or via conversion of other amino acids. However, many genes 

encoding enzymes required for biosynthesis of other amino acids appeared to be absent 

in R. ilealis CRIBT. As most missing genes are part of well-studied pathways, it is unlikely 

these functionalities are encoded by unknown genes and likely represent true 

auxotrophies. The absence of genes to produce branched-chain amino acids (leucine, 

isoleucine and valine) was also reflected in the absence of branched chain fatty acids in 

the cell membrane of R. ilealis, which is characteristic for the genus Romboutsia [316]. 

From these observations it can be concluded that R. ilealis depends on a number of 

exogenous amino acids, peptides and/or proteins to fuel protein synthesis. The 

dependency on an exogenous source of amino acids is reflected by the identification of 

multiple amino acid transporters, including an arginine/ornithine antiporter, multiple 

serine/threonine exchangers, a transporter for branched amino acids, and several amino 

acid symporters and permeases without a predicted specificity. Furthermore, numerous 

genes were annotated as protease or peptidase, including several with a signal peptide.  

R. ilealis CRIBT appears to contain all genes for de novo purine and pyrimidine synthesis, 

as well as for the production of the coenzymes NAD and FAD via salvage pathways from 

niacin and riboflavin, respectively. While some organic cofactors can be produced by R. 

ilealis CRIBT, it mainly relies on salvage pathways (e.g. for lipoic acid) or exogenous 

sources for the supply of precursors, mainly in the form of vitamins (e.g. thiamin, 

riboflavin, niacin, pantothenate, pyridoxine, biotin, vitamin B12). 

Carbohydrate transport and metabolism 

As previously reported, R. ilealis CRIBT is able to utilize a wide variety of carbohydrates 

[316]. Previously, good growth of R. ilealis on L-fucose, glucose, raffinose and sucrose 

was described, in addition to moderate growth on D-arabinose and D-galactose and 

weak growth on D-fructose, inulin, lactose, maltose and melibiose. Growth on L-fucose, 

fructose, galactose, glucose, lactose, maltose, melibiose, raffinose and sucrose was 

predicted from the genome-scale metabolic model as well. For these different 

carbohydrates, the genes encoding the specific carbohydrate degradation enzymes were 

found distributed throughout the genome in gene clusters together with their respective 

transporters and transcriptional regulator. The only carbohydrate utilized by R. ilealis 

CRIBT that was not predicted based on the metabolic model, was D-arabinose. Although 

a separate  arabinose transporter, similar to the maltose and sucrose transporters, could 

be identified in the genome R. ilealis CRIBT, no separate pathway for the use of D-

arabinose could be predicted, However, it is likely that the L-fucose degradation pathway 

(encoded by genes CRIB_1294-CRIB_1298) is also used for D-arabinose utilization as is 

also observed in other intestinal species [342]. In addition to the carbohydrates for 

which growth was studied, a gene cluster involved in the degradation of the host-derived 

carbohydrate sialic acid could be predicted (CRIB_613-CRIB_619) [343]. The structure 

of this gene cluster is similar to the one identified in C. difficile [344]. The ability to 

degrade the predominantly host-derived carbohydrates, L-fucose and sialic acid, suggest 

a role in the utilization of mucin, an abundant host-derived glycoprotein in the intestinal 

tract [306, 345]. However, no growth on mucin was observed (Table S7), which is in line 

with the lack of a predicted extracellular fucosidase and/or sialidase. 
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Other genes encoding niche-specific functionalities 

A gene cluster encoding a urease, consisting of three subunits (ureABC), and a number 

of urease accessory genes was identified (CRIB_1381-CRIB_1388). The gene cluster 

identified in R. ilealis CRIBT is very similar to the urease gene cluster in the genome of C. 

sordellii (Fig. S3), a species in which the urease activity is used to phenotypically 

distinguish C. sordellii strains from C. bifermentans strains [346]. Furthermore, a 

possible ammonium transporter (CRIB_1389) was identified in the genome of R. ilealis 

CRIBT next to the urease gene cluster. Ureases are nickel-containing metalloenzymes 

that catalyse the hydrolysis of urea to ammonia and carbon dioxide, and thereby these 

enzymes allow microbes to use urea as nitrogen source by assimilation via glutamate. 

They are ubiquitous proteins occurring in diverse organisms [347]. In the intestinal 

environment, where urea is abundantly present [348](Fuller & Reeds 1998), some 

bacteria use ureases to survive the acidic conditions in the upper part of the intestinal 

tract as urea hydrolysis leads to a local increase in pH [349].  

Another gene encoding a niche-specific functionality is the predicted choloylglycine 

hydrolase. Proteins within the choloylglycine hydrolase family are bile salt hydrolases 

(BSHs), also known as conjugated bile acid hydrolases (CBAHs), that are widespread 

among intestinal microbes [350]. They are involved in the hydrolysis of the amide 

linkage in conjugated bile salts, releasing primary bile acids. There is a large 

heterogeneity among BSHs, for example with respect to their substrate specificity. The 

BSH of R. ilealis CRIBT was found to be the most similar to the one found in Clostridium 

butyricum. Although the physiological advantages of BSHs for the microbes are not 

completely understood, it has been hypothesized that they constitute a mechanism to 

detoxify bile salts and thereby enhance bacterial colonization [340]. 

Metabolite and transcriptome analysis 

Metabolite and transcriptome analysis of R. ilealis CRIBT
 during growth on 

different carbohydrates 

To study key pathways predicted to be involved in carbohydrate utilization and their 

regulation in more detail, a genome-wide transcriptome analysis was performed, 

focussing on four experimental conditions. Firstly, growth on glucose, a preferred 

substrate for many microbes present in the intestinal tract, was studied. Secondly the 

growth on fructans, oligo-and polysaccharides present in many food items was 

examined. Previously weak growth on inulin, a polysaccharide consisting of long chains 

of ß12 linked fructose units, was observed [316]. For this study a shorter fructan (FOS 

P06, DP2-4) was chosen, because growth on shorter fructans is likely more relevant for 

microbes living in the small intestine [70]. Thirdly, growth on L-fucose was examined, as 

growth on this substrate was found to be unique for R. ilealis CRIBT compared to other 

related microbes. Finally, R. ilealis CRIBT was also grown in the basal medium in the 

absence of an additional carbon source for comparison (control condition). 

Based on measurements of optical density and pH during growth (growth characteristics 

of individual cultures can be found in Table S1), samples were drawn in the mid-

exponential phase (~8-10 h incubation; used for transcriptome analysis) and in 

stationary phase (24 h incubation), and sugar utilization and fermentation products were 

measured with HPLC (Table 2). In neither of the experimental conditions the supplied 

carbohydrates were depleted, and metabolites were still produced at the time of 



51 

 

sampling at ~8-10 h and 24 h, which further confirmed that samples obtained for 

transcriptome analysis at ~8-10 h were taken during exponential growth. In the FOS 

cultures, an accumulation of extra-cellular fructose was observed. As predicted from the 

metabolic model, growth on glucose resulted in the production of formate, acetate and 

lactate (Table 2). 

Growth on FOS was marginally lower than that on glucose, however, after 24 h of 

growth, the same fermentation products were observed in similar amounts (Table 2). 

Growth on L-fucose showed production of 1,2-propanediol instead of lactate. The fact 

that 1,2-propanediol was observed in one of the control cultures could be explained by 

the fact that an L-fucose grown culture was used as inoculum for this culture, leading to 

carry-over of minor amounts of metabolites. 

For the genome-wide transcriptome analysis of triplicate cultures grown in the four 

different conditions (i.e. a total of 12 cultures), a total of 159,250,634 150bp-reads were 

generated by RNA-seq (overview in Table S2). Principal component analysis of the 

transcriptomes of the individual cultures showed that the cultures clustered by condition 

(Fig. 2). 

 

Figure 2: Principal component analysis of the transcriptomes of R. ilealis CRIBT grown 
on different carbohydrates (glucose, FOS and L-fucose) or in the absence of an 
additional carbon source (control). 
First and second ordination axes are plotted, explaining 42.8% and 19.0% of the 
variability in the data set, respectively. Individual transcriptomes are symbol-coded by 
experimental condition: glucose (circles), FOS (squares), L-fucose (diamonds) and 
control (rectangles). The experimental conditions were used as supplementary variables 
as well and could explain 62.9% of the variation. 



52 

 

Table 2: Fermentation end products of R. ilealis CRIBT produced during growth on 
different carbohydrates (glucose, FOS or L-fucose) or in basal medium in the absence of 
a carbon source (control condition). 
Samples were obtained during mid-exponential phase (∼8–10 h incubation; used for 
transcriptome analysis) and in stationary phase (24 h incubation). For the control 
cultures, fermentation products are shown for the individual cultures separating the 
carbohydrates used for preconditioning of the inoculum. For the three other conditions, 
values represent means of triplicate cultures with standard deviations. N.D.: Not 
detected 
 

 Formate (mM) Acetate (mM) Propionate (mM) Lactate (mM) 1,2-propane-diol 

(mM) 

 8-10 h  24 h  8-10 h  24 h  8-10 h  24 h  8-10 h  24 h  8-10 h  24 h  

Control: 

basal medium 

    (glucose inoc.)  

    (FOS inoc.)  

    (L-fucose inoc) 

 

3.2 

4.5 

4.8 

 

7.7 

9.2 

10.8 

 

2.0 

2.4 

2.3 

 

6.2 

7.4 

9.8 

 

2.0 

2.4 

2.3 

 

2.2 

2.9 

3.0 

 

N.D. 

N.D. 

N.D. 

 

N.D. 

N.D. 

N.D. 

 

N.D. 

N.D. 

1.0 

 

N.D. 

N.D. 

1.0 

Basal medium 

+ glucose  

(5 % w/v) 

 

4.4±1.2 

 

28.2±4.3 

 

1.0±0.9 

 

16.3±2.2 

 

1.0±0.9 

 

1.3±0.1 

 

N.D. 

 

3.0±0.7 

 

N.D. 

 

N.D. 

Basal medium 

+ FOS (5 % w/v) 

 

4.7±0.6 

 

27.3±2.5 

 

1.4±0.0 

 

17.7±1.4 

 

1.4±0.0 

 

1.6±0.1 

 

N.D 

 

2.5±0.3 

 

N.D. 

 

N.D. 

Basal medium 

+ L-fucose  

(5 % w/v) 

 

6.7±0.1 

 

19.5±3.6 

 

2.8±0.1 

 

16.3±2.9 

 

2.8±0.1 

 

2.8±0.4 

 

N.D. 

 

N.D. 

 

1.3±0.1 

 

7.7±1.4 
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Differential expression of genes involved in carbohydrate degradation and 

fermentation in R. ilealis CRIBT
  

To identify differentially regulated genes, pairwise comparisons were done with cuffdiff 

[328] using a cut off of ≥1.5 log2 (fold-change) and q-value ≤0.05. Figure 3 shows a 
heat map of all differentially regulated genes, and exact numbers can be found in Tables 

S3-6.  

The gene cluster involved in glycolysis (CRIB_186-CRIB_191) was most abundantly 

expressed in the conditions that support the highest growth rates determined by the 

highest cell density reached in the time period that was measured (glucose, followed by 

FOS; Fig. 3). This was also reflected in the fact that expression of genes encoding 

proteins involved in replication such as ribosomal proteins, proteins involved in cell wall 

biosynthesis and general cell division processes were most strongly expressed during 

growth in the presence of glucose and to a lesser extent FOS. Other genes involved in 

the central sugar metabolic pathways (e.g. CRIB_1849, CRIB_140, CRIB_2223, and 

CRIB_105) were upregulated in these conditions, albeit not significantly differentially 

regulated. This suggests that these genes are less tightly regulated at the transcriptional 

level, probably because they are also involved in other processes than sugar degradation 

[351]. The metabolic model suggests that this is indeed the case, as some of the 

enzymes produce intermediates which can be consumed by fatty acid biosynthesis and 

amino acid biosynthesis processes.

 

Figure 3: Heatmap of genes differentially expressed in at least one of the four 
conditions (≥1.5 log2 (fold change) and q value ≤ 0.05). 
Colour coding by ratio to row mean. Key gene clusters are indicated 
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Figure 4: Schematic overview of the pathways involved in degradation of glucose, FOS 
and L-fucose in R. ilealis CRIBT. 
1A; PTS system glucose-specific EIIA component (CRIB_2018); 1BC, PTS system glucose-
specific EIIBC component (CRIB_2017); 2BC, PTS system sucrose-specific EIIBC 
component (CRIB_1461); 3, ß-fructofuranosidase with RDD family protein (CRIB_1459 
and CRIB_1460); 4, fructokinase (CRIB_152 and CRIB_1458); 5; ABC-type transporter 
(CRIB_148-CRIB_150); 6, ß-fructofuranosidase (CRIB_151); 7, glucokinase 
(CRIB_1849); 8, glucose 6-phosphate isomerase (CRIB_140); 9, fructose 1,6-
bisphosphatase (CRIB_45 and CRIB_2020); 10, 6-phosphofructokinase ; (CRIB_104); 
11, fructose-bisphosphate aldolase (CRIB_2223); 12, triosephosphate isomerase 
(CRIB_189); 13, glyceraldehyde-3-phosphate dehydrogenase (CRIB_187); 14, 
phosphoglycerate kinase; 15, phosphoglycerate mutase (CRIB_1223) and 2,3-
bisphosphoglycerate-independent phosphoglycerate mutase (CRIB_190); 16, enolase 
(CRIB_191); 17, pyruvate kinase (CRIB_105); 18, L-lactate dehydrogenase (CRIB_684); 
19, formate acetyltransferase (CRIB_2141); 20, pyruvate-flavodoxin oxidoreductase 
(CRIB_2021); 21, phosphate acetyltransferase (CRIB_2171); 22, acetate kinase 
(CRIB_1927); 23, bifunctional aldehyde-alcohol dehydrogenase (CRIB_2231); 24, fatty 
aldehyde dehydrogenase (CRIB_2231); 25, L-fucose permease (CRIB_1294); 26, L-
fucose isomerase (CRIB_1298); 27, L-fuculokinase (CRIB_1297); 28, L-fuculose 
phosphate aldolase (CRIB_1297); 29, lactaldehyde reductase (CRIB_1300); ?, possible 
mechanisms of external fructose accumulation (external degradation, or export). 

 

The gene cluster involved in glycolysis (CRIB_186-CRIB_191) was most abundantly 

expressed in the conditions that support the highest growth rates determined by the 

highest cell density reached in the time period that was measured (glucose, followed by 

FOS; Fig. 3). This was also reflected in the fact that expression of genes encoding 

proteins involved in replication such as ribosomal proteins, proteins involved in cell wall 

biosynthesis and general cell division processes were most strongly expressed during 

growth in the presence of glucose and to a lesser extent FOS. Other genes involved in 

the central sugar metabolic pathways (e.g. CRIB_1849, CRIB_140, CRIB_2223, and 

CRIB_105) were upregulated in these conditions, albeit not significantly differentially 

regulated. This suggests that these genes are less tightly regulated at the transcriptional 

level, probably because they are also involved in other processes than sugar degradation 

[351]. The metabolic model suggests that this is indeed the case, as some of the 

enzymes produce intermediates which can be consumed by fatty acid biosynthesis and 

amino acid biosynthesis processes.  

Altogether, the transcriptome of R. ilealis CRIBT grown on FOS was very similar to its 

transcriptome when grown on glucose (Fig. 2), with only 18 genes significantly 

upregulated during growth in the presence of FOS compared to glucose (Table S4). 

Apparent was the upregulation of the gene clusters that code for proteins involved in the 

transport and degradation of the respective sugars or their derivatives (Fig. 3). In the 

presence of glucose, the glucose-specific PTS system (CIRB_2017-CRIB_2018) was 

significantly upregulated, together with its associated transcriptional regulator 

(CRIB_2019). In turn, in the presence of FOS, two clusters predicted to be involved in 

sucrose degradation (CRIB_148-CRIB_152 and CRIB_1458-1461) were significantly 

upregulated. The third gene cluster predicted to be involved in sucrose degradation 

(CRIB_1399-1400) was not significantly regulated during growth on FOS. However, it 
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should be noted that these genes are located in a cluster functionally annotated to 

melibiose metabolism and are most likely regulated by the transcriptional regulator in 

this cluster. In addition to the two sucrose degradation clusters, a transport cluster of 

unknown function (CRIB_1506-CRIB_1509) was upregulated during growth on FOS, 

albeit only significantly when compared to growth on glucose. During growth in the 

presence of L-fucose, the gene cluster predicted to be involved in L-fucose degradation 

(CRIB_1294-CRIB_1298) was significantly upregulated, including the gene encoding the 

corresponding transcriptional regulator (CRIB_1299). An overview of the main 

carbohydrate degradation pathways regulated in the different conditions is given in 

Figure 4. 

During growth on glucose, L-lactate dehydrogenase (CRIB_684) was significantly 

upregulated, albeit not significantly compared to growth on FOS. This enzyme catalyses 

the reduction of pyruvate resulting in the production of L-lactate and the reoxidation of 

the NADH formed during glycolysis. Only at the time point of 24 h, lactate was observed 

(Table 2). This suggests that at time point ~8-10 h the cells were starting to regenerate 

NAD by upregulating this gene. In the presence of L-fucose, NAD+ regeneration is 

achieved via the reduction of lactaldehyde to 1,2-propanediol by lactaldehyde reductase 

(CRIB_1300), which was upregulated in the presence of L-fucose together with the L-

fucose degradation gene cluster. In the spent medium of L-fucose grown cells, 1,2-

propanediol was already seen at time point ~8-10 h, whereas no lactate production was 

observed. Another way to regenerate NAD+ is to reduce pyruvate to ethanol (Fig. 4). In 

the presence of both glucose and FOS, an upregulation was seen for the gene encoding 

the bifunctional aldehyde/alcohol dehydrogenase (CRIB_2231), which converts acetyl-

CoA to ethanol. However, in none of the samples, ethanol was measured by HPLC 

analysis.  

During growth on FOS, a small gene cluster (CRIB_601-CRIB_603) that includes a gene 

encoding an alternative sigma factor was significantly upregulated. This was also 

apparent in the control culture that was inoculated with FOS-preconditioned cells. This 

suggests that in the presence of FOS (or its derivatives sucrose or fructose) transcription 

is also regulated by RNA polymerase promoter recognition. 

Expression and regulation of other environmentally relevant functions in R. 

ilealis CRIBT
  

Noteworthy was the significant upregulation of a gene cluster related to iron transport 

(CRIB_892-CRIB-898) during growth on glucose and FOS compared to growth on L-

fucose. The significance of this gene cluster for carbohydrate utilization is not known, 

however, several enzymes could be identified in the genome of R. ilealis CRIBT that use 

different forms of iron as cofactor, for example the hydrogenases involved in hydrogen 

metabolism [352], several ferredoxins, and the L-threonine dehydratase (CRIB-426) that 

was significantly upregulated during growth on L-fucose. As multiple transporters 

involved in the transport of iron compounds were predicted, it is possible that the uptake 

of iron provides a competitive advantage to other microbes that are dependent on iron 

for respiration and other metabolic processes [353]. 
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Prevalence of R. ilealis in human datasets 

R. ilealis was found to be a natural and abundant inhabitant of the rat small intestine, 

specifically of the ileum [309]. To study its prevalence in humans, 16S rRNA amplicon 

sequencing datasets were investigated for the presence of R. ilealis-like 16S rRNA gene 

sequences. Unfortunately, with respect to composition analysis of human ileum samples, 

there is only a limited number of datasets available due to the sampling difficulties that 

are the result of the inaccessibility of this part of the intestinal tract. In the dataset 

published by [331], a paediatric human dataset with samples from both healthy 

individuals and inflammatory bowel disease patients, we were not able to identify any 

Romboutsia-like 16S rRNA gene sequences. In the dataset published by [330], one of 

the biggest 16S rRNA gene datasets published to date that includes samples obtained 

from multiple gastrointestinal locations (ileal and rectal biopsies and faecal samples) 

from both healthy individuals and inflammatory bowel disease patients, only a limited 

number of R. ilealis-like 16S rRNA gene sequences could be identified. In this dataset, 

the genus Romboutsia could be identified in two samples, with a relative abundance of 

0.1% and 0.2%. In 173 cases the family Peptostreptococcaceae could be identified in 

these samples, but it was not possible to differentiate between the genera Romboutsia 

and Intestinibacter, due to 100% identity of their rRNA gene sequences in this region. 

