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Abstract
In this paper, we present a system for interactive computation of
global illumination in dynamic scenes. Our system uses a novel
scheme for caching the results of a high quality pixel-based renderer
such as a bidirectional path tracer. The Shading Cache is an object-
space hierarchical subdivision mesh with lazily computed shading
values at its vertices. A high frame rate display is generated from
the Shading Cache using hardware-based interpolation and texture
mapping. An image space sampling scheme refines the Shading
Cache in regions that have the most interpolation error or those that
are most likely to be affected by object or camera motion.
Our system handles dynamic scenes and moving light sources

efficiently, providing useful feedback within a few seconds and
high quality images within a few tens of seconds, without the need
for any pre-computation. Our approach allows us to significantly
outperform other interactive systems based on caching ray-tracing
samples, especially in dynamic scenes. Based on our results, we
believe that the Shading Cache will be an invaluable tool in lighting
design and modelling while rendering.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism; I.3.3 [Computer Graphics]: Picture/Image
Generation; I.3.2 [Computer Graphics]: Graphics Systems;

Keywords: Rendering, Ray Tracing, Parallel Computing, Render-
ing Systems, Illumination, Monte Carlo Techniques

1 Introduction
Interactive computation of global illumination is of major impor-
tance in the field of computer graphics, especially when applied to
engineering and design. Effects such as soft shadows, diffuse inter-
reflections and caustics are important cues for the human visual
system. All these effects can be correctly simulated using global
illumination algorithms such as path tracing [Kajiya 1986] or the
RADIANCE system [Ward 1994], but only at a huge computational
cost. Needless to say, these techniques are not suitable for interac-
tive applications.
Modern graphics hardware can render complex environments at

interactive rates. The realism of hardware-based approaches can be
increased by using pre-computed radiosity textures, environment
maps and sophisticated pixel and vertex shaders [Lindholm et al.
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2001]. However, these approaches limit the choice of shading algo-
rithms. In addition, the amount of pre-computation or hand-tuning
required is often quite significant. Inspite of these drawbacks, hard-
ware rendering remains the only viable choice for interactive ap-
plications, primarily because of its efficiency in performing hidden
surface removal and texture mapping.
Recently, interactive walkthroughs of global illumination have

become possible by clever caching of ray-traced samples [Walter
et al. 1999; Simmons and Séquin 2000; Stamminger et al. 2000]
or by efficiently updating partially pre-computed radiosity solu-
tions [Drettakis and Sillion 1997; Granier and Drettakis 2001].
However, these techniques provide only limited interaction; large-
scale scene manipulation or the movement of primary or bright sec-
ondary light sources typically results either in a loss of interactivity
or a prolonged degradation in image quality.
Applications such as lighting design require interactive global

illumination solutions while allowing unrestricted manipulation of
the scene including the lights. Interactive walkthroughs with pro-
gressively refined global illumination solutions are also useful in
such applications. In addition, it is also important to have scala-
bility with processing power and flexibility in the choice of global
illumination algorithms.
In order to meet these goals, we have designed a novel scheme

for caching high quality samples generated by pixel-based render-
ing algorithms such as path tracing and then interpolating between
these samples using graphics hardware. Our Shading Cache is a hi-
erarchical subdivision mesh attached to each primitive in the scene,
with lazily evaluated shading values at the mesh vertices. It is re-
fined by choosing locations in the image plane that require more
accuracy. The selection of these locations is made using a prior-
ity map, which captures the likelihood of error due to interpolation,
view-dependence and object motion. We also introduce a novel
flood filling operator for efficiently capturing the high frequency
detail in the image to supplement the priority based sampling. Fi-
nally, we use graphics hardware to efficiently interpolate between
the shading samples for polygonal or curved surfaces. By using the
hardware for image reconstruction, we ensure that the scene geom-
etry and textures are accurately reproduced at all times, even when
the shading values are only available at a very low resolution. The
entire process is illustrated in Figure 1.
While the idea of image reconstruction from a sparse set of high

quality samples has been previously explored [Walter et al. 1999;
Simmons and Séquin 2000; Stamminger et al. 2000], we believe
that our approach offers significant improvements in speed and
quality, especially in dynamic scenes. The reason for our superior
performance is the use of object space caching and interpolation,
combined with a superior sampling scheme that refines the mesh
only in regions of high importance and interpolates in other regions.
After a discussion of previous work in Section 2, we give an