The Peptostreptococcaceae-positive samples were obtained from both healthy and 

diseased individuals (including at least one with ileal overgrowth and a 

Peptostreptococcaceae abundance of 46%). It should be noted that both datasets 

contain only sequence data from paediatric ileal biopsy samples and therefore only 

mucosa-associated microbiota could be studied limited to a human population <17 years 

of age, which could explain the low prevalence of R. ilealis-like 16S rRNA gene 

sequences. Unfortunately, due to the limited number of available human datasets and 

the low prevalence of R. ilealis-like 16S rRNA gene sequences in ileal biopsy samples, it 

was not possible to find positive or negative correlations between prevalence and/or 

abundance of R. ilealis and specific human diseases. 

Discussion 

Gerritsen et al. [309] have shown by 16S rRNA gene sequence-based analysis that R. 

ilealis CRIBT is a dominant member of the small intestine microbiota in rats, especially in 

the ileum. The genomic and transcriptomic analysis of R. ilealis CRIBT reported here 

provides new insights into the genetic and functional potential of this inhabitant of the 

small intestine. Genomic analysis revealed the presence of metabolic pathways for the 

utilization of a wide array of simple carbohydrates in addition to a multitude of 

carbohydrate uptake systems that included a series of PTS systems, carbohydrate 

specific ABC transporters, permeases and symporters. This is in agreement with prior 

observations by [70], who reported that the small intestinal microbiome is enriched for 

genes involved in the consumption of simple carbohydrates. However, small 

disagreements with prior observations were also observed. An enrichment for amino acid 

metabolism [70] was not visible in R. ilealis CRIBT, and considerable less COGs could be 

classified than for the average small intestinal bacterium [179]. 

Since the small intestine is an environment in which environmental conditions change 

quickly due to the varying food intake of the host, microorganisms in this environment 

must be able to respond rapidly to such changes. As previously mentioned, the high 

number of rRNA operons found in the genome of R. ilealis CRIBT is an indication that this 

this strain is indeed able to adapt its metabolism quickly in response to changing 
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conditions, as a high rRNA copy number has been associated with this trait [333]. 

Considering the small intestinal habitat, we chose to focus on key pathways involved in 

the utilization of specific diet- and host-derived carbon sources by whole-genome 

transcriptome analysis. 

Degradation of FOS and its possible role in cross-feeding 

In the intestinal tract, the diet-derived carbohydrates that the host is unable to digest 

are important sources of energy for many microbes. In return, the host is dependent on 

the degradation of food-derived indigestible component by microbes for the release of 

certain essential metabolites (e.g. SCFA). Here we examined the growth of R. ilealis 

CRIBT on FOS, a relatively simple oligosaccharide that is indigestible by the host, and the 

metabolites that were released. The transcriptome of R. ilealis CRIBT grown on FOS was 

very similar to its transcriptome when grown on glucose, a monosaccharide used by the 

majority of microbes present in the intestinal tract. This is not surprising considering that 

glucose in addition to fructose is one of the two subunits present in FOS. Noteworthy 

was the accumulation of fructose in the culture supernatant during growth of R. ilealis 

CRIBT on FOS. Based on the genomic analysis there are no apparent reasons why 

fructose should not be metabolized as all the necessary metabolic enzymes are present. 

However, it has been previously observed that R. ilealis only grows weakly on D-fructose 

[316]. The absence of a fructose-specific transporter, which could be identified in close 

relatives that are able to grow on D-fructose, might explain the fructose accumulation 

during growth of R. ilealis CRIBT on FOS.  

Differential gene expression analysis demonstrated the apparent FOS-induced 

upregulation of two separate gene clusters that were predicted to be involved in sucrose 

transport and degradation. However, based on the genomic analysis no apparent 

pathways could be identified to be responsible for FOS degradation. A simple explanation 

for the observed growth on FOS could be extracellular degradation of FOS, followed by 

import of sucrose and/or glucose into the cell. Fructan degradation by extracellular 

enzymes is described for other (intestinal) microbes [354]. The observed accumulation 

of fructose during growth of R. ilealis CRIBT on FOS supports the hypothesis of 

extracellular degradation. However, no extracellular fructansucrase or glucansucrase 

could be predicted. Furthermore, no new candidates for this activity could be identified 

via the differential gene expression analysis described here. However, one possible 

candidate could be the predicted beta-fructofuranosidase present in the PTS system-

containing sucrose degradation gene cluster. Next to the beta-fructofuranosidase-

encoding gene, a gene was found to which no function could be assigned, but that was 

predicted to have a transmembrane region and a domain which could be involved in 

transport. Given that both loci overlap by a few nucleotides, and that the overlap is 

within a homopolymer region, it is possible that both loci form one protein due to 

ribosomal slippage on the homopolymer [355]. This could possibly lead to an external 

membrane-bound enzymatically active protein, which would explain the accumulation of 

fructose. Future studies with mutant strains might shed more light on the specific 

contribution of the two predicted sucrose degradation gene clusters to the degradation of 

FOS, or even longer fructans (e.g. inulin), by R. ilealis CRIBT. Altogether, these results 

might indicate a possible role for R. ilealis CRIBT in intestinal cross-feeding networks by 

releasing D-fructose during growth on fructans like FOS, which can function as growth 

substrate for other microbes or be directly absorbed by the host.  
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Fucose degradation and its advantages 

Besides diet-derived carbohydrates, also host-derived carbohydrates are an important 

source of energy for some microbes. Unlike other members of the family 

Peptostreptococcaceae, R. ilealis CRIBT is able to grow on L-fucose, a predominantly 

host-derived carbon source [316]. The transcriptome analysis confirmed the presence of 

a functional L-fucose degradation pathway, similar to the pathways previously identified 

in other intestinal inhabitants such as E. coli [356], Bacteroides thetaiotaomicron [357] 

and Roseburia inulinivorans [358]. By gene sequence homology a similar pathway was 

found in Clostridium perfringens and the more closely related C. sordellii (Fig. S2). L-

fucose is a common sugar present within the intestinal environment, since it is a 

monosaccharide that is an abundant component of many N- and O-linked glycans and 

glycolipids produced by mammalian cells, including the fucosylated glycans that are 

found at the terminal positions of mucin glycoproteins [359]. Fucosylated mucin 

glycoproteins are especially found in the (human) ileum [360, 361]. For both intestinal 

commensals and pathogens the ability to utilize L-fucose has been demonstrated to 

provide a competitive advantage in the intestinal environment [357, 362]. In R. ilealis, 

all enzymes for L-fucose degradation are present in one cluster, however, no fucosidase-

encoding gene could be identified, which means that R. ilealis is not able to release L-

fucose units from fucosylated glycans (e.g. mucin) by itself. Hence, in the intestinal 

environment R. ilealis is dependent on free L-fucose monosaccharides released by other 

microbes. Furthermore, a gene cluster involved in degradation of sialic acid [343, 363, 

364] was predicted from the genome, but no extracellular sialidase could be identified, 

which is similar to what has been found for C. difficile [344]. This suggests that also for 

sialic acid, a common residue found in mucin glycoproteins, R. ilealis CRIBT seems to be 

dependent on the activity of other microbes. However, this also suggests that by its 

ability to use L-fucose and sialic acid monosaccharides, R. ilealis CRIBT is  dependent for 

these host-derived sugars that are released by the action of extracellular enzymes of 

with mucus-degrading microbes like B. thetaiotaomicron or Akkermansia muciniphila. 

Besides niche competition with other commensals, fucose utilization may also be 

important in niche competition with pathogens. It was recently suggested that the host 

is able to regulate fucosylation of its intestinal epithelial cells in response to pathogen-

induced stress and that microbes that are able to use fucose as an energy source may 

contribute to the protection of the host against infections by endogenous pathogens 

[365].  

Regulation of carbohydrate catabolism 

In the intestinal environment R. ilealis CRIBT will encounter a wide array of 

carbohydrates that are either continually or transiently present. Prioritization of 

carbohydrate utilization is partly achieved at the transcriptional level by the selective 

expression of genes. The primary mechanism by which bacteria regulate the utilization of 

non-preferred carbohydrates in the presence of preferred carbon sources is known as 

carbon catabolite repression (CCR), a hierarchical system for coordinating sugar 

metabolism [366]. The fact that, compared to glucose and FOS, L-fucose is utilized by a 

pathway that does not directly involve fructose-1,6-bisphosphate, a key metabolite in 

the regulation of CCR of Gram-positive bacteria, made it possible to study CCR by either 

glucose or FOS. The transcriptome analysis suggests that some genes and operons in R. 

ilealis CRIBT were indeed subject to CCR in response to the presence of glucose. For 

example, two gene clusters predicted to be involved in hexuronate metabolism 

(CRIB_649-CRIB_652 and CRIB_2244-CRIB_2249), pathways that make the use of D-
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glucuronate and D-galacturonates as sole carbon source possible, were significantly 

upregulated during growth in the presence of L-fucose compared to growth on glucose 

(Table S5). In addition, the gene cluster predicted to be involved in sialic acid utilization 

(CRIB_613-CRIB_616) was downregulated in the presence of glucose as well. 

Furthermore, when comparing the expression of the gene cluster involved in L-fucose 

degradation during growth on glucose relative to the growth in the absence of a carbon 

source (control condition), this gene cluster appeared to be under CCR as well, in the 

presence of glucose (Table S5). These results suggest that in R. ilealis CRIBT, multiple 

gene clusters that are involved in the use of alternative carbon sources are subject to 

CCR.  

Expression and regulation of niche-specific functionalities in R. ilealis CRIBT 

Microbes residing in the intestinal tract have to withstand the harsh environmental 

conditions specific for the intestine. In this context, it was interesting that we identified a 

urease gene cluster in R. ilealis CRIBT (CRIB_1381-CRIB_1388), expression of which 

appeared to be induced in carbon source limiting circumstances. The fact that this gene 

cluster was significantly upregulated when grown in the absence of an additional carbon 

source compared to growth on glucose, possibly suggests CCR of the urease gene 

cluster. However, upregulation of this gene cluster in the absence of an exogenous 

carbon source might also be a possible mechanism. Urea in the intestinal tract is derived 

from the breakdown of amino acids. Helicobacter pylori is a well-known example where 

urease activity contributes to the survival of the bacterium in the acidic environment of 

the stomach [367]. For some of the urease-positive bacteria, this enzyme has been 

shown to act as a virulence factor as it is responsible for urea hydrolysis that leads to 

increased pH and ammonia toxicity [349]. However, for commensal intestinal bacteria 

ureases can probably function as colonization factors as well, as they contribute in 

general to acid resistance and thereby play a role in gastrointestinal survival [367]. Urea 

is released into all parts of the intestinal tract via diffusion from the blood, but it has 

been reported that pancreatic excretions and bile are a main route of entry [368]. So 

far, we have not been able to demonstrate urease activity in R. ilealis CRIBT [316]. 

However, different mechanisms for the expression of urease have been identified in 

other microbes: constitutive, inducible by urea, or controlled by nitrogen source 

availability [347]. For C. perfringens for example, the urease activity, which is plasmid 

borne, was shown to be only expressed in nitrogen-limiting conditions [369]. The 

increased urease gene expression by R. ilealis CRIBT observed in the control condition, in 

the absence of an additional carbohydrate, suggests an alternative mechanism for 

regulation of urease gene expression. 

Conclusions 

We are just starting to elucidate the composition and function of the microbial 

communities in the mammalian small intestine. Recently we have reported the isolation 

and characterization of R. ilealis CRIBT from the small intestine of a rat [316]. In rats, 

this species was identified to be a dominant member of the ileal microbiota [309]. Here 

we applied a holistic systems biology approach, involving several fields of experimental 

and theoretical biology, to study R. ilealis CRIBT. In conclusion, R. ilealis CRIBT is a strain 

that is able to utilize an array of carbohydrates using different and partially redundant 

pathways. Its ability to use host-derived sugars that are liberated by other microbes 

suggests that R. ilealis CRIBT is dependent on mucus-degrading microbes, like B. 

thetaiotaomicron or A. muciniphila. In contrast, it has only limited ability to de novo 
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synthesize amino acids and vitamins, and hence the organism shows an adaption to a 

nutrient-rich environment in which carbohydrates and exogenous sources of amino acids 

and vitamins are abundantly available. In addition, we were able to pinpoint potential 

mechanisms that might enable this organism to survive in the competitive small 

intestinal environment. These mechanisms include bile salt hydrolase and urease 

enzymes, which enhance the organism’s ability to handle in particular small-intestinal 

conditions. 

It has to be emphasized that the results presented in this study correspond to one 

specific strain and that different strains belonging to the same species could possibly 

encode for different functions, including utilisation of specific glycans as previously 

described by [370]. However, a deeper investigation of key players in the intestinal tract 

like R. ilealis CRIBT and others will lead to a better understanding of how the microbial 

communities in us function as a whole. The more we understand how each organism 

works, and how they interact, the better we get an insight into these environments and 

can predict how nutrition will influence our health and well-being.  
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Abstract 

Isomalto/malto-polysaccharides (IMMPs) are a novel type of soluble dietary fibres with a 

prebiotic potential capable of promoting growth of beneficial microbes in the gut. 

However, the mode of action of IMMPs remains unknown. Previous studies on IMMPs 

showed an increase in total bacteria, especially lactobacilli, and higher production of 

short chain fatty acids (SCFA) when IMMPs were fed to rats or used during in vitro 

fermentation. In this study, we investigated with metatranscriptomics how IMMPs with 

different amounts of α-(1→6) glycosidic linkages affected microbial function during 

incubation with human faecal inoculum. We showed that microbial community dynamics 

during fermentation varied depending on the type of IMMP used and that the observed 

changes were reflected in the community gene expression profiles. Based on 

metatranscriptome analysis, members of Bacteroides, Lactobacillus and Bifidobacterium 

were the predominant degraders of IMMPs, and the increased activity of these bacteria 

correlated with high amounts of α-(1→6) glycosidic linkages. We also noted an increase 

in relative abundance of these bacteria and an activation of pathways involved in SCFA 

synthesis. Our findings could provide a baseline for more targeted approaches in 

designing prebiotics for specific bacteria and to achieve more controlled modulation of 

microbial activity towards desired health outcomes. 
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Introduction 

The human gut is home to a diverse ecosystem inhabited by bacteria, archaea, viruses 

and eukaryotes, which play an important role in their host’s health and well-being [371-

373]. These organisms interact with each other and with the host via a complex network 

of relations, and knowing the mechanisms of these interactions and how to influence 

them might provide a useful tool for refining the function of this ecosystem to promote 

homeostasis and to strengthen host’s immunity against infections [374]. Currently there 

are only a few ways to manipulate the composition and function of the gut microbiota. 

These range from mild measures, such as the implementation of various dietary regimes 

and the use of dietary supplements, especially pro- and prebiotics [300], to more 

extreme ones, such as the use of antibiotics [375] or faecal transplantations [376]. 

Prebiotics are complex carbohydrates, often soluble dietary fibres, that cannot be 

digested by human enzymes but are readily used by the colonic microbiota and provide a 

health benefit for the host [281]. A range of different prebiotics may preferably stimulate 

growth and activity of specific microbial groups (e.g. butyrogenic bacteria [377]), 

leading to the production of different metabolites with health-supporting effects. 

However, the exact mode of action of most prebiotics remains unknown and their 

specific impact on microbial interactive networks needs to be investigated. 

Isomalto/malto-polysaccharides (IMMPs) comprise a novel class of soluble dietary fibres 

with prebiotic potential. These fibres are synthetized from starch by enzymatic 

conversion of α-(1→4) glycosidic linkages into α-(1→6) glycosidic linkages by 4,6-α-

glucanotransferase (GTFB) from Lactobacillus reuteri 121 [378]. The resulting α-(1→6) 

linkages present in IMMPs make these fibres resistant to digestion by human digestive 

enzymes in the small intestine. As such, this modified starch can pass undigested into 

the large intestine where it is fermented by the resident microbes capable of breaking 

down the α-(1→6) glycosidic linkages. This property of the IMMPs makes them 

potentially interesting as a prebiotic food ingredient capable of modulating the intestinal 

microbiota and exerting health promoting effects onto the host. A previous study has 

reported an increased production of short chain fatty acids (SCFA), especially acetate 

and propionate, when IMMPs were used as a carbon source for microbial in vitro 

fermentation with human faecal inoculum as the microbial source [378]. In this study, 

we investigated the effects of three different IMMPs on microbial composition and 

function during in vitro batch fermentations with faecal inoculum from healthy human 

adults. Here we show that specific changes of the microbiota, such as growth of 

Bifidobacterium and Lactobacillus can be attributed to the IMMPs, and that these 

changes are also reflected at the transcriptomic level, i.e. upregulation of specific gene 

groups, as well as in enzymatic activity and increase in production of SCFA. 

Materials and Methods 

In vitro fermentation; design and sampling 

The faecal inoculum stock was prepared at TNO (Zeist, The Netherlands) from fresh 

faeces of seven healthy adult donors. The stock was mixed, aliquoted and stored 

anaerobically at -80 °C [379]. Sterile 20 mL anaerobic serum bottles were filled with 10 

mL of the Standard Ileal Efflux Medium (SIEM; Tritium Microbiology, Eindhoven, The 

Netherlands). The SIEM was prepared according to Rösch et al. [380], but omitting the 
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carbon source and Tween 80. The modified SIEM medium contained 40% (v/v) BCO 

medium, 1.6% (v/v) salt solution, 0.8% (v/v) MgSO4 (50 g/L), 0.4% (v/v) cysteine 

hydrochloride (40 g/L), 0.08% (v/v) vitamin  solution and 10% (v/v) MES buffer (1 M, 

pH 6.0) in water. Before inoculation, a faeces stock aliquot was mixed with SIEM at 1:10 

v/v and incubated overnight at 37 °C. The activated inoculum was then added to the 

fermentation bottles at 1% (v/v) final concentration. Three different IMMP fibres were 

tested, with 27% (IMMP-27), 94% (IMMP-94) and 96% (IMMP-96) of α-(1→6) glycosidic 

linkages as compared to the total amount of glycosidic linkages. In addition, a pre-

treated IMMP-27 (IMMP-dig27) sample was included after it had been digested with α-

amylase and amyloglucosidase to imitate passage through the small intestine [381]. 

Samples were prepared and processed in duplicate with fibres added to individual 

fermentation bottles at a final concentration of 10 mg/mL. Flasks were incubated at 37 

°C, and 0.5 to 2 mL of each culture was removed at different sampling time points, 

depending on the experiment.  

In experiment A, cultures supplied with two different prebiotic fibres (IMMP-27 and 

IMMP-94) and one control culture without any substrate (IMMP blank) were monitored 

over 48 hours (in duplicate), and aliquots were removed at time points 0 (up to 15 min 

after addition of the prebiotic), 24 h and 48 h. In experiment B, cultures were supplied 

with two other prebiotics, IMMP-dig27 and IMMP-96, and one culture was left with no 

prebiotic (IMMP blank). Experiment B was monitored for 48 hours, and samples were 

taken at 6 h, 12 h, 24 h and 48 h (in duplicate). An aliquot of the activated blank 

inoculum was taken at time point 0, just before the addition of the IMMP. All samples 

(18) from experiment A were subjected to metatranscriptomic sequencing. In 

experiment B the metatranscriptomics sequencing was done for the activated inoculum 

at time point t0 and for the treatment groups at all time points (17). Samples for 

metatranscriptomics were harvested and immediately stabilized in RNAprotect (Qiagen, 

Hilden, Germany) following the manufacturer’s instructions, and bacterial pellets were 
stored at -80 °C for up to three weeks before further processing.  

RNA extraction and Illumina sequencing  

Total RNA was extracted by using the beat beating - TRIzol - column method modified 

from Kang et al. [382]. Briefly, bacterial pellets were re-suspended in 100 µL TE buffer 

(30 mM Tris-HCl, 1 mM EDTA, pH = 8.0) containing 15 mg/mL Lysozyme, 10 U/mL of 

Mutanolysin and 100 µg/mL of Proteinase K. Samples were vortexed for 10 s and 

incubated at room temperature for 10 min, and 400 µL of RLT buffer (Qiagen, Hilden, 

Germany) containing 4 µL of β-mercaptoethanol was added. Samples were then 

vortexed, mixed with 500 µL of TRIzol Max reagent (Invitrogen, Carlsbad, CA, USA) and 

homogenized with 0.8 g of sterilized 0.1 mm zirconia beads for three min (3 × 1 min 

with cooling in between) at 5.5 ms using a bead beater (Precellys 24, Bertin 

Technologies). Following the beating step, samples were cooled on ice, gently mixed by 

inverting the tube with 200 µL of ice cold chloroform for 15 s and centrifuged for 15 min 

at 4 °C at 12,000 × g. The aqueous phase containing total RNA was transferred to fresh 

tubes and mixed with an equal volume of 70% ethanol. The mixture was placed on a 

Qiagen RNeasy mini column (RNeasy Mini Kit, Qiagen, Hilden, Germany) and centrifuged 

at 8,000 × g for 15 s to bind RNA into the column. Filtrate was discarded, and the RNA 

binding step was repeated until the complete sample was filtered through the column.  
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The columns were rinsed with 350 µL of RW1 buffer (RNeasy Mini Kit, Qiagen, Hilden, 

Germany), and 80 µL DNAse I solution (Roche, Manheim, Germany) was applied to the 

column and incubated for 15 min at RT to digest DNA. The columns were rinsed twice 

with 350 µL RW1 buffer, and twice with 700 µL of RPE buffer (RNeasy Mini Kit, Qiagen, 

Hilden, Germany), following with a final wash with 80% ethanol. Columns were dried by 

a 2 min centrifugation at maximum speed, and total RNA was eluted with 30 µL of 

DNAse/RNAse free water. The total RNA concentrations were measured 

spectrophotometrically with an ND-1000 spectrophotometer (NanoDrop® Technologies, 

Wilmington, DE, USA), and residual DNA concentrations were measured with the Qubit® 

dsDNA BR Assay Kit (Life Technologies, Leusden, the Netherlands). Samples which 

contained over 10 ng/µL DNA contamination were treated with the Turbo DNAfree® Kit 

(Ambion, Bleiswijk, Netherlands) following manufacturer’s instructions and purified using 

the RNeasy Mini Kit. Total RNA quality was evaluated using the Experion RNA StdSens kit 

(Biorad Laboratories INC, USA), total RNA concentrations were measured with 

NanoDrop® and DNA contamination concentrations were measured with the 

Qubit®dsDNA BR Assay Kit. Between 3-5 µg of total RNA from each sample was used for 

mRNA enrichment with the RiboZero Bacterial rRNA Removal Kit (Illumina, San Diego, 

CA, USA), and the quality and quantity of enriched mRNA was assessed as described 

above for total RNA. Between 200-500 ng of enriched mRNA was used for cDNA 

production using the ScriptSeq®v2RNA-Seq Library Preparation Kit (Epicentre, Madison, 

WI, USA), FailSafe®PCR Enzyme Mix (Epicentre, Madison, WI, USA) and 

ScriptSeq®Index PCR Primers (Epicentre, Madison, WI, USA) for amplification and 

barcoding of di-tagged cDNA. The PCR product presence was confirmed with gel 

electrophoresis using the FlashGel® System (Lonza, Rockland, ME, USA). PCR products 

were then purified with the HighPrep® PCR kit (MagBio Genomics, Gaithersburg, MD, 

USA) and concentrations of indexed cDNA were measured using the Qubit®dsDNA BR 

Assay Kit (Invitrogen, Carlsbad, CA, USA). Approximately 28 ng of DNA from each 

sample was added to a pool, and final volume of each library was adjusted to 25 µL 

using the HighPrep® PCR kit. Two libraries were prepared containing either 17 or 18 

samples, with final concentrations of 20 ng/µL in each library. Libraries were sent for 

single end 150 bp Illumina HiSeq2000 sequencing (GATC, Konstanz, Germany). 

Bioinformatic processing, read assembly and annotation 

The bioinformatics workflow was adapted from Davids et al. [182]. SortMeRNA v1.9 

[209] software was used to screen the metatranscriptome data against all databases 

deployed with the program and to remove rRNA reads. Adapters were trimmed with 

cutadapt v1.2.1 [383] using default settings. Quality trimming was performed with 

PRINSEQ Lite v0.20.0 [384] with a minimum sequence length of 40 bp and a minimum 

quality of 30 on both ends of the read, and as mean quality. All reads containing more 

than three Ns or non-IUPAC characters were discarded.  

Reads from experiment A (Suppl. Figure S1) were pooled and assembled with IDBA_UD 

version 1.1.1 [385] using two rounds of assembly; firstly, with the options –min_count 

200 and – min_support 5, and secondly, the reads, which could not be mapped to this 

assembly with bowtie2 v2.0.6 [327], standard parameters, were extracted, and 

assembled with standard options, but with the output from the previous run provided as 

long reads. Contigs with an A/T content of >80% were removed from the final assembly. 

Because both experiments A and B were performed with aliquots from the same 
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inoculum, we did not include reads from experiment B in the assembly, but rather 

mapped reads to the assembly generated from reads obtained from experiment A as 

described below. Prodigal v2.5 was used for prediction of protein coding DNA sequences 

with the option for meta samples [191]. Protein sequences were annotated with 

InterProScan 5.4-47.0 [198] on the Dutch science grid (offered by the Dutch National 

Grid Initiative via SurfSara), and enriched by adding EC numbers using PRIAM version 

March 06, 2013 [386]. Carbohydrate active enzymes were predicted with dbCAN release 

3.0 [196]. Further enrichment for EC numbers was obtained by matching all 

InterProScan derived domain names against the BRENDA database (download 13.06.13) 

[387] and using a text mining algorithm that included removal of the non-

alphanumerical characters (colons, commas, brackets, etc.), partial and generic terms 

(type, terminal, subunit, domain, enzyme, like, etc.), as well as other smaller 

modifications. Details are provided in Supplementary Materials and Methods.  

Read counts from experiment A and B (Figure S1) were obtained with Bowtie2 v2.0.6 

[327] using default settings. BAM files were converted with SAMtools v0.1.18 [388], and 

gene coverage was calculated with subread version 1.4.6 [389]. Read mappings to the 

RNA-assemblies were inspected with Tablet [390]. 

Taxonomic assignments  

RNA sequences from the metatranscriptome assembly were compared with Blast 2.2.29 

[391] against the NCBI NT database (download 22.01.2014) using standard parameters, 

besides an E-value of 0.0001, to the human microbiome (download 08.05.2014), NCBI 

bacterial draft genomes (download 23.01.2014), NCBI protozoa genomes (download 

08.05.2014), and the human genome (download 30.12.2013, release 08.08.2013, NCBI 

Homo sapiens annotation release 105). Taxonomy was estimated with a custom version 

of the LCA algorithm as implemented in MEGAN [392], but with the following changes: 

only hits, which exceeded a bit-score of 50 were considered, and of these, only hits with 

a length of more than 100 nucleotides and which did not deviate more than 10% from 

the longest hit were accepted.  

From all sequences from the assembly, which did not have a match in any of the former 

blast analyses, another run with the – blastn option was performed against the same 

databases, and in case this did not yield any results, a blastp of the predicted proteins 

was performed against a custom version of the KEGG Orthology database 

(http://www.genome.jp/kegg/ko.html, download 25.04.2014). Taxonomic assignment 

was again performed with the LCA algorithm, and for the blastp run only hits which did 

not deviate by more than 10% from the hit with the maximum identity were considered. 

Differential expression 

Differential expression analysis was performed at genus level in R version 3.1.1 [393] 

with the TCC package release 1.6.5 [394], with 36 iterations and the combination of 

tmm normalization and edgeR, with an FDR=0.1. Only genes with a q-value (multitest 

corrected p-value) of less than 0.01 in any of the relevant comparisons were considered 

to be significantly differentially expressed, unless otherwise mentioned. 
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Metabolic mapping 

Two rounds of clustering were performed to detect patterns in the expressed genes 

(Figure S2). All genera, which either had an average read count of >=10 per gene, or 

which exceeded 1% of all reads in any given condition, were clustered into groups based 

on relative counts per group using the k-means algorithm in Scipy version 1.6.1 [395]. 

To determine the stability of the clustering, 50 iterations with a clustering between 1 and 

20 clusters were performed, with the option “iter” set to 100.000. Afterwards the 
average cluster support per amount of clusters over all the iterations was computed, and 

additionally, the clustering was investigated with a custom python implementation of 

clustergrams [396]. Within the clustered genera, genes with similar expression patterns 

were identified with the DBSCAN algorithm [397]. Clustering on expression patterns was 

performed with ELKI 0.7.0~20150828 [225], the –minpts parameter was fixed to 3 and 

the epsilon parameter was varied in percentages. Final clustering was evaluated using 

the Tau index as implemented in ELKI, and the clustering result with the best Tau was 

chosen, unless a lower Tau led to better cluster separation.  

Only genes which were differentially expressed in at least one sampling time point in any 

of the incubations (i.e. Ino.BL, IMMP-27, IMMP-94, IMMP-96, IMMP-dig27), were 

considered in the clustering analysis. Genes were normalized per row before the 

clustering. All derived EC numbers were mapped with custom scripts onto the KEGG 

database [227] and visualized with Python Scipy version 1.6.1 and NumPy version 0.9.0 

[395]. Correlations were calculated with the mentioned versions of Scipy/NumPy. 

Differentially expressed genes were mapped separately for groups of interest, and 

changed functions were derived from visual inspections. Cofactor requirements were 

investigated with the Expasy database [398]. 

Data accessibility 

The raw data has been uploaded to the EBI under project number PRJEB13209. 

Results 

We performed two in vitro batch fermentation experiments to investigate the influence 

of different IMMPs on human faecal microbiota. Our aim was to understand how the 

IMMPs containing different amounts of α-(1→6) glycosidic linkages were broken down 

by bacteria over time, and how the chemical structure of these compounds affected the 

functional dynamics of the microbial community during fermentation. Experiment A 

included fermentation of IMMPs of varying percentage of α-(1→6) glycosidic linkages 

(27%, IMMP-27; 96%, IMMP-96) at three different time points. This was complemented 

by experiment B that was performed with IMMP with 94% α-(1→6) linkages (IMMP-94) 

and IMMP-27 after treatment with α-amylase and amyloglucosidase (IMMP-dig27). 

Furthermore, in experiment B an additional set of time points was evaluated to provide 

a more detailed understanding of microbial community dynamics. In both experiments a 

control blank that did not receive any IMMP substrate was included. We then performed 

metatranscriptome sequencing of all these samples, and assembled the resulting data 

into one reference metatranscriptome. Afterwards, machine learning techniques were 

applied to identify groups of similarly behaving bacteria and to discover consistent 

dynamic patterns in gene expression. 
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Quality control and statistics 

The metatranscriptome was sequenced and subjected to a quality control process before 

the data was further analysed (Figure S1). As a result, 320 million reads (89% of the 

raw reads and 54% of all bases) passed the quality check and were used for assembly 

into contigs. In experiment A, the assembly yielded over 140,000 contigs, with more 

than 200,000 protein coding genes, and contained, on average, 81% of the input reads 

(range 71% - 85%) per sample. Read counts for experiment B were acquired by 

mapping to the same assembly obtained from experiment A (Table S1), and showed the 

same average mapping rate (81%, range 71% - 89%). After mapping, the biological 

replicates within each experiment showed a spearman correlation of on average 86% 

(range 78% - 93%), indicating good reproducibility within the sets of samples from the 

same treatment group.  

Community structure and activity patterns 

Taxonomic classification to at least the superkingdom of bacteria was assigned to 

190,000 of the 200,000 genes obtained from the RNA-assemblies. Less than 3,000 

genes were assigned to eukaryotes and less than 2,000 to Archaea. Of the bacterial 

groups, most genes were assigned to the orders Bacteroidales (>67,000), Clostridiales 

(>40,000), Lactobacillales (27,000) and Enterobacteriales (>14,000). The genus with 

the highest number of assigned genes was the genus Bacteroides (>54.000; Figure 1).  

To identify bacterial activity patterns, we focused on RNA reads for which a KEGG 

Orthology (KO) or EC identifiers could be assigned. The percentage of reads with 

defined KO or EC ranged from 42% to 83% for different samples. Most of the 

expression data with assigned KO or EC identifiers came from 22 bacterial groups, of 

which 12 could be assigned to a known genus, and only a small number of genes was 

assigned to minor groups (3%), unclassifiable sequences (3%), and sequences not 

classifiable beyond the superkingdom bacteria (3.5%). In the activated inoculum at the 

start of the incubation (t0), unclassified Enterobacteriaceae were the most active group 

(Figure 1). However, once the incubation had started, the relative activity of 

Bacteroides increased in all treatment groups. In all samples combined across all 

treatment groups and time points, 39% of all expression data came from the genus 

Bacteroides and 27% from unclassified Enterobacteriaceae. Overall, the relative 

abundance of different bacterial groups based on the metatranscriptome data 

corresponded to the pattern in the relative abundance of different taxa based on the 

16S rRNA gene analysis described previously by Gu et al. [381](Figure 2).  
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Figure 2: Correlation between the relative activity of the main bacterial groups based 
on metatranscriptome data, and their relative abundance based on 16S rRNA gene 
sequencing data (Gu et al., unpublished). In case when genus level assignment was 
ambiguous, unclassified fraction within the next higher taxonomic level was used. 

 

Global and IMMP specific co-occurrence of taxa 

It is known that in microbial ecosystems bacterial taxa occupy different niches and co-

exist forming a complex network of co-dependencies. We wanted to assess whether, 

based on the metatranscriptome data, we could identify bacterial groups which co-

occurred in our samples and in relation to specific IMMPs. We performed clustering 

analysis based on mRNA reads from all samples in our dataset to test for global co-

occurrence patterns. We showed that clustering into nine groups was most stable. An 

overview of organism assignment per cluster, with number of assigned genes and 

differentially expressed genes is provided in Table S2. One of these clusters was present 

in all t0 samples, but decreased or was absent at all other time points. This cluster 

consisted mostly of reads assigned to Ruminococcus and Lactococcus as well as reads 

that could be largely classified as contamination from the sampling (e.g. Homo, Mus, 

Bos, unclassified Mammalia). The second and third cluster consisted mainly of genera 

that also include many probiotic organisms, i.e. Bifidobacterium, Lactobacillus, and 

Enterococcus, and sequences, which could not be classified beyond a related higher 

order (e.g. unclassified Bifidobacteriaceae, unclassified Lactobacillaceae). These clusters 
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also contained a related phage group (Myoviridae, mainly Lactobacillus phages), and an 

unrelated genus (Fusobacterium). The identified genera in cluster two and three showed 

an increasing pattern in terms of relative transcript abundance in all the cultures which 

were supplied with IMMP substrates, whereas relative transcript abundance was 

decreased or undetected in the control cultures without IMMPs. The fourth cluster was 

dominated by E. coli and related higher order classifications (e.g. unclassified 

Enterobacteriaceae), together with other enterobacteria such as Enterobacter, 

Citrobacter and Klebsiella, and the unrelated genus Eubacterium. This cluster was 

mainly present in the samples without prebiotics, and declined in the samples with 

prebiotics. The fifth cluster was dominated by Bacteroides, and showed an increase with 

time in all incubations. This cluster also included Parabacteroides, Prevotella, 

Flavobacterium, and Desulfosporosinus. The sixth cluster consisted only of 

Clostridium/unclassified Clostridia, which showed some increase with time in all 

incubations. The seventh cluster contained Anaerostipes and related higher order 

classifications (unclassified Clostridiales, unclassified Lachnospiraceae) and showed a 

similar pattern as cluster six. No clear pattern was seen for the eighth cluster consisting 

of Corynebacterium, Ethanoligenes, Odoribacter, and Sutterella. Finally, the ninth group 

consisted of different bacterial genera, some of which also containing known pathogens 

(Bilophila, Phascolarctobacterium), some related to non-carbohydrate metabolizing 

bacteria (Acidaminococcus), and some known gut symbionts like Veillonella and 

Megasphaera. This group was common in samples of incubations without any prebiotics 

at 48 h, and was nearly absent in all the other samples. 

Detection of specific gene expression patterns 

Besides the co-occurrence of bacterial groups, the specific gene expression patterns 

within these groups were investigated as well, based on the optimal gene clustering for 

all bacterial groups using DBSCAN. The clustering with the optimal tau was chosen for 

all bacterial groups, except for the genus Enterococcus, for which a suboptimal tau lead 

to better cluster separation. As a result, the DBSCAN gene clustering analysis revealed 

the presence of three main patterns in the expression in nearly all observed bacterial 

groups (Figure S3). These three patterns comprised in all cases at least 80% of all 

investigated genes, which were not considered noise. The first pattern was present in all 

incubations, and was characterized by genes which were expressed only at t0, and not 

expressed at any later time points. The second pattern was found only in the control 

group and only at 48 h. The third, and the most common pattern found in all 

experimental groups included genes that were not expressed at t0, but showed 

upregulation at the later time points during incubation. This pattern was characteristic 

for genes assigned to the genera Enterococcus and Bacteroides, which showed big gene 

clusters increasingly expressed over time in all treatment groups including the control 

group. Bifidobacterium/Lactobacillus and Clostridium also showed the same pattern, but 

only in the groups where IMMPs were present. Eubacterium hallii, showed the same 

gene expression pattern, but only in the group supplemented with IMMP-27 (Figure S3). 

The expression levels of genes assigned to a specific bacterial group indicates its 

contribution to utilising the specified substrate, or its by-products. The high overall 

relative activity of bifidobacteria (and unclassified Bifidobacteriaceae), lactobacilli, 

enterococci, and unclassified Actinobacteria was positively correlated with the presence 

of IMMPs (Figure 1). Contrary, the activity of unclassified Proteobacteria, Prevotella, 
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Sutterella, Acinetobacter, Eggerthella, Acidaminococcus, Streptococcus, 

Phascolarctobacterium, and Bilophila was negatively associated with the presence of 

IMMPs, as compared to the control group.  

General metabolic effects of IMMP 

We wanted to further investigate the activity of the bacterial groups associated with the 

fermentation of different IMMPs. Our analysis of the metabolic clusters revealed that 

five bacterial groups found in the faecal inoculum, namely Bifidobacterium/Lactobacillus, 

Enterococcus, Bacteroides, Clostridium, and Eubacterium hallii, showed a considerable 

upregulation of general metabolic pathways like glycolysis, nucleic acid or fatty acid 

biosynthesis, as compared to the gene expression at t0. When we compared metabolic 

patterns between different bacterial groups, the groups exhibited overall different 

metabolic patterns. Members of the genus Bacteroides active in our incubations showed 

at first a unique partial upregulation of Vitamin B12 metabolism. An investigation of the 

cofactor requirements showed that Vitamin B12 in Bacteroides is essential for 

methionine synthase and methylmalonyl-CoA mutase, the latter of which produces 

methylmalonyl-CoA from succinyl-CoA (Figure 3).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Overview of the metabolism of specific microbial groups observed in the 
samples taken during in vitro fermentation of different IMMPs by human faecal inoculum 
All samples show in general the same patterns for all organisms, besides for 
Eubacterium hallii, which only showed expression in the samples with IMMP-dig27. The 
genus Enterococcus showed the same pattern as Bifidobacterium/Lactobacillus, but at 
lower relative transcript abundance. Grey indicates that certain genes were not 
differentially expressed within a pathway. 5-ALA = 5-Aminolevulinate, AC = Acetate, Ac-
CoA = Acetyl-CoA, BUT = Butyrate, FORM = Formate, FUM = Fumarate , GLC = Glucose, 
LAC = Lactate, PROP = Propionate, PROP-CoA = Propanoyl-CoA, PYR = Pyruvate, SUC = 
Succinate, SUC-CoA = Succinyl-CoA 
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Methylmalonyl-CoA mutase is involved in propionate biosynthesis, and our data showed 

that the whole pathway for propionate biosynthesis was, in fact, upregulated. The data 

further showed that many genes coding for proteins involved in iron scavenging were 

also upregulated (e.g. FecR). One of the genes coding for an enzyme with iron 

requirements was that encoding succinate dehydrogenase, which converts succinate 

into fumarate. This function, as well as all others in the TCA cycle, showed upregulation 

in all samples tested. The genus Clostridium also showed an upregulation of genes 

involved in Vitamin B12 production, but the biosynthesis occurred via glutamate, 

whereas in the Bacteroides group it was produced via succinate. The genes in the 

pathway for propionate production were overall upregulated (production via acetyl-CoA, 

not succinyl-CoA), similar to the genes in lactate and butyrate production pathways. The 

only other enzyme requiring Vitamin B12 in the microbiome was a multimer of 

propanediol dehydratase or glycerol dehydratase (ambiguous taxonomic assignment), 

which are both involved in the breakdown of glycerol/glycerone phosphate to 

propanol/propionate/1,3-propanediol. However, a full upregulation of either pathway 

was not observed. The Bifidobacterium/Lactobacillus group and the Enterococcus group 

showed upregulation of genes related to production of lactate from pyruvate, and the 

Bifidobacterium/Lactobacillus group also showed upregulation of genes encoding 

proteins involved in butyrate production, but it is unclear if butyrate would be directly 

produced from pyruvate, or derived from external acetate. Eubacterium hallii, on the 

other hand, showed high activity related to converting lactate into butyrate, as also 

shown previously [399]. In addition, our data indicated that formate was produced by 

the Enterococcus and Bacteroides populations. 