overview of our system in Section 3 and the sample selection pro-
cess in Section 4. We then show how moving objects and view
dependent illumination can be efficiently handled in Section 5. In
Section 6, we provide performance statistics and in Section 7, we
compare our system to other interactive global illumination tech-
niques. We conclude with a discussion of the advantages and limi-
tations of our work and future directions for research.
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Figure 1: The Shading Cache at time tn−1 is used to generate a display representation which is drawn using graphics hardware. The Shading
Cache is updated asynchronously of the display by first computing a priority map and then using it to select additional samples. The resulting
mesh at time tn is used to compute a new display representation which is used starting from frame k + m.

2 Previous work
Interactive rendering: Current interactive rendering methods are
mostly based on graphics hardware. Hardware rendering can be
made more realistic by adding shadows [Segal et al. 1992], spec-
ular reflections and refractions [Diefenbach and Badler 1997] and
general BRDF models [McCool et al. 2001]. [Udeshi and Hansen
1999] employ parallel graphics hardware for shadows and CPUs
for computing indirect illumination, thus extending the hardware
shading model to include approximate one-bounce indirect lighting.
Alternatively, an approximate representation of the global illumina-
tion can be pre-computed and viewed interactively using graphics
hardware, as in [Walter et al. 1997a; Stamminger et al. 1999; Bas-
tos et al. 1999; Stürzlinger and Bastos 1997]. In the context of ray-
tracing, [Parker et al. 1999] and [Wald et al. 2001] used low level
optimizations and parallelism to show that interactive ray-tracing of
complex scenes is feasible on today’s computers, albeit with sim-
ple shading models. The Holodeck data structure [Larson and Sim-
mons 1999] caches rays in order to provide an interactive walk-
through, but it supports a very restricted object motion paradigm.
Radiosity based methods: The radiosity method [Goral et al.

1984] can be used to pre-compute view-independent radiosity val-
ues which can be viewed interactively. Extensions have been pro-
posed for view-dependent illumination [Chen et al. 1991; Aup-
perle and Hanrahan 1993] and view-driven refinement [Aupperle
and Hanrahan 1993; Smits et al. 1992], but they do not provide in-
teractive rates. On the other hand, several researchers have demon-
strated that a radiosity solution can be updated at interactive rates
after localized object motion, see for example, [Chen 1990; Dret-
takis and Sillion 1997]. However, the image quality resulting from
such systems may not be high because of the difficulty in reproduc-
ing discontinuities such as sharp shadows using radiosity.
Recently, [Granier and Drettakis 2001] used a combination of

hierarchical radiosity with clustering [Sillion et al. 1995] and par-
ticle tracing [Jensen 1996; Walter et al. 1997b] to simulate global

illumination including non-diffuse effects. In their system, diffuse
scenes can be visualized using graphics hardware, while the Ren-
derCache [Walter et al. 1999] is used for scenes containing non-
diffuse surfaces. Their system even updates the global illumination
solution on the diffuse surfaces at near-interactive rates when an ob-
ject is moved, but they report pre-computation times ranging from
35 minutes to over an hour. In addition, their technique is likely to
require a significant amount of time to update the illumination after
large changes to the scene such as moving light sources.
Caching schemes: The RADIANCE system [Ward 1994] pro-

duces high quality images off-line by caching lazily computed dif-
fuse inter-reflections and interpolating between the cached values.
Radiance interpolants [Teller et al. 1996; Bala et al. 1999] cache
radiance in 4-D line space, exploiting spatial and temporal coher-
ence by using these interpolants over several frames. However, they
assume the Whitted ray tracing model [Whitted 1980] for deriving
the physical error bounds used to refine the interpolants. Moreover,
their primary goal is to generate images within a specified error
tolerance, so the frame rate may drop when additional interpolants
need to be constructed to satisfy the given error bounds.
Reprojection-based schemes, inspired by frameless render-