Microbial groups directly involved in the degradation of the IMMPs  

In order to gain insight into which bacterial groups are directly involved in degradation 

of different IMMPs, we used the KEGG reference pathway for starch and sucrose 

metabolism [227]. We surveyed our data for the expression of the genes encoding 

enzymes that are known to be involved in sucrose and starch metabolism. More 

specifically we focused on genes encoding enzymes from glycoside hydrolase family 13 

(http://www.cazy.org/GH13_bacteria.html), as this family includes a number of 

bacterial proteins shown to be essential in degradation of similar compounds, such as 

isomaltooligosaccharides (IMO) [400]. The majority of genes listed in the KEGG starch 

and sucrose metabolism pathway were detected in our transcriptome data (Figure S4), 

as well as some additional genes in glycoside hydrolase family 13 (EC 3.2.1.135, 

3.2.1.68 and 3.2.1.11), which were not listed in the KEGG pathway, but which are 

known to be activated during the degradation of pullulan and dextran [401-404]. It is 

interesting to note that the relative contribution of these starch and sucrose metabolism 

genes to the total number of genes from each sample did not correlate with the 

presence or absence of IMMPs in the samples. The only exception was incubation with 

pre-treated IMMP-27, in which starch and sucrose metabolism genes reached 10% at 12 

h and about 12% at 48 h, whereas in other groups they ranged between 4 to 5% 

(Figure S5). Despite of the similarities in the overall expression of the starch and 

sucrose metabolism genes in all samples, we could see differences in the relative 

abundance of genes coding for specific enzymes depending on the IMMP used, and the 

duration of the fermentation (Figure S6).  

http://www.cazy.org/GH13_bacteria.html
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One of the aims of this study was to better understand the functional dynamics of the 

bacterial communities during IMMP degradation. Previously reported HPAEC and HPSEC 

analyses [381] showed that the degradation of IMMP-94 and IMMP-96 occurred between 

12 h and 24 h of the incubation. At 24 h and 48 h we noted an increase in the 

expression of genes coding for enzymes that might be directly involved in the hydrolysis 

of α-(1→6) glycosidic linkages, namely EC 3.2.1.10 – oligo-1,6-glucosidase, EC 3.2.1.11 

– dextranase, and EC 3.2.1.33 – amylo-α-1,6- glucosidase (Figure S7a,b). There was 

also an increase in the expression of genes coding for enzymes that can hydrolyse α-

(1→4) glycosidic linkages, mainly the EC 3.2.1.1 – α-amylase, EC 3.2.1.20 – α–
glucosidase 4-α-glucanotransferase, and EC 2.4.1.25 – 4-α-glucanotransferase. Since 

IMMP-27 contains lower amounts of α-(1→6) linkages, its degradation also involves the 

activation of the same genes, however, the expression levels of the genes encoding 

enzymes which hydrolyse α-(1→6) linkages were much lower (Figure S7a,b). Bacterial 

groups that contributed the most to the primary degradation of IMMP’s α-(1→6) 

linkages were Lactobacillus, Bifidobacterium and Bacteroides, all expressing the genes 

encoding EC 3.2.1.10 oligo-1,6-glucosidase and EC 3.2.1.11 dextranase. On the other 

hand, the metatranscriptomic data suggests that α-(1→4) linkages were hydrolysed 

mainly by Bacteroides, unclassified Bacteroidales, unclassified Enterobacteriaceae, 

Lactobacillus and Bifidobacterium via EC 3.2.1.1 alpha-amylase and EC 2.4.1.1 

glycogen/amylophosphorylase (Figure S8). Based on the transcript data, 

Bifidobacterium and Lactobacillus were mainly active in the degradation of IMMP-94 and 

IMMP-96 at 24 h (Figure 4, and Figure S8). These genera were also active in 

degradation of IMMP-27 and the pre-treated IMMP-27, but their relative contributions 

were much lower (Figure 4, and Figure S8). The breakdown of IMMPs at 24 h and 48 h 

was otherwise dominated by Bacteroides, with the exception of pre-treated IMMP-27 at 

48 h, which showed a high level of expression of genes assigned to unclassified 

Enterobacteriaceae. Figure 4 summarises our model of IMMP degradation and confirms 

the specialised role of lactobacilli and bifidobacteria in hydrolysis of α-(1→6) linkages. It 

also reveals the important contribution of Bacteroides as both, primary and secondary 

degraders of IMMPs and their by-products. 
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Figure 4: Overview over the main degradation pathways starting from dextran. Colours 
in the top panel indicate the main contributors to a reaction. The bottom panel shows 
the overall expression in reads per kilobase per million (RPKM) per organism at time 
points 24 and 48h for all conditions. If an enzyme could not be identified by its 
associated EC number, then the KO or CAZy identifier used for identification are given in 
brackets. 
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Discussion 

Prebiotic food components should be resistant to host’s gastric enzymes, fermentable by 
the host’s intestinal microbiota and capable of promoting growth and activity of bacterial 
groups associated with health [405]. The IMMPs seem to fulfil all these criteria [281, 

406, 407]. Earlier studies demonstrated that hydrogenated and high DP IMMPs are not 

or little-digestible by rat gastric enzymes [407], and that diets containing IMMPs are 

associated with higher numbers of lactobacilli, and an overall increase in the number of 

intestinal bacteria [408]. Moreover, a recent study with human inoculum reported that 

IMMPs can be fermented by human large intestinal microbiota and that SCFAs, in 

particular acetate and propionate, are produced, indicating that IMMPs may stimulate 

activity of probiotic groups [378]. This is in accordance with earlier findings from a small 

human trial that showed an increased level of bifidobacteria in subjects who received 

IMOs in their diets [406]. 

In our study, we confirmed the prebiotic character of the IMMPs and showed that the 

specific effect of different IMMPs on human faecal microbiota composition and activity 

varied during in vitro fermentation, depending on the relative amount of α-(1→6) 

glycosidic linkages present in the substrate. When IMMP-94 and IMMP-96 were used as a 

carbon source, we observed a strong upregulation of genes in the probiotic cluster, 

specifically genes assigned to bifidobacteria and lactobacilli. Furthermore, high relative 

activity of these bacteria corresponded with an increase in their relative abundance as 

estimated by rRNA gene sequencing [381]. In contrast, when the pre-treated IMMP-27 

was used as a substrate, the relative activity of bifidobacteria and lactobacilli was lower, 

these bacteria were less active in the control, and their activity peak in the presence of 

IMMP-27 was delayed to 48 h. Interestingly, all IMMP treatment groups showed a time 

lag between the maximum relative activity, and the increase in the corresponding 

bacterial relative abundance as measured by rRNA gene-targeted community analysis 

[381]. For example, the maximum activity of bifidobacteria was observed at 24 h of 

incubation when IMMP-94 and IMMP-96 were used as substrates. Yet, bifidobacteria 

reached their highest relative abundance only at 48 h when their relative activity had 

already decreased. The relative activity of lactobacilli followed a pattern similar to that of 

bifidobacteria in all treatment groups, except for incubations with IMMP-94 where 

lactobacilli showed maximum relative activity at 12 h, whereas bifidobacteria activity 

peaked at 24 h. Relative activity of Bacteroides was very high in all groups, regardless of 

the incubation time, presence and type of the IMMP that was used as a carbon source. 

Bacteroides spp. are known to be generalists that are able to break down a wide array of 

carbon sources [409]. Bifidobacteria and lactobacilli are often more specialised and can 

grow on substrates that are chemically not accessible to other bacteria in the microbial 

ecosystem. This may be the reason that these groups show delayed activity in relation to 

Bacteroides, as only after the depletion of the easily accessible IMMP fractions containing 

the α-(1→4) glycosidic linkages the bacterial groups capable of utilising the α-(1→6) 

glycosidic linkages gained a competitive advantage. It is known that bacteria can sense 

specific polysaccharides and produce specific sets of enzymes according to their 

individual nutrient prioritization schemes [71]. The patterns of activity and growth in the 

presence of IMMP-27, pre-treated IMMP-27 and in the control group may confirm this 

hypothesis, as we observed increased relative abundance of Parabacteroides, Sutterella, 

Parasutterella, Enterococcus, unclassified Lachnospiraceae Incertae Sedis, Eggerthella 

and few other groups [381]. High relative abundance of these groups could be explained 
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by the presence of residual α-(1→4) glycosidic linkages, or the presence of products 

generated during the enzymatic conversion of the α-(1→4) glycosidic linkages into α-

(1→6) glycosidic linkages during the IMMP pre-treatment process, or by more efficient 

scavenging on other bacteria or their metabolites.  

While some of the beneficial bacteria increased in relative abundance and activity with 

the presence of IMMPs, we also noted that the exclusive use of these prebiotics put a 

selective pressure on other beneficial microbes. For example, Lactococcus lactis and 

Ruminococcus bromii - two specialized beneficial degraders, did not show any survival in 

our samples [381]. This can be explained by the lack of suitable substrate for both 

species, given that neither any simple mono- or disaccharides (for Lactococcus [410]) 

nor type II or III resistant starch (for Ruminococcus [411]) were present in this 

experiment. Although both organisms can be considered a probiotic, they were not 

stimulated in the particular prebiotic environment tested here, enforcing the notion that 

prebiotics can selectively stimulate activity and growth of specific groups, whereas in 

general, a diverse diet may be necessary to comprehensively support a stable 

community of commensal microbes.  

In our study we also observed a clear effect of having no carbohydrate source in the 

control samples. With the absence of the prebiotics, there was a switch of the 

community from processing carbohydrates to utilising amino acids [412], as indicated by 

the increase of relative abundance of Acidaminococcus [381]. In addition, there was an 

increase of Bilophila in the control samples, which is an organism previously associated 

with gut dysbiosis [413].  

IMMP Degradation Model 

A total of 130 families of glycoside hydrolases, 22 families of polysaccharide lyases, and 

16 families of carbohydrate esterases have been described, and many of these enzymes 

are encoded only by the genomes of microbes (www.cazy.org) [195]. We surveyed our 

data for the presence of genes encoding the enzymes that are known to be involved in 

sucrose and starch metabolism, mostly genes from glycoside hydrolase family 13. Few 

studies up to date looked at the genetics and enzymology of degradation of IMMPs 

mainly in lactobacilli [402, 414, 415], bifidobacteria [416] and Bacteroides. However, 

microbial species in the gut do not act in isolation, but rather interact with each other 

through a network of syntrophic interactions often making the utilization of the substrate 

more effective [417]. Metabolic potential and fermentation efficiency vary between 

different species, and complete degradation of IMMPs in the gut is a result of different 

bacterial groups working together in a complementary fashion, likely leading to the 

formation of microbial food chains [417, 418]. Certain bacterial groups may show a 

higher activity at specific degradation steps, as measured by the expression of specific 

genes coding for enzymes required to catalyse given reactions. This is also visible in our 

experiments. The expression of oligo-1-6-glucosidase encoding genes was dominated by 

lactobacilli and bifidobacteria when IMMP-94 and IMMP-96 were used as a substrate, 

whereas Bacteroides and unclassified Bacteroidales were also highly active in the 

presence of IMMP-27 or IMMP-dig27. Similar patterns could be observed in expression of 

other genes that code for enzymes involved in sucrose and starch metabolism (Suppl. 

Figure S8). While some of the carbohydrate breakdown steps were dominated by known 

probiotic genera, many of the primary and secondary degradation processes were also 

http://www.cazy.org/
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performed by members of Bacteroides. Our data showed that once the fermentation 

started, one of the very specialized enzymes, dextranase, was produced only by 

Bacteroides. Other processes were found reliant on multiple genera as based on the 

gene expression data. For example, the breakdown of the IMMP27 and IMMP-dig27 to 

maltose and maltotriose by α –amylases was dominated by Bacteroides, whereas the 

further metabolisation was performed also by bifidobacteria and lactobacilli. 

Furthermore, other groups such as enterobacteria or Parabacteroides were not involved 

in most of these breakdown processes, but still constituted viable populations in the 

communities. Their functional role in the community is, however, not clear.  

Metabolites of fermentation 

Experimental results showed that the administration of IMMPs lead to an increased 

production of different SCFAs, mainly acetate and succinate [381]. While succinate 

normally does not accumulate in this medium [60], the excess of substrate [419], high 

CO2 levels, and the upregulation of all the necessary steps [61] in our metabolic 

mapping, including the necessity for iron, could explain such accumulation. In addition, 

previous studies showed that succinate accumulation is associated with oversupply of 

complex substrates [286], such as prebiotics, or in our case IMMPs or when further 

metabolisation of succinate is unnecessary [60]. It is also possible that lack of Vitamin 

B12, which is necessary for propionate production [61], and for which an upregulation 

could be observed, resulted in the accumulation of succinate instead of propionate. 

However, we are unable to conclude the exact reason based on our data. One of the 

other propionate production pathways, the acrylate pathway [287], could not be 

detected in the data. However, it is tempting to speculate that the production of 

propionate proceeded via the direct fermentation of pyruvate via 3-hydroxypropionate 

and acryloyl-CoA in the currently studied fermentation. This pathway has not been 

described before, but it is potentially visible in the data, with just a few reactions 

missing. Furthermore, the potential of producing propionate via 1,2-propanediol directly 

through methylglyoxal is indicated in the data. Unfortunately, no definite conclusions can 

be drawn due to missing steps in the metabolism of the involved populations 

(Bifidobacterium/Lactobacillus for the former, and Clostridium for both), however, the 

possibility of these alternative pathways should be investigated. Besides succinate, 

propionate and acetate, also lactate and butyrate were observed as metabolites [381].  

Dietary fibres, including modified starches such as IMMPs offer a promising, non-invasive 

way to intentionally manipulate gut microbiota composition. Investigations of whole 

bacterial communities and understanding of the mechanisms by which microorganisms 

interact to degrade different dietary carbohydrates are essential for our ability to 

manipulate gut microbiota to benefit our health. We showed how IMMPs can increase the 

relative abundance and activity of beneficial bacteria, making these novel prebiotics 

potentially useful in improving host’s health from the aspect of nutrition, to achieve 
prevention or even alleviation of diseases.  
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Supplementary information 

 

Figure S1: Figure S1: Experimental design.  
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Figure S2: Overview over the clustering procedure. First, expression was lumped at the 
genus level. On the accumulated expression data k-means clustering was performed, 
until a stable clustering was achieved. The genes of the grouped genera were afterwards 
subjected to DBSCAN clustering. The stability of the clustering was evaluated with the 
Tau-parameter. Only genes, which were at least once differentially expressed, were used 
in the clustering process to reduce the noise. 
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Figure S3: Overview of the main gene expression patterns. All groups (Bacteroides, 

E.coli, Lactobacillus/Bifidobacterium, Enterococcus; besides Eubacterium hallii) showed 
in all prebiotic conditions increase in relative transcript abundance in roughly the same 
proportion (green). Some groups (Bacteroides, Escherichia) also showed comparable 
increase in expression in the control condition (dotted green line). Furthermore, all 
groups showed a downregulation of certain genes in all conditions (red), and an 
upregulation of a group of genes in the control condition (black). Eubacterium hallii 
showed only increase in transcript abundance at the last time point with the prebiotic 
IMMP-27 (yellow). 
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Figure S4: Starch and sucrose metabolism enzymes detected in the data. 

 

 

Figure S5: Relative abundance (percentage) of starch and sucrose metabolism enzyme 
encoding genes detected in the metatranscriptome data. 
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Figure S6: Heatmap of log10 transformed relative abundances of expressed genes 
detected in our data coding for starch and sucrose metabolism enzymes. Samples 
clustered based on the similarities between the up and down regulated genes. The red 
arrows indicate selected genes that code for enzymes described in our IMMP degradation 
model. Green boxes highlight the gene upregulation patterns for different IMMPs at 
various incubation times. 
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Figure S7: IMMP degradation model. a. main enzymes involved in the pathway, b. 
relative abundance of transcripts of genes coding for enzymes needed for IMMP 
degradation. 
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Figure S8: Relative contribution of different bacterial groups to expression of genes 
coding for the enzymes in the IMMP degradation pathway. Colour coding as in Figure S7. 

 

 

 

Table S1. Overview over the RNA-seq metrics 

Condition total reads rRNA 
% 
rRNA non rRNA 

trimmed bases due 
to adapters 

% of 
bases 
trimmed 
due to 
adapters 

sequences 
passing prinseq 
quality filtering 

% passing 
prinseq 
quality 
filtering 

mean 
length 

Total % of 
bases 
passing 
ALL 
filtering 
steps 

Mapping 
rate in % 
to 
assembly 

Blank, repl. 1, 
t0 17182356 388147 2,26 16794209 713631983 28,14 15120013 90,03 108,34 63,56 79,06 

Blank, repl. 2, 
t0 12843968 234407 1,83 12609561 620076640 32,57 11339128 89,92 101,95 60,00 75,99 

IMMP-27, 
repl. 1, t0 18661592 402676 2,16 18258916 844672334 30,64 16454635 90,12 104,71 61,55 71,29 

IMMP-27, 
repl. 2, t0 21152485 438493 2,07 20713992 881059209 28,17 18728000 90,41 108,06 63,78 74,42 

IMMP-94, 
repl. 1, t0 30405866 555904 1,83 29849962 1087733238 24,13 26908763 90,15 113,98 67,25 79,06 

IMMP-94, 
repl. 2, t0 19354896 777385 4,02 18577511 588584413 20,98 16575459 89,22 119,53 68,24 80,79 

Blank, repl. 1, 
t24 27195831 243329 0,89 26952502 917731871 22,55 24835747 92,15 114,96 69,99 81,28 

Blank, repl. 2, 
t24 26279510 263802 1,00 26015708 1199020108 30,52 23724640 91,19 103,99 62,59 81,43 

IMMP-27, 
repl. 1, t24 12540536 1832716 14,61 10707820 587094636 36,31 9467522 88,42 93,59 47,10 85,32 

IMMP-27, 
repl. 2, t24 23402662 2094144 8,95 21308518 775851341 24,11 18915069 88,77 111,03 59,83 86,95 

IMMP-94, 
repl. 1, t24 14390413 901227 6,26 13489186 729841441 35,83 12186486 90,34 96,64 54,56 85,41 

IMMP-94, 
repl. 2, t24 27352727 1655263 6,05 25697464 1235521747 31,84 23084321 89,83 102,74 57,80 84,52 

Blank, repl. 1, 
t48 22532893 822320 3,65 21710573 1368385387 41,74 19533106 89,97 88,47 51,13 79,64 

Blank, repl. 2, 
t48 23432237 902055 3,85 22530182 1200860127 35,3 20328428 90,23 97,88 56,61 80,17 

IMMP-27, 
repl. 1, t48 24004294 4361225 18,17 19643069 1175519132 39,63 16574957 84,38 92,59 42,62 81,24 

IMMP-27, 
repl. 2, t48 21275156 8177863 38,44 13097293 691799504 34,98 11702497 89,35 98,7 36,19 80,22 

IMMP-96, 
repl. 1, t48 28735621 11137710 38,76 17597911 1296700269 48,8 14765189 83,9 81,2 27,82 83,92 

IMMP-96, 
repl. 2, t48 35679453 11638379 32,62 24041074 1511937150 41,65 20304145 84,46 92,59 35,13 85,36 

IMMP-96, 
repl. 1, t6 18066769 185180 1,03 17881589 390649819 14,47 15736624 88 126,02 73,18 75,76 

IMMP-96, 
repl. 2, t6 20993700 55456 0,26 20938244 412525567 13,05 18327046 87,53 128,66 74,88 71,55 

IMMP-96, 
repl. 1, t12 35944607 70088 0,20 35874519 1270799851 23,46 31773426 88,57 113,35 66,80 76,36 

IMMP-96, 
repl. 2, t12 22773537 64983 0,29 22708554 964291453 28,12 20307424 89,43 106,59 63,37 76,79 

IMMP-96, 
repl. 1, t24 17241186 1380292 8,01 15860894 385783659 16,11 13984773 88,17 122,24 66,10 87,1 

IMMP-96, 
repl. 2, t24 19319950 1502708 7,78 17817242 607265419 22,57 15673285 87,97 111,85 60,49 86,3 

IMMP-96, 
repl. 1, t48 34060532 145402 0,43 33915130 1420500568 27,74 30260173 89,22 107,64 63,75 75,81 