ing [Bishop et al. 1994], are most closely related to our work. [Wal-
ter et al. 1999] cache the results of previous images in a Render-
Cache and use reprojection to reduce the number of pixels that need
to be computed per frame. The RenderCache also supports sim-
ple object motions. The Tapestry system of [Simmons and Séquin
2000] uses an image-plane Delaunay mesh to reduce the visibil-
ity artifacts of the RenderCache. However, this does not eliminate
all the geometric artifacts. In particular, geometric edges have to
be reconstructed using a very large number of point samples and
even then, may be distorted when the camera moves. [Stamminger
et al. 2000], on the other hand, improve a pre-computed radiosity
solution by using object-local or camera-local corrective textures.
The radiosity solution together with the corrective textures are then



displayed without any geometric artifacts using graphics hardware.
However, using camera-local projective textures introduces repro-
jection artifacts in the shading. Also, object-local textures must
be of an extremely high resolution in order to reconstruct sharp
shading features such as hard shadow boundaries. Finally, Tapestry
and Corrective Texturing are primarily meant to provide global illu-
mination walkthroughs and extending these systems to handle dy-
namic scenes seems non-trivial.
Image reconstruction from a sparse sample set and adaptive

sampling: An entire image may be reconstructed from a sparse set
of samples to enable rapid previewing [Darsa and Costa 1996]. The
reconstruction may be improved by pre-processing the geometry
[Pighin et al. 1997]. However, such pre-processes are too expensive
for interactive applications. Computation of static images or ani-
mation sequences can be accelerated using adaptive refinement and
perceptually-driven sampling [Guo 1998; Ramasubramanian et al.
1999; Myszkowski et al. 2001; Yee et al. 2001]. But the resulting
improvement in efficiency is not sufficient to achieve interactivity.

3 System Overview
Computation of global illumination is very slow, so in order to pro-
vide a high frame rate, our system decouples the refresh of camera
view and object motion from the update of shading values. This de-
coupling is achieved by caching recently computed shading values
in an object-space mesh data structure called the Shading Cache.
The data structure for the Shading Cache is a hierarchical patch tree,
similar to that used in hierarchical radiosity [Hanrahan et al. 1991].
Our system can handle all locally parameterizable surfaces; the cur-
rent implementation supports triangles, quadrilaterals and bicubic
curved surfaces.
Each patch in the mesh stores the last computed shading values

for its vertices. During initialization, the mesh for each geometric
primitive is set to be a single un-subdivided patch. The shading
values for these root patches are not pre-computed, but evaluated
lazily when required for generating a good image. When a patch
is selected for update, we either evaluate the shading values for its
vertices or subdivide the patch into four children and evaluate the
shading values for their vertices. For non-diffuse surfaces, the exi-
tant radiance for the current viewing direction is used as the shading
value, while for diffuse surfaces, the irradiance is used. This dis-
tinction allows us to use texture mapping hardware during image
reconstruction.
The main building blocks of the system are shown schematically

in Figure 2. The Shading Cache is updated in a view-driven fashion
in order to refine the rendered image. An efficient display repre-
sentation is then generated for the Image Generator, which uses
the graphics pipeline for image reconstruction, including texture
mapping, Gouraud interpolation and hidden surface removal. The
User Interaction Loop 1 runs asynchronously from the update of
the Shading Cache. This allows us to refresh the camera view and
to display moving objects at a high frame rate without errors in ge-
ometry or texture, irrespective of the shading speed. The Sample
Selector assigns priorities to each pixel depending on the estimated
error in its currently displayed value and uses this priority map to
select locations in the image plane for computing additional shading
samples. These samples are then computed by the Sample Renderer
using any suitable global illumination algorithm.
This basic idea of decoupling the camera view update from shad-

ing calculations has been explored in the RenderCache [Walter et al.
1999], Tapestry [Simmons and Séquin 2000] and Corrective Tex-
turing [Stamminger et al. 2000]. Of these, only the corrective tex-
turing approach reproduces scene geometry accurately. All three
of them rely on point sampling to reproduce textures. Our system
always reproduces the scene geometry and textures accurately and

1We have implemented the User Interaction loop using OpenGL

the frame rate is not related to the shading speed or display resolu-
tion (within the limits of graphics hardware). This results in higher
quality images and greater interactivity. Our choice of a hierarchi-
cal mesh data structure is superior to a “regularly subdivided cor-
rective texture” because it can reproduce high frequency features
such as hard shadows without using excessive texture memory. We
describe our system in detail in the following three sections. Later,
in Section 7, we provide additional comparisons between our sys-
tem and the other caching schemes.
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Figure 2: An Overview of the System

3.1 Updating the Shading Cache

The Shading Cache must be updated in order to progressively refine
the displayed image. This may involve computing regions of the
Shading Cache that were not required for previous frames or those
that have inaccurate shading values. In addition, a display represen-
tation that can be efficiently handled by the graphics pipeline must
be generated. The sequence of steps that perform these operations
is described next.
A patch identifier map is drawn and read back by the Image Gen-

erator when required by the update process. The Sample Selector
goes over this ID map and evaluates the priority for each patch that
is visible in the current view. These priorities are then used to se-
lect image plane locations for refinement. The process of assigning
priorities and selecting samples is described in detail in Section 4.
The patches that correspond to each of the sample locations are

then determined using the ID map. A list of selected patches with
the number of samples lying on each patch is created. For each
patch in this list, we either update the shading values for its ver-
tices or subdivide the patch and compute new shading values for
the vertices of its children. Patches with more sample requests are
subdivided faster than others until eventually all patches project to
one pixel in the image plane.
We use aging to limit the size of the Shading Cache and to pre-

vent the frame rate from dropping to an unacceptable level. For this,
patches that are visible in the current view are marked as “seen”.
Then, if the cache size has grown above a given threshold, patches
that are no longer useful for rendering the current or immediately
foreseeable views are deleted. Thus, all children of a patch are
deleted if (a) none of them has been seen in a user-specified num-
ber of frames, or, (b) the patch itself projects to less than one pixel
in the given view. This “not recently used” replacement strategy
is based on the assumption that recently seen patches are likely to
be in view again in the near future and hence should be retained,
whereas patches that have not been in view recently are likely to
remain outside our view.



3.2 Sample Renderer

Shading values for selected samples are computed by the Sample
Renderer. In our implementation, we use area sampling of light
sources to compute direct illumination with soft shadows and a bidi-
rectional path tracer [Veach and Guibas 1994] to compute indirect
illumination. All examples in this paper have been rendered using
100 area samples per light and between 400 and 1200 samples for
the indirect illumination. Sampling is performed using the Halton
sequence [Halton and Weller 1964]. With these settings, our ren-
derer can shade 10 to 100 points per second on one 1.7GHz Pentium
4 processor in moderately complex scenes. This compares to to half
a million pixels in a 800 X 600 image. Our system is designed to
scale with the processing power available for rendering samples.
We have found the system to be usable on dual processor worksta-
tions with one of the processors rendering the samples, scaling up
to 16 processors or more.

3.3 Efficient display

The Shading Cache is used to generate an efficient display repre-
sentation consisting of Gouraud interpolated, texture-mapped poly-
gons. For planar objects, the patches in the Shading Cache can be
displayed as is without introducing visibility artifacts. However,
doing so for curved surfaces results in geometric errors, such as
tears in the interior and incorrect silhouettes. Therefore, we tessel-
late the curved surfaces in a view-dependent fashion and display
this tessellation instead of the Shading Cache. Note that the ver-
tices of this tessellation are not shaded using the expensive sample
renderer, but simply by interpolation from the Shading Cache.
The display representation uses OpenGL vertex arrays for ren-

dering. In order to prevent synchronization overhead between the
user interaction loop and the update loop, we maintain two copies
of the vertex arrays for double buffering. Thus, synchronization is
required only when swapping the arrays. We perform incremental
updates to the arrays by keeping track of which patches are affected
in the current update cycle. This way, the overhead of maintaining
the Shading Cache is minimal.
To summarize, the Shading Cache is updated using a view-driven

refinement process and then used to generate a display representa-
tion that can be displayed at a high frame rate without errors in
geometry or texture.

4 Sample Selection
Since the Sample Renderer can only render a very small number
of pixels per frame, the pixels to render must be selected carefully
in order to provide good image quality. We use a priority-based
scheme similar to [Simmons and Séquin 2000] to direct the image
plane samples into regions where the object-space Shading Cache
needs more accuracy. In addition, we also use a novel flood filling
operator to quickly refine the Shading Cache in regions containing
discontinuities or high gradients. The process of sample selection is
illustrated in Figure 3. In Section 5, we extend this basic scheme to
handle view-dependent illumination and dynamic scenes efficiently.