IMMP-96, 
repl. 2, t48 31992519 119756 0,37 31872763 1450909006 30,15 28116504 88,21 105,1 61,58 72,91 

Blank, repl. 1, 
t0 14780189 291372 1,97 14488817 458214833 20,94 12514201 86,37 111,32 62,84 84,1 

IMMP-dig27, 
repl. 1, t6 21177851 113633 0,54 21064218 1266290906 39,81 17927736 85,11 89,44 50,48 81,34 

IMMP-dig27, 
repl. 2, t6 14730499 91528 0,62 14638971 464265511 21 12827318 87,62 113,79 66,06 81,04 

IMMP-dig27, 
repl. 1, t12 19229982 120092 0,62 19109890 353792739 12,26 16872478 88,29 128,38 75,09 81,28 

IMMP-dig27, 
repl. 2, t12 19183847 184071 0,96 18999776 449569556 15,67 16837679 88,62 123,83 72,46 81,79 

IMMP-dig27, 
repl. 1, t24 19000262 346531 1,82 18653731 573909821 20,38 16612325 89,06 117,09 68,25 82,71 

IMMP-dig27, 
repl. 2, t24 18981915 260033 1,37 18721882 214922072 7,6 16320453 87,17 135,84 77,86 83,29 

IMMP-dig27, 
repl. 1, t48 19947312 1144473 5,74 18802839 508216740 17,9 16742425 89,04 120,37 67,35 88,6 

IMMP-dig27, 
repl. 2, t48 11159596 475984 4,27 10683612 160119185 9,93 9455765 88,51 132,49 74,84 89,42 

Average 21366411,23 1514013,714 6,33 19852397,51 801840435,8 25,74 17591935,06 85,99 106,19 60,89 78,66 

Total 747824393 52990480   694833913 28064415252   615717727         
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Table S2. Assignment of genus-level taxa per cluster, showing the amount of assigned 
genes and differentially expressed genes over all conditions 
Organism Genes assigned Genes differentially expressed 

Cluster 1   

Ruminococcus 9904 6220 

Lactococcus 8211 5263 

unclassified_Gammaproteobacteria 373 285 

Bos 329 263 

N/A 208 85 

unclassified_Mammalia 198 67 

unclassified_Bovidae 107 41 

Clostridiales 4 0 

Bacteria 3 1 

Eukaryota 2 1 

Gammaproteobacteria 1 1 

Viruses 1 0 

Cluster 2   

Lactobacillus 8655 7279 

Bifidobacterium 7817 5849 

unclassified_Actinobacteria 265 195 

unclassified_Bifidobacteriaceae 116 98 

Fusobacterium 70 47 

unclassified_Lactobacillaceae 52 38 

Myoviridae 36 33 

Cluster 3   

Enterococcus 2580 1927 

unclassified_Lactobacillales 1154 1012 

unclassified_Bacilli 537 473 

unclassified_Enterococcaceae 139 136 

Cluster 4   

unclassified_Enterobacteriaceae 11350 9255 

unclassified_Bacteria 6997 4494 

Eubacterium 4884 3849 

Escherichia 2972 2386 

unclassified_Proteobacteria 683 530 

Salmonella 59 47 

Shigella 51 9 

Enterobacter 36 29 

Citrobacter 31 14 

Vibrio 26 9 

Cluster 5   

Bacteroides 53749 49101 

unclassified_Bacteroidales 10243 9067 

Parabacteroides 1749 919 

Prevotella 302 233 
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Bacteria 193 133 

Desulfosporosinus 32 11 

Flavobacterium 30 27 

Cluster 6   

Clostridium 4244 3228 

unclassified_Clostridia 114 69 

Cluster 7   

unclassified_Clostridiales 10819 3356 

unclassified_Lachnospiraceae 1030 219 

Anaerostipes 127 6 

Clostridiales 39 5 

Cluster 8   

N/A 8225 4083 

Sutterella 3598 2645 

unclassified_Bacteroidetes 770 681 

unclassified_Betaproteobacteria 135 77 

Odoribacter 94 76 

Ethanoligenens 28 21 

Corynebacterium 20 8 

Cluster 9   

Bilophila 3853 2614 

unclassified_Firmicutes 3152 1898 

Phascolarctobacterium 1328 8 

unclassified_Selenomonadales 244 2 

Acidaminococcus 174 4 

unclassified_Acidaminococcaceae 117 0 

Selenomonas 109 19 

Veillonella 88 8 

Megamonas 64 12 

unclassified_Veillonellaceae 56 3 

Pelosinus 53 4 

Megasphaera 53 9 

Desulfitobacterium 51 15 

Anaeromusa 33 0 

Acetonema 32 3 

Mitsuokella 20 5 
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Text mining 

Further EC numbers were derived by text mining and matching all InterProScan derived 

domain names against the BRENDA database (download 13.06.13) [387]. The text 

mining algorithm included lower casing all characters, removal of non-alphanumerical 

characters (colons, commas, brackets, apostrophes, dashes, terminal points), removal of 

partial and generic terms (type, terminal, subunit, domain, enzyme, like, hypothetical, 

conserved, operon, active site, enzyme, probably, central, 51 kd, respiratory chain, c 

terminal, n terminal), rejection of overly generic final result terms (kinase, cytochrome, 

protein, methyltransferase) and reduction of certain terms (deletion of PEP/pyruvate 

binding; removal of “prokaryotic” in “prokaryotic cytidylate kinase”; “family” in 

“cytidilate kinase family”; “phosphorylating” in “glyceraldehyde phosphate 

dehydrogenase phosphorylating”; “iron containing” in “iron containing alcohol 

dehydrogenase”; “zinc containing” in “zinc containing alcohol dehydrogenase”; 

“manganese containing” in “manganese containing catalase”; “20 kd” in “nadh 

ubiquinone oxidoreductase 20 kd”; replacement of “carboxyltransferase” with 

“carboxylase” in “pyruvate carboxyltransferase”). Furthermore, all terms, which were 

only of length one, were also removed, in case the remaining name contained more than 

two words. On some domain names a manual curation was performed, and overly 

generic identifications (e.g. matching PF12847 “Methyltransferase domain” with e.g. EC 

2.1.1.124 with alternative name “Protein Methyltransferase I”) were rejected.  
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Chapter 5: The rumen metatranscriptome landscape 

reflects dietary adaptation and methanogenesis in 

lactating dairy cows 

 

 

This chapter is adapted from: 

Bastian Hornung*, Bartholomeus van den Bogert*, Mark Davids, Vitor A.P. Martins dos 

Santos, Caroline M. Plugge, Peter J. Schaap, Hauke Smidt, 2018. “The Rumen 

Metatranscriptome Llandscape Reflects Dietary Adaptation and Methanogenesis in 

Lactating Dairy Cows”. In bioRxiv. https://doi.org/10.1101/275883 

*Contributed equally 
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Abstract 

Methane eructed by ruminant animals is a main contributor to greenhouse gas emissions 

and is solely produced by members of the phylum Euryarchaeota within the domain 

Archaea. Methanogenesis depends on the availability of hydrogen, carbon dioxide, 

methanol and acetate produced, which are metabolic products of anaerobic microbial 

degradation of feed-derived fibers. Changing the feed composition of the ruminants has 

been proposed as a strategy to mitigate methanogenesis of the rumen microbiota.  

We investigated the impact of corn silage enhanced diets on the rumen microbiota of 

rumen-fistulated dairy cows, with a special focus on carbohydrate breakdown and 

methanogenesis. Metatranscriptome analysis of rumen samples taken from animals fed 

corn silage enhanced diets revealed that genes involved in starch metabolism were 

significantly more expressed while archaeal genes involved in methanogenesis showed 

lower expression values. The nutritional intervention also influenced the cross-feeding 

between Archaea and Bacteria.  

The results indicate that the ruminant diet is important in methanogenesis. The diet-

induced changes resulted in a reduced methane emission. The metatranscriptomic 

analysis provided insights into key underlying mechanisms and opens the way for new 

rational methods to further reduce methane output of ruminant animals.  
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Introduction 

Reduction of global greenhouse gas (GHG) output is necessary to prevent a further 

increase in global warming, which is predicted to result in multiple detrimental effects for 

the environment and human affairs [420]. The necessary measures are focused on the 

industrial and agricultural sectors in developed countries, with the aim to reduce carbon 

dioxide, methane and other GHG emissions. One of the predominant sources of methane 

emission, estimated to be as high as ~35% of the total anthropogenic methane 

emissions worldwide [63, 64], is the agricultural sector, and especially the eructation by 

ruminant animals [421].  

Ruminal microbes play a pivotal role in the breakdown of animal feed and contribute 

between 35 to 50% of the animal’s energy intake [94]. The ruminal microbial 

composition is complex, with diverse populations including bacteria, archaea, fungi, and 

protozoa. Their functional capacity is vast and has not yet been fully elucidated [422, 

423].  

Notwithstanding the ruminal microbial complexity, methane is solely produced by a few 

members of the phylum Euryarcheota belonging to the Archaea [36]. It has been shown 

that a change in diet can have a significant effect on the methane emissions of ruminants 

[424, 425], but the mechanisms that drive this change are not fully understood. The 

methanogenic archaea are not directly involved in the breakdown of the feed, but rely on 

their relationships with other community members that provide the necessary substrates 

for methanogenesis like hydrogen, formate and methanol.  

Microbial ecology in cows and other ruminants has been investigated using 16S 

ribosomal RNA (rRNA) genes as molecular markers [426, 427], the sheep rumen 

microbial metatranscriptome has been investigated [428], and in cows specialized and 

general microbial functions have been examined [423, 429-434]. Understanding the 

mechanisms that influence cow rumen methanogenesis requires community-level 

analysis of active metabolic functions, however, a comprehensive analysis of diet-

dependent effects on the functional landscape of the rumen microbiota is lacking. Here 

we investigated the effect of feed composition on bovine rumen activity patterns with a 

special focus on methane metabolism. By analysis of the rumen metatranscriptome 

landscapes in animals fed mixed grass silage (GS) and corn silage (CS) diets, we were 

able to elucidate the impact of the diet on the expression of methanogenic pathways and 

on the relationships of methanogens with other community members. 

Materials and Methods  

Study design and sampling  

The study design has been described in detail by Van Gastelen et al. [424]. Briefly, the 

experiment was performed in a complete randomized block design with four dietary 

treatments and 32 multiparous lactating Holstein-Friesian cows. Cows were blocked 

according to lactation stage, parity, milk production, and presence of a rumen fistula (12 

cows). Within each block cows were randomly assigned to 1 of 4 dietary treatments. All 

dietary treatments had a roughage-to-concentrate ratio of 80:20 based on dry matter. 

In the four diets, the roughage consisted of either 100% GS (GS100), 67% GS and 33% 

CS (GS67), 33% GS and 67% CS  (GS33), or 100% CS (GS0; all dry matter basis). 
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This study, including the rumen fluid sampling, was conducted in accordance with Dutch 

law and approved by the Animal Care and Use Committee of Wageningen University. 

Sample collection and processing 

In total, samples from 12 rumen fistulated cows, three per dietary treatment, were used 

for metatranscriptome analysis. Rumen fluid was collected 3 hours after morning feeding 

on day 17 of the experimental period (for further details regarding the whole 

experimental period, see [424]). The samples were obtained as described previously 

[435], and collected from the middle of the ventral sac. The rumen fluid samples were 

immediately frozen on dry ice and subsequently transported to the laboratory where the 

samples were stored at -80C until further analysis.  

For RNA extraction, 1 ml rumen fluid was centrifuged for 5 min at 9000 g, after which 

the pellet was re-suspended in 500 µl TE buffer (Tris-HCl pH 7.6, EDTA, pH 8.0). Total 

RNA was extracted from the resuspended pellet according to the Macaloid-based RNA 

isolation protocol [436] with the use of Phase Lock Gel heavy (5 Prime GmbH, Hamburg) 

[437] during phase separation. The aqueous phase was purified using the RNAeasy mini 

kit (Qiagen, USA), including an on-column DNAseI (Roche, Germany) treatment as 

described previously [436]. Total RNA was eluted in 30 µl TE buffer. RNA quantity and 

quality were assessed using NanoDrop ND-1000 spectrophotometer (Nanodrop 

Technologies, Wilmington, USA) and Experion RNA Stdsens (Biorad Laboratories Inc., 

USA).  

rRNA was removed from the total RNA samples using the Ribo-ZeroTM rRNA removal Kit 

(Meta-Bacteria; Epicentre, Madison, WI, USA) using 5 μg total RNA as input. 
Subsequently, barcoded cDNA libraries were constructed for each of the rRNA depleted 

samples using the ScriptSeq™ Complete Kit (Bacteria; Epicentre) according to 
manufacturer’s instructions in combination with Epicentre’s ScriptSeq Index PCR Primers.   

The barcoded cDNA libraries were pooled and sent to GATC Biotech (Konstanz, 

Germany) for 150 bp single end sequencing on one single lane using the Illumina 

HiSeq2500 platform in combination with the TruSeq Rapid SBS (200 cycles) and TruSeq 

Rapid SR Cluster Kits (Illumina Inc., San Diego, CA, USA). 

Bioinformatics 

The general workflow for data quality assessment and filtering was adapted from [182]. 

rRNA reads were removed with SortMeRNA v1.9 [209] and all included databases. 

Adapters were trimmed with cutadapt v1.2.1 [383] using default settings except for an 

increased error value of 20 % for the adapters. The latter was chosen considering that 

with the default setting of 10% adapter sequences could still be found after trimming. 

Quality trimming was performed with PRINSEQ Lite v0.20.0 [384] with a minimum 

sequence length of 40 bp and a minimum quality of 30 at both ends of the read and as 

mean quality. All reads with non-IUPAC characters were discarded as were all reads 

containing more than three Ns. Details on the RNAseq raw data analysis can be found in 

Supplementary Table 1. The log files with the used commands can be found in 

supplementary file 1 and the used python script in supplementary file 2. The raw data 

was deposited at EBI ENA, and can be accessed under accession numbers ERS685245 - 

ERS685256. 
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Assembly and annotation 

All reads which passed the quality assessment were pooled and cross-assembled with 

IDBA_UD version 1.1.1 with standard parameters [385]. A second dataset was added to 

the assembly to increase coverage (see supplementary materials & methods for details 

on this dataset). Prodigal v2.5 was used for prediction of protein coding DNA sequences 

(CDS) with the option for meta samples [191]. Proteins were annotated with 

InterProScan 5.4-47.0 [198] on the Dutch Science Grid. The annotation was further 

enhanced by adding EC numbers via PRIAM version March 06, 2013 [386]. Carbohydrate 

active modules were predicted with dbCAN release 3.0 [196]. Further EC numbers were 

derived by text mining and matching all InterproScan derived domain names against the 

BRENDA database (download 13.06.2013) [387]. Further details on the text mining can 

be found in the supplementary materials & methods. 

Reads were mapped back to the assembled metatranscriptome with Bowtie2 v2.0.6 

[327] using default settings. The resulting BAM files were converted with SAMtools 

v0.1.18 [388], and gene coverage was calculated with subread version 1.4.6 [438]. 

Read mappings to the contigs were inspected with Tablet [390]. The log files with the 

used commands for mapping and counting can be found in supplementary file 1 and the 

used python script in supplementary file 2. The whole read table including all annotations 

can be found in supplementary file 3. 

Taxonomic assignments 

All assembled contigs were analysed by blastn [177] against the NCBI NT database 

(download 22.01.2014) with standard parameters, except for an e-value of 0.0001, and 

against the human microbiome (download 08.05.2014), the NCBI bacterial draft 

genomes (download 23.01.2014), the NCBI protozoa genomes (download 08.05.2014), 

the human genome (download 30.12.2013, release 08.08.2013, NCBI Homo sapiens 

annotation release 105) and the genomes of Bos mutus, Bos taurus and Bubalus bubalis 

(download 21.05.2014). Taxonomy was estimated with the LCA algorithm as 

implemented in MEGAN [392], but with changed default parameters. Only hits exceeding 

a bitscore of 50 were considered, and of these only hits with a length of more than 100 

nucleotides and that did not deviate more than 10% in length from the longest hit.  

For contigs, which did not retain any hits after the filtering described above, another run 

with blastp of the associated proteins was performed against a custom download of the 

KEGG Orthology (KO) database (download 25.04.2014). Taxonomic assignment was 

again performed with the LCA algorithm, but only hits were considered, which did not 

deviate by more than 10% from the hit with the maximal identity. 

All taxa, which were attributed to the phylum Chordata, kingdom Viridiplantae or to 

artificial constructs were considered to be contaminations and were automatically 

removed, as well as any proteins in which the annotation contained the word 

“microvirus”. Furthermore, contigs that had a length of less than 300 nucleotides and 
which did not contain any proteins with a functional domain (disregarding the coils 

database) were discarded. Contigs belonging to the Illumina spike in PhiX phage were 

manually removed.  

A compact schematic representation of the workflow is provided in Figure 1. 
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Statistical analysis 

Differential expression was calculated in R version 3.1.1 [393] with the edgeR package 

release 3.0 [211]. Only genes, which had at least 50 reads mapped in all ten samples 

together were considered, and only genes with a p-value and q-value <0.05 in any of 

the comparisons were considered to be significantly differentially expressed. 

Furthermore, samples from cow #14 and #511 were excluded from the statistical 

analysis, due to dermal antibiotic treatment and due to feeding aberrations. To examine 

missing links within pathways, a q-value <0.1 was also considered (referred to as 

“lenient approach”). The used input file, the R script with the commands, output tables 
and MA plots can be found in supplementary file 4. To determine whether transcription 

levels corresponded to the diet components, the differentially expressed genes were 

sorted for each gene by diet group with increasing GS content, and an increasing or 

decreasing isotonic regression was fit on the data. An R2 value of ≥0.8 was considered to 
be indicative of an increasing or decreasing profile, respectively, and all other values 

were considered to indicate that gene expression followed another, irregular, profile. 

Regression values and assignment of profile can be found in supplementary file 3. 

Isotonic regressions were computed in Python with scikit-learn version 0.15.2 [439]. 

Spearman rank correlation between the samples and Mann-Whitney U-test were 

calculated in Python with Scipy version 1.6.1 and NumPy version 0.9.0 [395]. 

Metabolic mapping 

All derived EC numbers were mapped with custom scripts onto the KEGG database [227] 

and visualized using Python Scipy version 1.6.1 and NumPy version 0.9.0 [395] together 

with matplotlib version 1.4.3 [440]. 

Differentially expressed genes were investigated separately for microbial groups, which 

showed changes over multiple genes per pathway, and changed functions were 

determined by manual inspection of the KEGG maps. 

Availability of data and material 

All data has been deposited at the European Nucleotide Archive (ENA) under accession 

numbers ERS685245 - ERS685256 and ERS710560 - ERS710568 

Results 

Four experimental groups of three cows each were fed a control diet that contained only 

GS as roughage, and three different CS-enhanced diets for twelve days (Figure 1). From 

day 13 – 17, methane emission was measured using a respiration chamber, showing a 

significant reduction of methane emission with increasing CS proportion in the diet 

[424]. This decrease accounted for approximately 10% of the cows’ methane emission. 
The analysis by van Gastelen et al. [424] showed that the dry matter feed intake of the 

different treatment groups did not differ significantly. Therefore the reduction in 

methane emission was not based on the available energy, but rather on the composition 

of the different diets. 

Rumen fluid was collected at day 17, and used for microbial RNA extraction, mRNA 

enrichment and RNAseq. The complete set of RNAseq reads was cross-assembled into a 
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single metatranscriptome. To determine activity per phylogenetic group the de novo 

assembled transcripts/genes were assigned to a taxonomic rank, and relative expression 

levels were obtained for four groups of animals fed different diets. Gene functional 

assignments were subsequently used to assess potential metabolic changes as predicted 

from the gene expression profiles observed in animals fed the four different diets, with a 

focus on carbohydrate breakdown, short chain fatty acid (SCFA) production and methane 

metabolism.  



102 

 

 

 

 

Figure 1: Study design. Four groups of three cows were allowed to adapt to one of four 
different experimental diets for twelve days. From day 13 – 17 methane emission was 
measured using a respiration chamber. Rumen fluid was collected at day 17 and used for 
microbial RNA extraction. See Methods section for details. 
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Sequence, assembly and annotation metrics 

In total more than 160 million reads were obtained from twelve rumen fluid samples.  

On average, 22.5% (Standard Deviation (SD) 6.15%) of all reads obtained per sample 

passed all filtering steps, retaining 18.5% of the total raw reads. Of these filtering steps, 

the filtering for rRNA sequences had the most impact, and removed the majority of the 

reads with an average of more than 63% (SD 8.75%) (all details are given in 

Supplementary Table 1). The majority of these rRNA reads (min. 96%) were matched to 

sequences from eukaryotes. 

The assembly yielded 712,246 contigs with in total 866,052 protein coding sequences, a 

length of 414,768,486 bp and an N50 of 596. While the longest contig had a size of 

54,845 bp, most contigs (645,026, 90.1%) were smaller than 1000 bp. A total amount 

of 30 million reads, on average 58% (SD 8.75%) of the reads per sample which passed 

quality filtering, could be mapped back to the assembly (see Supplementary Table 1; in 

the following, expression values will be given relative to the amount of mapped reads, 

referred to as “overall expression”).  

For 556,705 of the predicted protein encoding sequences a domain (excluding “Coils” 
domains) could be predicted. To 85,404 protein encoding sequences an EC number could 

be assigned. 

A taxonomic classification could be obtained for 635,892 protein encoding sequences 

(73%), of which 282,074 could be classified at genus level. In total 1152 genera were 

detected, and additional 190 taxonomic assignments above the genus level were 

retrieved. 24 groups (at different taxonomic ranks) accounted for more than 58% of the 

total expression data (Figure 2). These groups included 13 genera (Bacteroides, 

Butyrivibrio, Clostridium, Entamoeba, Entodinium, Eubacterium, Faecalibacterium, 

Fibrobacter, Methanobrevibacter, Methanosphaera, Plasmodium, Prevotella, 

Ruminococcus) and 11 sequence clusters (not including the data assigned to the 13 

genera) that could only be assigned at higher taxonomic levels (Archaea, Bacteria, 

Bacteroidales, Bacteroidetes, Clostridia, Clostridiales, Coriobacteriaceae, Eukaryota, 

Firmicutes, Methanobacteriaceae, Peptostreptococcaceae).  

Fungal genes could be detected, but accounted for less than 0.1% of the overall 

expression.  184,991 genes without a taxonomic assignment accounted for 32% of the 

total expression. To only 34,731 of these genes (18.7%) any type of domain (excluding 

“Coils” domain) could be assigned, and only 2685 of these had an EC number assigned. 

Most present domains within the proteins encoded by taxonomically not assigned genes 

were generic domains (e.g. membrane lipoprotein attachment site, MORN repeat, P-loop 

containing nucleoside triphosphate hydrolase, WD40 repeat, etc.) without more specific 

functions. 

Methanogens were represented by sequence assemblies that could be assigned to 

Methanobrevibacter smithii, Methanobrevibacter ruminantium and Methanosphaera 

stadtmanae. Reads mapping to protein coding genes assigned to methanogens captured 

on average 6.2% of the overall expression. In general, the overall taxonomic expression 

profile of the methanogens did not seem to change considerably between the different 

diets (Figure 2). When expression was summarized at genus level (or otherwise deepest 
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taxonomically assigned group, as given in Figure 2, with minor groups treated together 

as “all other taxonomic groups”), the lowest correlation between all samples was 0.85. 
All microbial groups included in Figure 2 were furthermore tested (after exclusion of 

cows 511 and 14, due to mentioned aberrations) for statistically significant differences 

between animals fed the different diets (Mann–Whitney U test, p<0.05, not multi-test 

corrected), which was rejected for 150 out of 156 tests. None of the differences were 

statistically significant after multi-test correction (Bonferroni). 

 

Figure 2: Taxonomic composition of metatranscriptome landscapes observed in animals 
fed one of four different diets.  Diets and cows are indicated on the X-axis, taxonomic 
groups (at genus level, or otherwise deepest classification) are colour coded, see legend 
for details. N/A: No taxonomic rank could be assigned. 
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Differential expression analysis of the rumen microbiomes 

 

Figure 3: Differential expression analysis of the rumen microbiomes. Overview of the 
number of genes that were found to be differently expressed in pairwise comparisons of 
metatranscriptomes derived from animals fed different diets. Three profiles are 
distinguished: Profile A, genes with an expression, which does not follow a dietary 
pattern. Profile B, genes which are upregulated with increasing amounts of corn silage 
(CS). Profile C, genes, which are downregulated with increasing amounts of CS. 
Furthermore the results show that with the increase of CS, archaeal genes were mainly 
downregulated considerably affecting methane metabolism.  

 

In total, 27,731 genes, which passed a set threshold for having captured at least 50 

reads over all conditions combined, were subjected to the differential expression 

analysis, and 6397 were differentially expressed in at least one comparison (q<0.05). 

Three corn silage (CS) enhanced diet-induced expression profiles were distinguished (via 

regression analysis with isotonic regression), i.e. genes with an unlinked expression 

profile (profile A, 1241 genes), an induced expression corresponding to the amount of 

CS in the diet (profile B, 1994 genes), and a reduced expression corresponding to the 

amount of CS in the diet (profile C, 3162 genes)  (Figure 3). Three heatmaps of all genes 

(per profile) can be found in supplementary file 5, displaying the overall trends within 

the data. 

Taxonomic and functional analysis of the three diet induced expression profiles 

Genes grouped into the three different expression profiles were investigated for their 

taxonomic and functional classification.  

For profile A, i.e. genes that did not follow a diet specific expression profile, most genes 

were related to general energy metabolism/carbohydrate breakdown and ribosomal 

protein production, as well as transport reactions. No other major functions seemed to 

be affected in the diet-unspecific way characteristic of profile A, and most of the genes 

within this group could be linked to the Clostridiales, but also to Bacteroidales, 

Actinobacteria and Archaea. 
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Most predominantly represented taxa among genes following transcription profile B were 

bacteria belonging to the order Clostridiales, and to a lesser extent the genera 

Prevotella, Proteobacteria and Actinobacteria, but more than half of the differentially 

expressed genes could not be classified below kingdom level. The most affected 

functions were ribosomal protein production (mainly Eukaryota), and nucleotide 

metabolism in different groups, including the Eukaryota. The almost complete lack of 

genes associated with Archaea and/or methanogenesis among the genes with expression 

profile B indicated that there was hardly any increase of methanogenic activity with the 

increase of CS.  

Among the genes exhibiting a lower expression upon increasing the amount of CS in the 

diet (profile C), the main represented microbial groups included three different 

methanogens (Methanobrevibacter smithii, Methanobrevibacter ruminantium, 

Methanosphaera stadtmanae), members of the genus Prevotella, and many genes, which 

could not be classified beyond the order Clostridiales. Functional profiling showed that 

the most downregulated processes were related to methanogenesis, electron transport 

and regulatory processes in the Archaea, as well as general metabolic functions like 

glycolysis, ATP generation or ribosomal protein production in all affected groups. 

Increased expression could also be observed for nine genes encoding putative non-

ribosomal peptide synthase (NRPS) modules, among which three were taxonomically 

linked to M. ruminantium whereas the other six NRPS modules could not be classified 

beyond the kingdom bacteria. 

With an increase of CS in the diet, Eukaryota appeared to show a decrease in their 

expression of genes encoding glycosylhydrolases (GH) and glycosyltransferases (GT). 

Furthermore, they also showed differential regulation of genes associated with 

movement abilities and cilia/cytoskeleton assembly, chaperons and ribosomal proteins in 

response to the diet changes. Most of the sequences (71.9%) assigned to the Eukaryota 

could not be classified below the kingdom level. For example, of the 85 differentially 

expressed genes encoding proteins involved in cilia/cytoskeleton assembly, only 12 could 

be assigned to a rank more specific than the kingdom level. Within all the classified 

eukaryotic sequences that showed consistent downregulation with increasing CS in the 

diet, the phylum Apicomplexa was the most represented, whereas the family of 

Ophyoscolecidae (Entodinium, Epidinium) showed a specific downregulation of GH 

encoding genes. 

Microbial starch and cellulose metabolism in cows fed with different diets 

The expression of genes related to the breakdown of different complex carbohydrates 

differed considerably between animals fed different diets. Profile A did not include major 

changes in  genes coding for carbohydrate degradation associated enzymes. 

For genes following expression profile B, an increase of CS in the diet mainly lead to the 

increased expression of genes encoding different extracellular binding proteins in the 

genera Ruminococcus, Bifidobacterium and Entodinium, as well as an increase in the 

expression of genes coding for starch binding modules (CAZy classes CBM25 and 

CBM26) and alpha-amylases (GH13).  

Most carbohydrate-metabolism associated genes affected by an increase in CS in the 

diet, however, followed expression profile C. With an increase of the CS in the feed, a 
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downregulation of multiple genes involved in the breakdown of plant cell walls and their 

constituents could be observed, such as all the steps involved in cellulose degradation 

[441]. Expression of genes encoding endocellulases (CAZy classes GH5, GH9, GH45; 

mainly assigned to Fibrobacter), catalysing the first step of cellulose breakdown, was 

most affected, followed by genes that code for exocellulases (GH48, Ruminococcus) and 

beta-glucosidases (GH3), catalysing the second and the last step of cellulose breakdown, 

respectively, as well as genes encoding cellulose binding modules (e.g. CBM4, CBM13). 

Downregulation of the expression of genes encoding proteins involved in the breakdown 

of hemicellulose constituents (xylan, mannan, galactan/pectate, rhamnose) could also be 

observed, including genes encoding endo-1,4-beta-xylanases (GH10, GH11), beta-

mannanase (GH26), pectate lyase (PL3), alpha-L-rhamnosidase (GH78), beta-1,4-

galactan binding (CBM61), and xylan binding modules (e.g. CBM35). Expression of genes 

related to transport of glucose into the cells was also downregulated (monosaccharide 

transporters, EC 3.6.3.17). An overview of differentially expressed genes encoding 

glycosylhydrolases and carbohydrate-binding modules, including their taxonomic 

distribution, is presented in Figure 4 and Figure 5, respectively. 

 

Figure 4: Log10 fold changes in expression of differentially expressed glycosylhydrolase 
encoding genes in a comparison of the 100% corn silage diet  (GS0) versus  the 100% 
grass silage diet (GS100). Positive values indicate an upregulation of gene expression in 
the corn silage diet. N/A: No taxonomic rank could be assigned. Colour-coding of bars 
indicate different taxonomic groups, whereas colour-coding of protein families indicate 
their involvement in the metabolism of different carbohydrates. 
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Figure 5: Log10 fold changes in expression of differentially expressed carbohydrate 
binding module encoding genes in a comparison of the 100% corn silage diet (GS0) 
versus the 100% grass silage diet (GS100). Positive values indicate upregulation of gene 
expression in the corn silage diet. N/A: No taxonomic rank could be assigned. Colour-
coding of bars indicate different taxonomic groups, whereas colour-coding of protein 
families indicate their involvement in the metabolism of different carbohydrates. 

 

With the increase of CS, a downregulation (profile C) could be observed for susC and 

susD genes coding for starch binding proteins, and which could be assigned to the 

phylum Bacteroidetes, mainly in the genus Prevotella. A downregulation of expression of 

genes encoding proteins involved in cellulose binding was also found, including e.g. 

sortases, cohesins, dockerins, extracellular binding and calcium binding domains, which 

potentially could belong to a cellulosome [442, 443]. This was mainly observed for genes 

assigned to the families Cellulomonadaceae, Clostridiaceae, Lachnospiraceae and 

Ruminococcaceae. Many functionally similar downregulated protein-coding genes could 

not be assigned to a taxonomic rank below the superkingdom level, mainly in the 

bacteria. The downregulation of a gene encoding a cohesin module was also detected in 

the Archaea, as well as the upregulation in the expression of a cohesin and dockerin 

module with an increase of CS. 

Microbial short chain fatty acid metabolism in cows fed different diets 

The production of SCFAs is an important function of the rumen microbiome. These 

metabolites are taken up by the host and serve as an energy source [94], have a 

considerable effect on methane production [444], and affect the pH, which in turn has an 

influence on the animal’s wellbeing [445]. In the study by Gastelen et al., only a small 

significant reduction in the SCFA butyrate was reported, with other SCFAs not changing 

significantly. 
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Increased expression upon an increase of CS in the diet (profile B) was found for genes 

coding for proteins which are involved in the conversion of acetyl-CoA to crotonyl-CoA, 

which is part of butyrate synthesis. This increase was found within the family 

Lachnospiraceae. The total expression of this family was on average 1.9% in all samples. 

Reduced expression upon an increase of CS in the diet (profile C) was observed for 

genes encoding proteins involved in butyrate metabolism, and again mainly for genes 

assigned to the Lachnospiraceae. Several of the downregulated genes encode proteins 

catalysing the reactions from pyruvate to crotonyl-CoA, via acetyl-CoA, acetoacetyl-CoA 

and (S)-3-hydroxybutanoyl-CoA. Genes that code for enzymes catalysing the last steps 

to butyrate via crotonyl-CoA and butanoyl-CoA were also present in the assembly, but 

were not found to be differentially expressed in any of the conditions. Thus, the here 

presented data provide an inconclusive picture regarding the regulation of genes 

encoding proteins involved in ruminal butyrate production. Furthermore, consistent 

differential expression patterns could also not be observed for genes involved in the 

formation of the other SCFAs acetate or propionate. Genes encoding SCFA transporters 

were present in the assembly, but were not differentially expressed. Overall, these 

observations are in line with the fact that total SCFA concentration was found to be not 

affected by increasing CS in the diet, with only a minor, albeit significant increase in the 

molar proportion of butyrate [424]. 

Expression of archaeal genes involved in methane metabolism 

A considerable amount of differentially expressed genes in the Archaea was found to 

encode proteins involved in methane metabolism. Based on the RNAseq data almost the 

complete pathways leading to methanogenesis could be reconstructed (Fig. 6). Closer 

inspection revealed that with an increase of CS in the diet, nearly all genes of the 

methanogenesis pathways were downregulated in a subset of the Archaea (expression 

profile C). Of the four possible methanogenic pathways, those for the production of 

methane from methanol/hydrogen, as well as from formate/carbon dioxide and hydrogen 

were affected. Proteins for the utilization of trimethylamines into methane could be 

detected in the dataset, but were not differentially expressed between animals fed the 

different diets. The pathway for methanogenesis from acetate was absent in the dataset. 

Among genes assigned to Methanosphaera stadtmanae, genes coding for proteins 

involved in the conversion of methanol to methyl-CoM (methanol-corrinoid protein Co-

methyltransferase, EC 2.1.1.90) and of methyl-CoM to methane (methyl-CoM reductase, 

EC 2.8.4.1) showed consistent downregulation with increasing CS in the diet (Figure 6). 

Compared to changes observed for Methanosphaera stadtmanae, the change in the 

transcription pattern of genes encoding proteins involved in methanogenesis from 

hydrogen and formate in Methanobrevibacter smithii was more extensive. More 

specifically, the expression of genes associated with the methanogenesis pathway with 

formate/hydrogen was downregulated in nearly all steps (besides formylmethanofuran-

tetrahydromethanopterin N-formyltransferase, EC 2.3.1.101), following expression 

profile C. In addition, expression of several genes encoding proteins involved in the 

biosynthesis of coenzyme F420 was downregulated with an increasing amount of CS in 

the diet (profile C). Some of these reactions could only be assigned to taxonomic levels 

above species, but the placements of these functions in the metabolic network indicate 

that they most probably can also be assigned to M. smithii.  
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Expression of genes encoding transporters for formate uptake were also downregulated 

(profile C), as well as genes involved in other processes related to methanogenesis, e.g. 

the general production of ATP, electron transport via the membrane, and sodium 

transport. 

Nearly none of the genes that could be assigned to the third detected major methanogen 

in the dataset, Methanobrevibacter ruminantium, showed considerable downregulation, 

however, it should be noted that several archaeal genes, including several genes 

encoding proteins involved in methanogenesis, could not be classified at the species 

level and therefore it cannot be excluded that some of these in fact also belong to this 

species. Differential regulation of genes assigned to a potential syntrophic partner of M. 

ruminantium, Butyrivibrio proteoclasticus [446], could only be detected in a few genes. 

Genes assigned to other formate producing organisms were also present in the data, 

pointing towards their potential involvement as syntrophic partners, however, no 

differential expression was observed for these genes, making deduction of possible 

syntrophic connections difficult. 

Further analysis of the data at the functional level showed downregulation of the 

expression of genes encoding proteins linked to the production of necessary substrates 

for methanogenesis. Expression of one of the genes encoding a subunit of pyruvate 

formate lyase (EC 2.3.1.54) that catalyses the production of formate from pyruvate was 

downregulated in a bacterium in the order Clostridiales, which could not further be 

classified, as well as in Eubacterium hallii. At the same time, several genes encoding 

proteins involved in the degradation of cellulose were found downregulated in animals 

fed CS-containing diets (profile C), and could be assigned to a not further classifiable 

bacterium in the order Clostridiales as well as Ruminococcus flavefaciens, Fibrobacter 

succinogenes, and several other bacteria/eukaryotes. A downregulation of genes that 

code for proteins involved in the production of the other substrates needed for 

methanogenesis, hydrogen and carbon dioxide, could not be detected. 

Interestingly, using a more lenient approach (see Methods) a downregulation of 

expression of a gene for the production of the second major substrate for 

methanogenesis, methanol, was observed. More specifically, an unspecified Clostridiales 

bacterium showed decreased expression of a gene encoding pectinesterase (EC 

3.1.1.11), catalysing the degradation of pectin to pectate and methanol.  

An overview of the metabolic consequences of the observed changes in gene expression 

profiles is provided in Figure 6. A version of this figure with more details and a table with 

all reactions and assigned genes can be found in supplementary figure 1 and 

supplementary file 6. 
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Figure 6: Graphical summary of metabolic consequences of the different diets in the two 
major methanogens and possible syntrophic partners. Red arrows: genes downregulated 
with the increase of corn silage in the diet; black arrows: Gene is detected but not 
differentially expressed; The blue arrow represents glycolysis of which the majority could 
be detected; punctuated arrow: orphan reactions; ? = Phylogenetic association unclear. 
Pyr. = Pyruvate, CHOO- = Formate, FDox = oxidized Ferredoxin, FDred = reduced 
Ferredoxin, CH2O = Formaldehyde. 
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Discussion  

How feed affects methanogenesis 

The rumen microbiome is a complex ecosystem, and its dynamics are determined by 

many variables. Most investigations to date have been focussed on the community 

composition and changes therein in response to different perturbations. In a recent 

metagenomic study by Roehe et al. [433] on animals fed similar diets as the ones tested 

here the authors found no considerable effect on the composition of the microbiome. 

Here we show that in response to a diet change, gene expression within a microbiome 

and consequently the metabolic profile may change. Differential expression analysis 

revealed that although there were no extensive changes visible within the overall 

community expression, in line with what has previously been noticed for the sheep 

rumen [428], major effects could be seen regarding the expression of genes related to 

methane metabolism, which are also in agreement with genes which were prior identified 

within the metagenomics dataset by Roehe et al. and related publications [433, 447, 

448]. In two of the three methanogens identified in the dataset a coordinated 

downregulation of genes involved in methanogenesis as response to increased CS in the 

diet could be observed. Thus not only isolated single nodes involved in methanogenesis, 

but whole pathways were downregulated. We further found evidence for a possible 

syntrophy between these methanogens and several yet unidentified members of the 

rumen community belonging to the order of Clostridiales, which might contribute to the 

production of the necessary substrates (formate, methanol) for the methanogens, which 

was also discussed (albeit with potentially different syntrophy partners) in a related 

setup by Parmar et al. [449]. Additionally we observed a downregulation of cellulose 

degradation functions with increased CS in the diet. For M. ruminatium, we did not see a 

significant response to the diet changes nor did we see a significant response in possible 

syntrophic partners. Thus it may be that in addition to diet changes other types of 

biological effectors are necessary to further influence the process. Our findings are also 

in contrast to those reported by Shi et al.[428], who concluded that in the sheep rumen 

the supply of hydrogen is the determining factor for methane output, whereas in the 

present study the supply of other substrates seem to have a bigger influence. 