4.1 Estimation of interpolation error

The priority of a patch is based on the estimated error in the shad-
ing values of the pixels that it projects to. We estimate this error
as the difference between the maximum and minimum colors of the
vertices of the patch, after tone-mapping with the s-shaped operator
of [Tumblin et al. 1999] with weights of 5/16, 9/16 and 2/16 for
the red, green and blue channels. This is because the visual differ-
ence between two radiance values is linear in the difference of their
tone-mapped values.
The error metric is simply the estimated interpolation error of

each pixel covered by this patch. Since geometric discontinuities
are always accurately reproduced by our system, we do not need

the depth term used by Simmons and Séquin. In addition, we also
do not quantize and pack the priority into 8 bits. Instead we simply
generate an id map by drawing the 32-bit pointer of the patch into
the color channel. This allows us to evaluate the priorities lazily
for just the visible patches and also provides greater flexibility in
choice of error metrics. For example, our system can support view-
dependent perceptual error metrics similar to [Ramasubramanian
et al. 1999; Yee et al. 2001; Dumont et al. 2001].

4.2 Sampling the priority map

The patch priorities can be thought of as the likelihood of error in
the value of a pixel covered by the patch. Therefore, we would like
to sample the patches with the highest priorities. As correctly ob-
served by [Walter et al. 1999], sorting the priorities and selecting
the highest priority patches will lead to a very poor spatial distribu-
tion of samples in the image plane. To avoid this problem, we use
a hit-and-test approach. We draw an ID map at the beginning of
each update cycle and compute the priority of every patch in view.
After this, we normalize the priorities to a 0 to 1 range and treat
the priority of a patch as the probability of selecting it for accurate
computation.
In our hit-and-test approach, a random pixel in the id map is se-

lected for testing. Since the priorities are normalized between 0 and
1, we simply generate a random number in that range and accept the
pixel if its priority is greater than the random number. Thus, the to-
tal probability of selecting a patch is proportional to its priority and
its projected area in pixels. Note that our approach does not require
the selection of an ad hoc threshold for accepting samples and is
also guaranteed to eventually select all pixels in the image plane.
Outlier priorities can be a problem in the normalization step, so in-
stead of mapping all priorities between the minimum and maximum
value linearly to a [0,1] range, we instead compute the average and
variance of the priorities and map values that are 4 standard devia-
tions above and below the average to 1 and 0 respectively.

4.3 Avoiding bias in the sampling

If we simply use a difference-based metric (or even a contrast-based
one), it is possible that certain patches might get a zero or very
low priority if the shading values at their corners are almost equal.
However, this does not necessarily mean that the radiance function
is constant in the interior of those patches. So, in order to avoid bias
in the sampling, we accept samples with a certain small probability,
ǫ, irrespective of their priority. Thus, the total priority of selecting
a pixel is given by

ptotal = ǫ + (1− ǫ)× pnormalized (1)

We have found that ǫ values from 0.01 to 0.05 work well in prac-
tice; we used 0.03 in all our examples.

4.4 Reconstructing shading discontinuities

Since the probability of hitting a patch with random sampling is
proportional to its projected area, small patches are very unlikely to
be tested. However, since the sampling scheme is trying to direct
samples into regions of high gradients, such regions inevitably con-
tain a large number of small patches. Thus, the patches around the
shading discontinuity that need to be refined quickly end up being
rarely tested by the hit-and-test process. In order to improve the
rate of convergence in these cases, we run a second image plane
selection phase that tests the neighboring locations of the already
selected high priority samples and accepts them if their priority is
greater than the current sample. This can easily be done by a flood
filling algorithm so that already visited regions will not be touched
again. The flood fill is stopped when all neighboring pixels have
priority below threshold. This second phase is similar in spirit to
the one presented by [Hart et al. 1999].
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Figure 3: Illustration of the sample selection algorithm. The sampling procedure starts with the assignment of priorities to the patches in the
id map. The priority map is used to select patches for accurate computation according to three criteria as illustrated above.

We found that this two phase approach of selecting samples be-
haves much better than the sorting approach or the simple hit-and-
test. This is because the first phase has the advantage of uniformly
spreading the samples in the image plane (as for hit-and-test), and
the second one ensures that regions with small, high priority patches
will be highly sampled (as for sorting).
Figure 3 illustrates the entire sample selection process. The left-

most column shows the initial mesh and the corresponding image,
which is used to compute the priority map. Samples selected using
this map are shown in the third column, color coded to show the
mechanism of acceptance: red for samples selected by the hit-and-
test mechanism, green for random samples and yellow for flood
filled samples. The final mesh and the resulting image are shown in
the rightmost column.