We further observed community wide responses to the change in the main 

energy/carbon source, with a shift in the involved glycosylhydrolases over multiple 

organisms and phylogenetic branches. Nevertheless, we did not observe a response in all 

members of the microbial community. While there was a definite downregulation of 

certain processes like methanogenesis, these processes were not affected in all 

organisms. To this end, it should be noted that the total gene count assigned to 

members of the Archaea greatly exceeded the size of currently known individual 

archaeal genomes, suggesting the presence of multiple strains of the same species in 

this environment [450, 451]. Not all of these strains seemed to be affected by the 

different diets, as there were also instances of pathways, which did not show a 

differential regulation at all. As already observed here for the different species of 

methanogens, which were potentially affected because their syntrophic partners were 

affected, this could also be the case for the different strains of the same species, which 

might inhabit different niches in the rumen. It cannot be expected that e.g. 

methanogens living intracellularly within protozoa [452] are in the same way affected as 

free living methanogens are, and that populations living closer to the substrates, i.e. 
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those associated with the fibre fraction, will show the same behaviour as populations in 

the liquid fraction of the rumen [453]. Finally, as overall a reduction of methane 

production by ~10% was observed in this study when comparing animals fed either the 

GS or CS diets, it is perceivable that not all pathways and microorganisms are affected 

to an extend that would be detectable in significant differences in gene expression levels, 

also considering the relatively small sample size of three animals per experimental 

group. 

Unexpected findings and limitations 

Several findings in this study were surprising, at least at first glance. 

As shown in Figure 2, and also shown by the statistical testing, the overall expression 

profile did not change significantly. A major change in the supplied feed was expected to 

result in significant changes though. Also the study of Roehe et al. [433] showed no 

considerable changes in the relative abundance of organisms in a similar setting. We 

showed that the main changes are not within a taxonomic group, but rather the 

expression patterns per taxonomic group, which also explains the findings by [433]. 

There are also concerns that differential expression analysis in communities could not 

reflect actual differential expression, but rather a change in organism abundance, 

leading to wrongly perceived changes in expression. Since in this dataset the overall 

expression profile per group did not statistically significantly change (although the small 

sampling size gives only limited power to detect this change), this is likely not an issue, 

and genes detected as differentially expressed are probably truly differentially 

expressed.  

The overall taxonomic composition itself as shown in Figure 2 in general agrees with 

previous findings, as most of the major taxonomic groups were reported previously 

[454]. This is also the case for the methanogens, which are similar to the ones 

commonly found the rumen of cows [455] and other ruminants [456, 457]. Despite this, 

it should be noted that the genes assigned to Methanobrevibacter smithii most likely 

belong to a related species/group of Methanobrevibacter, since M. smithii itself is not a 

dominant member of the rumen microbiota, but the closest sequenced relative of the 

species appearing in the rumen [458]. 

As shown in Figure 3, we also recovered changing expression profiles, which did not 

correspond with the diets. We were not able to find any specific functional background 

for these profiles, and suspect that some organisms are influenced more by the 

surrounding community members and not primarily by the diet, or maybe inhabit very 

specific niches. This would be in agreement with the findings in Figure 4 and 5, which 

show that a minor amount of carbohydrate active enzymes and binding modules show 

expression profiles against the expected trend, e.g. increase in expression of some 

cellulose degrading enzymes while less cellulose is fed [459, 460]. It could also be 

possible that this change in expression reflects a change in metabolic strategy. As 

response to e.g. the lower abundance of cellulose in the environment, the affected 

organisms could attempt to downregulate the expression of genes coding for cellulose 

binding modules with low affinity, and upregulate the expression for genes coding for 

modules with high affinity. This mechanism is similar to the regulation of carbohydrate 

transporters in different organisms [459, 460]. Additionally it needs to be considered 
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that initial annotations might not always be correct. We found an increase in cohesin and 

dockerin coding modules with an increase of starch in the diet. These components are 

primary known as cellulosome components, but non-cellulosomal origin of these modules 

has been reported before [461, 462]. Furthermore one of these modules was found in 

the Archaea, which are not known to harbour either cellulosomal complexes or their 

starch counterparts. The same issue holds for the downregulation in expression of the 

genes coding for different starch binding proteins, susC and susD, which have been 

found to not only be starch binding, but also cellulose binding [463]. 

Another finding, which was obvious in the investigated data,  is the substantial decrease 

in expression of genes coding for proteins involved in cytoskeleton assembly in different 

Eukaryota. As several Archaea are endosymbionts of  Protozoa, it can be speculated that 

an experimental change, which has an impact on the symbionts, will also affect their 

host [452] (although this relationship is also not entirely clear [464]). General cellular 

processes, like replication, in which the cytoskeleton is involved, will then probably be 

directly affected, and this has been observed before in a different setting with 

intracellular Archaea [465]. Recently the high abundance of these proteins in the rumen 

proteome also have been demonstrated [466]. 

At last, the biggest limitation on this study are the lack of sequencing depth and little 

replication. The former was mainly caused by the inefficiency of the ribosomal rRNA 

depletion. The method used could not remove all rRNA, due to the diversity of unknown 

eukaryotic sequences, which resulted in a lower sequencing depth than expected. Also 

due to the low number of replicates, an arbitrary cutoff for the tested genes had to be 

applied, which is common practice and can help in some settings to increase power 

[467], and therefore it was not possible to find more subtle changes in the expression 

levels (e.g. a change in transcription levels of the butyrogenic pathway). Therefore this 

work mainly focused on changes within more highly expressed genes, and most changes 

were also not dependent on single p-values, but supported by expression changes in 

multiple genes. This has still lead to the ability to track the impact of diet on methane 

production, which was the aim of this study, and other effects, which were not initially 

expected, could still be observed. It still needs to be pointed out that the amount of 

replication was very small and probably too small for this type of experiment, and that 

many changes, including not only subtle ones, were potentially missed due to this setup. 

In summary, in this study we found a significant effect of a dietary change on the gene 

expression in the cow rumen. A substantial fraction of the affected genes was related to 

methane emission, showing that a decrease in cellulose in the diet decreased the gene 

expression of methane related pathways. The here presented metatranscriptomic 

analysis is in agreement with the experimental measurements, which showed a decrease 

in methane emissions with the diet change [424], suggesting that a change in the feed 

regime can have a positive effect on microbial GHG emissions.  
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Chapter 6: General discussion and future perspectives 
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The final goal of this study was to model the make-up and behaviour of microbial 

communities, and to study how they could be affected by different environmental 

conditions such as host diet or nutrient availability. Although this final goal has not been 

fully achieved yet, various steps along the path were successfully taken during this work. 

The results of the research described in this thesis, as well as potential reasons for 

current bottlenecks will be discussed, and perspectives for future research will be 

provided. 

Issues with simulating meta-metabolism 

In the course of this PhD thesis multiple times it was attempted to perform simulations 

on the metabolism of the various microbiomes. Genome-scale, constraint-based 

metabolic models (GSMM) were chosen over ODE- or agent-based models, due to the 

fact that metabolism seemed to be the most interesting choice in most of the cases, 

especially given the available data (although mathematical models could have been an 

interesting choice too [468]). There are various options to construct GSMMs [241, 469], 

each with their own advantages and limitations. The easiest type of model is the supra-

organism [241]. In this type of model species boundaries are not considered, and all 

possible metabolic reactions are included in one model, basically modelling the whole 

community as one organism. The advantage of this approach is that it simplifies the 

overall model, and makes exact species delineation/binning unnecessary, but has the 

disadvantage that interactions cannot be studied. The second type of model considers all 

organisms separately, but still considers them to be one entity, with a common 

optimization goal for the whole community [469]. The last type of model considers each 

organism separately, also in respect to how the organisms behave, and gives each 

organism its own optimization goal (e.g. [254]).  

All of these models have lead already to interesting findings. Greenblum et al. [470] 

constructed a supra-organismal model from the faecal metagenome of healthy 

individuals and IBD patients. Their network analysis showed that both states were 

associated with specific attributes in the periphery of the network, indicating differences 

in nutrient utilization of the gut community. In the publication by Stolyar et al. [471] a 

model was constructed of a consortium, containing a lactate utilizer and a methanogen. 

This model could correctly capture the interaction between both organisms, including 

metabolite exchanges, and showed also that this type of exchange was essential for the 

growth of the system. In a similar approach, Ponce-de-Leon et al. [472] showed how an 

endosymbiotic bacterial consortium is tightly integrated with its host, and that the 

exchange of nutrients is critical for its survival. Overall, this shows that exciting results 

can be obtained with these models, independent of what type is chosen, as long as it is 

appropriate for the interrogated question. 

The first approach, the supra-organismal model, was not really considered for this work 

(only for intermediate testing and checking), since it was not necessarily the goal to 

optimize a community, or to investigate it as a whole, but also to understand the 

interactions between community members. This also turned out to be important in this 

work (e.g. chapter 4, different behaviours of Bacteroides and Clostridiales groups, or 

chapter 5, potential interactions of Methanobrevibacter smithii with another community 

member).  
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The choice between the second and third type of model was initially not made, since the 

third type only really became available during the course of this work and hence, the 

second model was initially considered. In the process of the efforts to implement such 

models, numerous issues were encountered (not necessarily with the methodology, but 

also with the investigated habitats), which made this choice obsolete, and which will be 

discussed in the following paragraphs. 

The first challenge was to obtain sufficiently processed data. Despite the fact that 

transcriptomic data was always available, none of the projects was in a state where it 

could be used for modelling, because e.g. it was unclear which reactions were occurring 

at which rates. The bioinformatics processing, which would potentially lead to the gain of 

such information, took over most of the work described in this PhD thesis. The remaining 

time was at the end insufficient to pursue this goal, since performing reasonable GSMM 

simulations and solving all associated problems with the related models can be a thesis 

subject on its own [473]. 

The second hurdle, which was also encountered by other scientists working in this field 

[248, 473-475] is the need for manual curation. It is not possible to sufficiently perform 

manual curation for such large datasets, and it will also lead to inconsistencies due to 

differing opinions and expertise of the curating domain experts. In turn, the automatic 

annotation of (meta)-genomes (or transcriptomes) is in general not sufficient for high 

quality simulations, without having any manual curation. This issue has multiple sub-

issues, which will be explained in the following paragraphs.  

The first issue concerns the ambiguity of EC numbers, on which these model-based 

simulations would ideally be based upon. While EC numbers were initially created to 

provide a structured system of unique identifiers for chemical reactions [476], this turns 

out to be too imprecise for modelling (despite still being maybe the most sensible 

system). The best known example here would be the alcohol dehydrogenase EC 1.1.1.1. 

The definition of the IUBMB is “(1) a primary alcohol + NAD+ = an aldehyde + NADH + 
H+”. The challenge is that general entities such as “primary alcohol” or “an aldehyde” do 
not necessarily exist in other reactions, where specific compounds are given instead, and 

that most often there is no direct, i.e. automated, possibility to link these entities. The 

Metacyc database [194] has overcome this issue partially with a hierarchical system, 

however, the underlying system is not made for metagenomics data, is not particularly 

user friendly in these regards, and therefore it is not often used for this purpose. As an 

example, it is possible to import all metabolic reactions, but it is not possible to utilize 

the associated taxonomic information in any way. If there was a possibility to at least 

integrate this information into the interface, or to mark pathways to be specific for only 

certain organisms in this dataset, it would make the functional mining and understanding 

of a metagenome considerably easier. In the KEGG database [227] specific reactions are 

associated to the EC numbers, which solves the issue partially, as it also does not 

require the user, which in many cases will be biologist, to be fully proficient in every 

detail of the underlying (bio)chemistry to resolve this problem.  

Taking metabolic models from single organisms to mixed consortia adds another layer of 

complexity, where overly generic descriptions of enzymatic reactions pose important 

limitations to the modeller. More specifically, while in single organism models these 

issues can potentially (but not always) be resolved by manual curation, and it can be 
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decided if “primary alcohol” refers to ethanol, propanol or other compounds, this turns 
out to be impossible for metagenomics data, where specific reactions can occur hundreds 

of times in a single metagenome, and where different organisms can perform similar, 

but not identical reactions, involving different compounds belonging to the same EC 

category. At this stage not even the “underground reactions” (side reactions besides the 
main reaction as defined in the EC definition, with minor turnover rates) [477] are taken 

into account, which could potentially lead to a totally different structure of the resulting 

metabolic network. 

The second issue is that not all EC numbers can be predicted with sufficient accuracy. 

This applies to many cases, where enzymes show a high degree of sequence similarity. 

Examples include enzymes from CAZy class 13, which are often falsely identified as 

alpha-amylase, or where probably not enough/all representatives might have been 

found. This includes the case of the enzyme FolQ, EC 3.6.1.67, dihydroneopterin 

triphosphate diphosphatase, which is frequently not predicted in many organisms, 

despite the fact that it must be present, given the growth conditions of these organisms 

[478]. In some cases the predicted models are also not constructed in a proper way, or 

the underlying data is not sufficient. This leads to predictions which are insufficient for 

further usage (as in e.g. transporters, to which no substrates can be assigned). 

Furthermore, to a quarter of all EC numbers not even a single associated enzyme exists 

(so called “orphan reactions”) [479]. Therefore, a reconstruction based on predicted EC 

numbers from the genes within the dataset will have gaps, which will eventually lead to 

models, which cannot be run [473]. In order to overcome this issue as much as possible, 

automatic gap-filling algorithms have been developed [480-482], allowing to initiate the 

metabolic reconstruction of increasingly complex microbial ecosystems. Currently 

available algorithms perform sufficiently well especially in cases where only small parts 

of a pathway are missing, and thus gap-filling in microbiomes with strongly understudied 

metabolic areas remain challenging.  

The third issue results from a combination of the technical setup and the underlying 

biology. In chapter 5, while studying the rumen metabolism, the central research 

question focused on methane metabolism, and how this is affected by dietary 

interventions. Methane metabolism itself is a complicated network [483, 484], where at 

least seven different cofactors specific for this metabolism are involved (six mentioned in 

[484], as well as methanofuran). The technical issue in this case is that GSMMs do not 

properly simulate cofactors, and that there is no consensus on how to integrate them 

[485]. In GSMMs it is assumed that there is a steady state of metabolites, and that X is 

consumed when it is turned over to Y. Obviously, this is not the case for cofactors, which 

are recycled to their initial state at the end of such reactions. In many cases cofactors 

are just ignored, since it is not possible to simulate them properly, with the further 

reason that their abundance is so small (due to the fact that they persist), that there is 

most likely no considerable impact on the simulation. While this can probably be true 

under the right experimental conditions, we have the interesting case in our 

metatranscriptomic data that interdependence of organisms can be a driving factor for 

the structure of a community [79, 119], and therefore the ability or inability of the 

different organisms to produce cofactors needed by other organisms can be critical. More 

specifically, in the ruminal ecosystem studied in chapter 5, two different methanogens 

(Methanobrevibacter smithii and Methanobrevibacter ruminantium) co-exist, of which the 
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latter is deficient for coenzyme M [446], a necessary cofactor at the final step of 

methanogenesis [484]. Interestingly, M. ruminantium is less impacted by the 

intervention in chapter 5 than M. smithii, which might or might not be attributable to 

also this fact (possibly via indirect connections to other cofactor producing organisms 

which were differently affected, or maybe not at all connected to this phenomenon). 

Therefore, in all simulations of microbial community metabolism, a qualitative 

assessment of the cofactor production should be included, e.g. by including the 

production of a nearly negligible amount of the relevant cofactors as done in e.g. [486] 

or [487].  

Besides the above-mentioned, more technical, issue related to the lack of inclusion of 

cofactors in models, an additional challenge arises with insufficient biochemical 

knowledge regarding the mechanistic role of specific cofactors. Staying with the example 

of cofactors involved in ruminal methanogenesis, the underlying biology is only clear for 

five of the mentioned seven different cofactors [484]. The biosynthesis of methanofuran 

was only recently elucidated [488], whereas the pathway for the biosynthesis of 

methanophenazine is still not fully clear [489, 490]. Overall, these issues would have led 

to a big lack of underlying accuracy of the resulting simulations. 

The fourth issue is again related to the insufficient match of the used technology (GSMM) 

to the underlying biology. In chapter 4, the degradation of different carbohydrate 

polymers by human faecal inocula was investigated, with a specific focus on possible 

mutualism in the degradation and on the mode of degradation. The issue in this case is 

that GSMMs cannot simulate polymers, especially not concerning their structure and size 

distribution. In different publications, this is overcome by introducing dummy reactions 

in the form of either “Polymer -> X Glucose” (e.g. [491]), or by defining polymers of a 

specific size (e.g. [492]) and defining the necessary reactions for the degradation. While 

for sure again the workaround of manual curation is possible, this could also only been 

done in this chapter with a huge effort, due to the complicated structure of the polymer. 

The structure of the polymer dictates which type of bond (alpha-1,4 or alpha-1,6) is or is 

not exposed at the surface of the branched polymer. Furthermore, the different enzymes 

involved in polymer breakdown can only access specific bonds in specific configurations, 

but in varying order, and with varying breakdown products, depending on the structure. 

Already for a small polymer this leads to an excessive amount of possible reactions (of 

which only the minority has a precise EC number).  

The last complicating factor which was encountered in the meta-omics projects was the 

lack of genomic data. While meta-transcriptomic data can often replace genomic data 

with the added benefit of providing information regarding the expression of genes, the 

meta-transcriptomic data lacks a key feature of the metagenomic data: Connectivity. In 

meta-genomic data big contigs can often be assembled, allowing to assign genes to a 

specific organism, although it should be noted that, depending on complexity of the 

communities and sequencing depth, metagenomics-derived genome binning also has its 

challenges (unpublished results). With only transcriptomic data, generation of larger 

contigs is feasible only to a limited extent, and thus, the only way to associate genes to 

each other, which are not on the same or overlapping transcripts, is via their taxonomic 

assignment. This is, however, often imprecise, and even if a species can be assigned, it 

is often the case that multiple strains of the same species occur in the same biome. This 

can again be illustrated with data obtained from the rumen (chapter 5), where some of 
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the reactions involved in methane metabolism could not clearly be associated to one of 

the two main methanogens present (supplementary file 6 of chapter 5). This basically 

leads to merged pseudo-organisms, which have a bigger metabolic potential than any 

real organism. While one could argue that these organisms potentially inhabit the same 

niche and have the same interdependencies, which would obliterate the problem, this is 

clearly not the case for some niches in the gut, as they are inhabited by multiple strains 

of the same species, which are dependent on each other [79, 118]. Therefore a lumped 

pseudo-organism for such a species (and even worse for higher order classifications like 

genus or family) would not be an accurate representation of the actual community 

architecture. 

It should not be overlooked that metabolic modelling can be successful, also in this 

thesis. In chapter 3 a GSMM for Romboutsia ilealis was developed. While the resulting 

model is in big parts for sure inaccurate, and it is also only a single organism model, it 

does give correct results (at least qualitative) for the measures of  interest, such as the 

production of short chain fatty acids (SCFAs). 

Nevertheless, the various challenges discussed above add to the well-known issues with 

GSMMs [473] (e.g. being focused on optimizing only a single goal like growth, or 

disregarding non-metabolic processes), and would make a simulation of any of the 

studied biomes rather inaccurate. Therefore the results of other studies in this field (e.g. 

the ones mentioned earlier) need to be carefully evaluated to determine their actual 

usefulness and accuracy.  

It’s a biome, let’s sequence it 

Another issue is not necessarily related to this thesis, but is noticeable in microbiome 

literature. This is poorly thought-through study set-ups, which lack rigorous design and 

focus beyond the wish to sequence a biome. While the microbiome field is not yet 

anymore the ultimate hype topic as it was after the revelation that the microbiome 

contributes to obesity [28], the topic is still trending enough that more research groups 

are trying to get on the hype train. This seems to lead in some cases to the selection of 

an exotic microbiome (a purely subjective example being the study of the vaginal 

microbiota in wild baboons [493]), with nothing more than the outcome that two 

subgroups within that microbiome are different or exhibit a pattern. While fundamental 

research is important in all areas (including in these exotic microbiomes), it is not 

supposed to stop purely with a descriptive result. In many cases the outcomes are not 

pursued further, and end with the sequence-based description of a given biome, which 

does not lead to further mechanistic insights. This issue is tightly coupled to the issue of 

finding significant results, which are testable. Many studies will report that a number of 

organisms are differentially abundant when e.g. comparing two study populations, or the 

effect of a certain intervention. Due to the very nature of the microbiome, with its 

hundreds to thousands of different organisms, this will in most cases be a significant 

number even when corrected for multiple testing. This first poses the problem which 

organisms to select for downstream hypothesis testing, since many are probably just 

correlated to some factor and not the cause of the observed differences. The second 

problem is that their impact cannot always easily be tested. The existing in vitro 

fermentation systems, like e.g. SHIME-2 [263], offer not only many opportunities, but 

also have specific limitations, which makes them unfit for some purposes. Testing for 
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e.g. colonization resistance [494] or the impact on host metabolism [77, 78] are not 

easily testable in in vitro systems that lack a host component. Working with mouse or 

other animal models poses not only ethical issues, but also logistic and monetary ones. 