5 View-dependent effects and object mo-
tion

When the shading values in a scene change with camera or ob-
ject motion, it is necessary to direct sampling specifically into
the regions that are most affected by such motion. In this sec-
tion, we extend the basic priority assignment and sample selec-
tion scheme of Section 4 to efficiently update view-dependent and
motion-dependent shading.

5.1 View-dependent illumination

The shading of non-diffuse objects changes with the viewpoint,
and hence should be recomputed when the camera moves. How-
ever, given the constraint of interactivity, we cannot afford to re-
compute the entire image each frame. Instead, we use the mecha-
nism of priorities described in the previous section to preferentially
re-compute the illumination on non-diffuse objects by increasing
their priorities. This is achieved by keeping track of the last time at
which each patch in the Shading Cache was computed. Non-diffuse
patches computed before the last camera motion are assigned an
age priority proportional to the difference between the current time

and their time of computation (measured in cycles of the Shading
Cache update loop). The constant of proportionality is always at
least equal to 1; it is higher for objects whose shading is expected to
change more rapidly with viewpoint. For glossy objects, we select
this constant using a heuristic based on the perceptually uniform
gloss scale proposed in [Pellacini et al. 2000]. Similar strategies
can be constructed for other reflection models. More sophisticated
heuristics that take into account the change in the viewing direction
can also be developed. However, our simple heuristic performed
adequately in our tests; for example, notice the sample distribution
for the glossy objects in Figure 4. Note that the estimated error and
the age priority are added together before the normalization and bi-
asing steps described in the previous section.

5.2 Motion-dependent shading

Moving objects present a tougher challenge than camera motion.
We know that when the camera moves, we should only recom-
pute the shading for non-diffuse surfaces. However, when an ob-
ject moves, we first need to detect a change in shading and then
re-compute all the affected regions of the scene. We rely on the
random sampling to detect large changes in shading caused by ob-
ject motion. As soon as the shading values of one patch change,
the interpolation error of its neighboring patches increases, thereby
raising their priorities. In addition, objects that detect such a change
in shading are also aged just like non-diffuse objects, and eventu-
ally they are selected for re-computation. For objects with both
view-dependent and motion-dependent shading, the age priority is
chosen to be the maximum of the age priorities from view depen-
dence and motion dependence.
It is important to note that we update the position of the moving

objects instantaneously. The shading changes resulting from the
object motion are updated asynchronously from position changes.
Thus, users can receive useful feedback quickly even when the
shading cannot be updated fast enough.
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Figure 4: Handling moving and non-diffuse objects: The top row shows a moving light source, the middle row shows a moving chair in an
(only)indirectly lit scene and the bottom row shows view dependent illumination.

5.3 Providing fast updates

When the shading of a large portion of the scene is changing due
to camera or object motion, the slow Sample Renderer often can-
not provide updates at a sufficient rate. So in order to improve the
quality of the image presented to the user, it is necessary to limit the
number of patches that need to be re-computed. This is achieved by
lowering the resolution of the Shading Cache on the objects whose
shading has been found to be changing. The new resolution is de-
termined based on a target “cleaning up” time, which is a user-
specified parameter. The resolution drop is greater when the target
time is lower and vice versa. When the shading stops changing, we
continue refining the Shading Cache up to a 1 pixel projected size,
so that the image can converge at the original screen resolution.

6 Results
We tested our system on the scenes shown in Figure 5. The first
scene is a room with 1 area light and about 4000 primitives (in-
cluding 9 untessellated curved objects). The second scene has 1
area light and about 300 primitives. The illumination in this scene
is almost entirely indirect. The third scene is a pool hall with 11
point lights and about 10000 primitives (including 15 untessellated
curved objects). For the purpose of these tests, the sample renderer
used 100 samples per area light to compute direct illumination and
400 bidirectional samples for indirect illumination. There was no
pre-computation other than building a hierarchical regular grid for
accelerating ray-casts.
We ran walkthrough sessions on 2 sets of hardware for timings.

First, we used one dual 1.7GHz Pentium 4 workstation, and then we
added 8 more dual Pentium 4 workstations to render the samples.
The display machine in both cases had a GeForce3 graphics card.