The work with human volunteers is even more complicated, due to the involved 

bureaucracy (lengthiness of the process to obtain ethical consent and recruiting 

volunteers), compliance of the study subjects to the given tasks (e.g. diet), or 

challenges to obtain the material of interest (e.g. duodenum samples), although they are 

also performed [495].  

While in some cases study designs are getting more sophisticated, with the collection of 

a large number of samples including comprehensive sets of associated metadata (e.g. 

[229]), this yields the question if the field of microbiome research will not at some point 

be degraded into a purely association based type of research, as e.g. the field of genome 

wide association studies (GWAS) has become. GWAS is based on collecting a large 

amount of genomic data, and finding genomic correlations to a specific phenotype [496]. 

While there might be potential, depending on the result, to investigate the underlying 

mechanism, the main goal of the field is to find associations, and only a limited number 

of researchers actually asks the question of “correlation or causation”. To this end, 
recent developments of more sensitive in vitro systems that aim at integrating aspects of 

host- and microbiome functioning such as organoids [497] or gut-on-a-chip [264, 498, 

499] have the potential to prevent that the main outcome of further microbiome studies 

is a bar chart with multiple asterisks, and more and more researchers seem to realize 

this too [500].   

Reproducibility and best practices in microbiome research 

The crisis in reproducibility of research has in recent years received increasing attention 

[501-503]. In some fields like psychology this seems to be a dominant problem [504]. 

While countermeasures are being taken in biology, and in the microbiome field, they are 

not yet sufficient. 

The one step in which this field, together with other sequencing related fields (WGS, 

GWAS, etc.), is an example for other research fields, is open data. Many publishers 

require that if sequencing has been performed in the course of a given research, that 

this data is also made publicly available in a way that the data is findable, accessible, 

interoperable and reusable (FAIR) [505]. In most cases there are no sensible reasons to 

not do so, since the researcher already benefited from it and often no further research is 

planned on exactly this data. This leverages the hurdle for attempting to reproduce 

published results and increases the barrier for fraud. Sadly, not everyone adheres to this 

as was summarized in a recent editorial based on frequently encountered issues [506], 

where the data was not made available, and obtaining it posed such a major hurdle that 

the researchers gave up in the end. While this currently only applies to a minority of 

studies and datasets, an efficient way needs to be found to shame such behaviour, and 

to prevent a further loss of trust in science. 

This problem was also encountered in the course of a side-project that I was involved in. 

Prior to the publication of the genome of the organohalide respiring Desulfitobacterium 

hafniense strain PCE-S [507], it was attempted to verify results previously described for 

the closely related D. hafiense strain Y-51 [508], due to the fact that in their genome 

assembly (full chromosome) the potential technical contamination phiX phage was 
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integrated. Since this genome was used for reference based scaffolding, this also 

resulted in the integration of the phage genome in our genome. Verification could have 

been achieved by investigating the mapping of the reads to the chromosome and 

investigate the boundaries of the integrated phage. Unfortunately, because the authors 

did not publicly deposit their reads, this was not possible, and they did also not react to 

an attempt to contact them. The EBI also contacted me later, because someone else 

noticed the integrated phage in our genome, and wanted to point out an error. The only 

option I had was to explain the situation, and that right now I had to assume that the 

observed phage integration is actual biology, and not a technical issue. Without access to 

raw data, there is no way to ensure this without going back to the laboratory, which is 

not necessarily always possible. 

On multiple other occasions during the course of the research described in this thesis, it 

was also attempted to get hold of published 16S rRNA datasets, just to find out that the 

authors did not follow best practices and did not upload their data, which then did not 

allow us to investigate if our target organism (Romboutsia ilealis, chapter 3) is present in 

human intestinal samples. It was noticeable that in some cases this might have 

stemmed from time pressure, forgetfulness and bad organization. This is apparent when 

e.g. a bioproject and sample accession numbers are cited, but no actual runs (the actual 

data) are attached to these. This potentially happened because someone wanted to 

submit a manuscript at a defined deadline, but forgot to upload their data prior to that. 

While this is not an issue, most people are not aware that after uploading data to the ftp 

of one of the institutions belonging to the international nucleotide sequencing database 

collaboration (INSDC, including among others the European, US American and Japanese 

repositories EBI, NCBI and DDBJ), it will take until the next day until it is possible to 

submit the data as a run. Therefore it happens that people want to submit a manuscript, 

but get told that it will take until the next day until the accession numbers are available. 

Then they opt to cite the readily available bioproject or sample accession IDs instead, 

and then potentially forget about uploading the actual data. While this might seem to be 

rather constructed, it has happened to me as well. Luckily I always remembered to 

upload the runs the next day. It can now be argued whether this is bad planning from 

my side, by not uploading the data when it was easily possible, or bad planning from the 

authors side, who waited with a critical step until less than 24 hours before the 

manuscript submission. Either way, it makes it understandable and applaudable that 

some journals, e.g. the journal “Genome Announcements”, have as policy that specific 
identifiers need to be cited, and will reject a manuscript otherwise (as experienced 

during the submission process of [509], although due to different reasons). 

But even if all the data is available, there are still multiple issues which can impair the 

reproducibility of research. In many occasions not enough details are provided. Authors 

forget version numbers and parameters of the tools they used, which can make any 

attempts to reproduce the same results a futile exercise. Sometimes even complicated 

custom tools are developed and not published, although services like e.g. Github, 

https://github.com/, in combination with Zenodo, https://zenodo.org/, would easily 

allow to do this. The author of this thesis is also guilty of this. I developed at least three 

complicated tools during the time of this PhD. None of these tools are currently publicly 

available, although other researchers might benefit from them. The main issue in this 

case is time. While developing software is not always complicated, developing good 

software is. Some of my software is not in a state to be easily used by others, and the 
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time to make the required changes to be user friendly is just not there. This is not even 

considering that e.g. the script used to produce the supplementary figures in chapter 3 is 

based on older code of mine, and the code itself does not follow any coding conventions 

due to the early, incremental and unplanned development. Sanitizing this code to make 

it not an embarrassment for any computer scientist is nearly impossible. Taken these 

two factors together, there was no chance for these scripts to be made public. I am 

aware that I am not following best practices, but I am not able to see how to change 

this, without having an impact on the direct scientific output, due to the time it would 

take up. 

The next point after this issue is that not all reproduction attempts are feasible. In this 

thesis, e.g. in chapter 4, the metatranscriptome assembly lasted multiple weeks on a 

server with 320GB of RAM. During my current postdoctoral research, another assembly 

required 1.5TB of RAM. While research groups I worked in were lucky enough to have 

these resources, others will not, and therefore will not be able to reproduce it. And even 

if the resources are available, some of the used tools (like the genome assemblers) 

contain inherently stochastic processes, like e.g. picking the seed read for the beginning 

of the assembly, which will make the exact reproduction impossible. While for sure 

intermediate data could be provided, and in chapter 5 we also attempted to do so in 

response to a request by the editor during the first submission of the manuscript, there 

is no dedicated infrastructure for this kind of data available. The current INSDC 

repositories [510] do not really offer this, and it partially would also require substantial 

investments in more hard- and software-resources to do, especially for the big data like 

e.g. the meta-transcriptome assemblies generated in the framework of the research 

described in this thesis. Some data can be distributed as supplementary material during 

the publication process, but this obviously has not been standardized or structured, and 

even there e.g. bigger count tables could pose a problem. 

Even if some kind of standardization is performed, it is necessary to make it also 

meaningful. In the course of my PhD research, one publication was submitted to the 

journal “Standards in Genomic Sciences” [507], and another one is in preparation [511]. 

In this journal extended genome announcements are published, and the editors set as a 

goal to make them comparable by introducing standards. This includes e.g. fixed tables 

and fixed figures, which help the standardization process, since in theory they can easily 

be compared. But this is only in theory the case. The journal e.g. requires a table of how 

many proteins in the genome of interest could be assigned to COG categories. In theory 

this allows then to judge if the genetic makeup of the different organisms are 

comparable or not. But the journal does not give any recommendations how to obtain 

the COGs. They could be obtained by the procedure as described in the original paper 

[192], by single directional blast, bidirectional blast [512], and with any kind of e-value 

or bitscore cutoff, making the whole attempt of having a standardized table less 

meaningful. On the other hand, the choice for standardization or allowing methodological 

flexibility is ultimately important for the spirit of science. The choice of tools, parameters 

and used setups are in many cases discussable. Most often there will be cases where the 

standard approach will fail due to the underlying biological problem. Standardization is 

therefore not necessarily impossible, but sometimes just not desirable for good scientific 

practice. It might even supress other scientific ideas. What e.g. if the journals required 

specific tools to be used (e.g. genome assemblers in the case of “Standards in Genomic 
Sciences”)? The development of better approaches in this area might be considerable 
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hindered by standardization measures. Science is not a “one size fits all” business, which 
makes standardization an extremely complicated topic.  

If these problems (except the last one discussed) were all solved, this would only affect 

the computational side of the research. Reproducing results on the laboratory side would 

not be affected by these efforts. Laboratory work was never in the scope of this work, 

and therefore can only be shallowly reflected upon, but progress needs also to be made 

on this side to ensure good scientific conduct. 

What to do if science is only partially bad? 

Issues with reproducibility, up to the level of scientific fraud, are not necessary for a 

publication to be deemed “bad science”. But what should be done about it? 

For example, during the literature research for chapter 5, the paper by Ross et al. [513] 

was investigated. In this study, the authors also studied rumen microbiota. They had a 

dual approach, by sequencing deeply with Illumina technology, and doing shallow 

sequencing with 454 technology. Afterwards the authors annotated the longer 454 

reads, and mapped the Illumina reads to the 454 reads to do the statistical analysis (and 

to another dataset from the JGI). I am speculating that this was done due to insufficient 

computational capabilities to perform a transcriptome assembly, and therefore this 

strategy was chosen, although it does not seem directly logical. This is not the point to 

be mainly criticized. The criticisable problem in this publication is shown in table 1. The 

data in this table shows the mapping rate of the Illumina data to the 454 data, which is 

at the end ~6% of the data. Hence, the main outcome of this paper is based on less 

than 6% of the data, since not all the data did get analysed. The research is also not 

fraudulent, since all the details are given in the publication, and it is up to the readers 

and reviewers to judge it. But this cannot be considered good science, because obviously 

the majority of available information was discarded in this process. Therefore it was 

opted to not cite this publication in chapter 5. But what should be done about it? Citing it 

and pointing out the issue will increase the impact of the publication due to higher 

citation count, without having a negative impact, since not all researchers will read all 

the citing publications. Not citing will not change the issue. Using other channels, like 

e.g. blogs, Twitter, etc., can work, but only in limited cases when the backlash due to 

bad science turns out to be overwhelming (e.g. [514], although this case is more bad PR 

than bad science), but this will not be effective in most cases. Some publishers have 

comment sections on their websites (e.g. Frontiers or bioRxiv), which allow researchers 

to point out these problems, but also there the impact is limited. 

Another case, which is more problematic, is the publication from Barkin et al. [515], over 

which I came across during my postdoctoral work. In this publication, the authors screen 

for a specific antibiotic resistance by performing a PCR for a specific marker gene. The 

issue here is that the marker gene has been proven to confer antibiotic resistance in 

Bacteroides fragilis [516], but the authors intended to screen for Clostridium difficile, 

where this association has never been made before, but where the gene is also 

ubiquitously present, despite the fact that the antibiotic resistance is not widespread. 

Additionally the authors only screened stool samples, which have been found positive for 

Clostridium difficile. The authors would have realized, if they had performed actual 

testing for antibiotic resistance, that they would not have been able to isolate any 

resistant C. difficile from these samples, and that the gene itself could have originated 
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from other organisms in these samples too. This publication is full of oversight from the 

authors and the reviewers, and is speculative at best. It is not fraudulent, but 

nevertheless a problematic case, which should not stay published as it is. But what could 

be done? Should the publisher be contacted? If so, there is no established way of doing 

this, and it might prove to be very inefficient. Contacting the authors will most likely also 

be futile. Writing a commentary could be an option, but not all journals offer this option 

either. 

Overall, this shows that science has considerable issues, which are not directly related to 

fraudulent activity, but which also have not been fully tackled yet. 

Challenges in evaluating meta-omics data 

The biggest technical challenge in meta-omics data is the sheer amount of data. To give 

a very simple example, data obtained by differential transcriptome analysis of a single 

bacterial species can be sufficiently well evaluated in an excel table with the help of 

some other tools like Pathway Tools [243], since the amount of differentially expressed 

genes might go into the hundreds, but will rarely exceed 2000. In contrast, this becomes 

a struggle if there are hundreds of organisms in the sample, which might lead to tens of 

thousands of differentially expressed genes, as it is the case even for relatively simple 

microbial communities such as those active during in vitro fermentation experiments 

(chapter 4, Table S2). Given that the outcome of different experiments can vary 

extensively, there is also rarely ever a universal solution, and the approach itself needs 

to be evaluated after every intermediate result. 

A simple start can be to evaluate the metabolism, since sufficient databases such as 

KEGG [227] and Metacyc [517] exist, and the network layout of metabolism itself helps 

greatly with understanding also bigger datasets. But further steps need to be taken. 

Interpreting the entire community metabolism as a single entity will obscure differences 

between organisms. This can be seen e.g. in chapter 5, Figure 3, where the differences 

in the vitamin B12 metabolism between members of the Bacteroides and Clostridiales 

group led to actually interesting differences in SCFA metabolism, which explained the 

observed measurements in succinate and propionate. Staying with this example, it can 

also be shown that only explaining metabolism is often not sufficient. In the diagram 

other interactions are included, which cannot directly be seen on the metabolic maps. In 

this case the interaction of vitamins (B12) and cofactors (iron), as well as their transport 

and storage (iron) are critical in explaining the different SCFA measurements. While in 

this case these partial results were simply obtained by manually inspecting the excel 

table with sharp eyes, in other instances this will neither be sufficient nor feasible. There 

are also no readily available tools, which would automatically allow a researcher to do 

this, and there might also in the near future not be any, due to the complexity of the 

data. Using substitutes, like the evaluation of over- and under-representation of GO 

terms [197] does greatly help in these scenarios, however, the final connections still 

often need to be established manually, either again by visual inspection, or by 

summarizing data in custom ways (e.g. counting specific functions per organism).  

Challenges for the wet-lab researcher 

This also makes the requests by wet lab scientists a nearly futile challenge. It is 

desirable (and often necessary) that a scientist can evaluate his or her own data, and in 
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other fields, like physics, this is also often given. But in biology, many scientists do not 

have the necessary computational skills to perform these steps. Therefore currently the 

job of a computational biologist exists, in contrast to a computational physicist, which is 

often not a standalone job description.  

With no standard solutions being available (also not for the computational biologist), the 

scientist him/herself must be able to improvise. This skill for improvisation is actually 

one of the most necessary skills for a scientist. This becomes obvious, if in a laboratory 

setting standard protocols for e.g. DNA extraction are not working, and further steps 

(centrifugation, other buffers, etc.) must be taken. If the standard protocols would 

always work, a scientist would not be necessary in this setting, and could easily be 

replaced by a robot or by cheaper, untrained personnel. Due to the fact that science is 

highly variable, this is not the case, and it is necessary to have an understanding of the 

underlying mechanisms, to make improvisation possible.  

But without computational skills, improvisation is not possible in big data, and a 

researcher will not be able to fully understand his/her own data. While this has been 

clear now since the start of this millennium [518], the education systems still struggle 

with it [519], although it should be noted that due to the rising awareness [520] this 

situation is hopefully likely to change in the near future. 

Future perspectives 

Talking about the future - the field of microbiome research has been moving forward, 

but which direction is it going to take? There probably will be a trend towards more 

comprehensive studies, with more in-depth data and increasing efforts to provide causal 

findings rather than mere associations. This is not necessarily motivated by the field 

itself, since there is currently an expansion of the “just sequence it all” approach (as 
mentioned earlier). Luckily, there is increasing awareness in the field that large scale 

data-driven explorative research is needed for hypothesis finding, but should not be the 

endpoint. After the initial large scale surveying projects (the Human Microbiome Project 

[19] and MetaHit [27]), other similar projects with even more data are already being 

established [229]. While projects of this size are obviously only possible for very large 

research groups and collaborative programmes, the collection of more diverse data, 

being it metadata, physiological, immunological or chemical data, should be part of 

every future project. Furthermore, as also pointed out earlier, more sophisticated follow-

up experiments are necessary. While currently many publications end with correlating 

values, more projects will hopefully change this, by investigating deeper the causative 

reasons of their findings (despite the associated challenges). 

Another direction is probably the usage and development of more standardized pipelines. 

While this is not always beneficial (as pointed out earlier), the mentioned best practices 

problems will probably force the field in this direction. The availability and 

implementation of standardized pipelines will make reproducibility of results a negligible 

issue, due to logging functions and easily retrievable parameters. In turn, this will 

possibly also lead to scientific losses in certain datasets, since with standard approaches 

not every potentially interesting result can be retrieved. Re-investigations of bigger 

datasets by trained data scientists will therefore probably also become the norm, 

however, requires free access to such data in the public domain as discussed above.  
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We have been overwhelmed by this vast amount of data, generated by cheap 

sequencing technologies. If this continues, larger research groups will sequence even 

more, and maybe so much, that the field will be confronted with a big pile of non-

analysed data. This can partially be seen in different publications, where e.g. 

metagenomics data had been sequenced, but only the standard approaches established 

for 16S rRNA gene amplicon analysis were used, without utilizing the additional 

information in this data. While these occasions are not prevalent and will for sure get 

less, it is possible that at some point the sequencing will be so fast and cheap that it will 

not be possible anymore to keep up with it. This point will probably appear only after the 

mentioned standardization measures, and will then require the real experts in machine 

learning. While players like Google and Microsoft are already dealing with computational 

biology [521, 522], they will probably be investing in this field even more in the coming 

years. 

Concluding remarks 

The research described in this thesis was divers, ranging from human, rat to cow 

gastrointestinal biomes, with several more side projects. There are two main messages 

to be taken home from this work. 

The first one is that the microbiota is involved in nearly all processes that involve higher 

animals. It impacts digestion (chapter 1), skin health [523], oral health [524] and 

maybe mental health [525], as well as feed performance [34], gas output (chapter 5, 

[42]) and many more parameters. The second is that, while the field is now in its teen 

years, and approaching twenty years (chapter 2), there are still lots of unsolved 

problems, starting from various laboratory methods to computational approaches (this 

thesis, and e.g. [526]), to reproducibility issues and data distribution. Overall, this 

combination offers many challenges but also almost unlimited opportunities for future 

microbiome research.  
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Summary 

The aim of this thesis was to elucidate how various microbial communities work, with a 

focus on next generation sequencing data. 

The introduction in chapter 1 focuses on the history of biology, how the field of systems 

biology arose, and how the rise of nucleic acid sequencing has shaped a completely new 

field (among others), the microbiome research. 

In chapter 2, an overview is given how the microbiota can be studied, in connection to 

metabolic syndrome and its sub-pathologies, including obesity, type II diabetes, elevated 

blood pressure, and dyslipidemia. We summarize which different methodologies (16S 

rRNA amplicon sequencing, metagenomics, metatranscriptomics) can be used to 

investigate the microbiome with different foci, and how as a next step the microbiome 

can be modelled, in vitro and in silico. 

Chapter 3 describes the genome and transcriptome of the rat gut commensal 

Romboutsia ilealis CRIBT. We characterized genomic properties, including those related 

to metabolism and sporulation abilities. The transcriptome allowed us to investigate the 

organism’s carbohydrate degradation abilities, including its potential regulation. 

Chapter 4 is an investigation of an in vitro fermentation system, inoculated with human 

faecal material and the potential prebiotic Isomalto/malto-polysaccharides. The 

metatranscriptome of this system gave an insight into which genes are involved in the 

carbohydrate degradation, and which different types of organisms are involved and 

potentially need to cooperate for a full utilization of this carbohydrate. 

In chapter 5, the cow rumen microbiota is investigated under different feeding regimes. 

The metatranscriptome of the cow rumen microbiota showed distinct patterns depending 

on the ratio of starch or cellulose enriched feed components, namely maize vs. grass 

silage. The increase in starch led to a decrease in methane emissions of the cow rumen 

microbiota, which was reflected in the metatranscriptomics data. Most notably, lower 

expression levels of genes encoding for proteins involved in methanogenic pathways of 

the rumen archaeon Methanobrevibacter smithii was observed. 

The last chapter, the general discussion, mainly discusses the research described in this 

thesis with a focus on the relevant issues with modelling microbial communities, as well 

as overall scientific integrity in relationship with microbiome research. 
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