Scene 1 Scene 2 Scene 3

Points rendered per update 70 72 61

Sample Selection (ms) 50 36 12
Patch subdivision (ms) <1 <1 <1
Curved surface
tessellation (ms) 12 0 9
Aging (ms) <1 <1 <1
Updating display
meshes (ms) 1 1 2
Rendering time (ms) 611 490 506

Time per Iteration (ms) 675 529 533
Frame rate 45 60 40

Table 1: Performance statistics: 1 rendering client

The results of these tests are shown in Tables 1 and 2. Note that
for the multi-processor version, the samples to be rendered are sent
to the renderers right after the sample selection is completed and
read back at the end of the update iteration. Thus, the total update
time per iteration may be less than the sum of the individual steps.
These results show that our system has very little overhead other
than sampling and curved surface tessellation. Of the two, sam-
pling is approximately 10% of the total time. Also, the GeForce3
graphics card supports view-dependent tessellation of curved sur-
faces in hardware. This feature could be used to reduce the tessel-
lation overhead. In addition to these timings, Figure 4 shows typical
performance with 8 dual Pentium 4 rendering clients in the case of
dynamic scenes.
Our system can provide global illumination solutions in scenes

with moving geometry and view-dependent lighting. The system is
usable for interaction on a single workstation and is scalable with
processing power. The overhead of maintaining and refining the



Figure 5: Test scenes used for measuring performance

Shading Cache is minimal and so most of the available processing
power is devoted to the task of rendering high quality samples. In a
typical walkthrough, the number of patches (in excess of the orig-
inal geometry) is about 20,000. When the camera stops moving,
this number goes up and may approach the number of pixels in the
image. The memory usage per patch (including the double buffered
display representation) is under 200 bytes.
Caustics present a challenge to all global illumination renderers

based on path tracing from the eye. Since we compute the shading

Scene 1 Scene 2 Scene 3

Points rendered per update 288 363 328

Sample Selection (ms) 48 12 16
Patch subdivision (ms) <1 1 <1
Curved surface
tessellation (ms) 5 0 8
Aging (ms) <1 1 1
Updating display
meshes (ms) 1 2 2
Rendering time including
network overhead (ms) 325 424 420

Time per Iteration (ms) 375 444 440
Frame rate 45 60 40

Table 2: Performance statistics: 8 dual Pentium 4 rendering clients

of only one point at a time, we cannot compute caustics effectively
using bidirectional path tracing. However, this is a limitation of
the underlying sample renderer, not of our system. Lighting effects
such as caustics can be simulated using a sample renderer that can
efficiently render them. To demonstrate this, we wrote a caustic
renderer that specifically samples the specular surfaces in the scene,
shown in Figure 6. While this particular algorithm is not suitable for
rendering caustics in complex scenes, it does show that our system
can support different global illumination algorithms. For example,
dynamically updated caustic textures [Granier and Drettakis 2001]
could be used for rendering caustics in more complex scenes.

Figure 6: Rendering caustics: The first image is computed by area
sampling the glossy surfaces. The second image is a screen shot 5
seconds after moving the ring.

7 Comparison with similar systems
Our approach based on caching shading values in object space is
similar to the RenderCache [Walter et al. 1999], Tapestry [Simmons
and Séquin 2000] and Corrective Texturing [Stamminger et al.
1999]. Of these, the Tapestry data structure uses an image plane
Delaunay triangulation, and it is unlikely that this approach can be
applied efficiently to dynamic scenes. Corrective texturing, on the
other hand, is primarily useful as a walkthrough technique because
of its reliance on a pre-computed radiosity solution. Finally, the
RenderCache is a general caching scheme that can be used with any
pixel-based renderer and supports moving objects. Since the Ren-
derCache is the only system which provides the same feature set
as our system, we performed additional performance comparisons
between the two.
The author of the RenderCache paper has allowed us to use his

original implementation for comparisons. This implementation has
been hand optimized to run on dual Pentium 4 workstations and
supports multiple rendering clients, similar to our system. We in-
terfaced our rendering clients to the RenderCache and compared
the two systems running on identical hardware (one dual 1.7GHz
Pentium 4 for display and 8 dual Pentium 4 rendering clients). The
equal time and equal quality comparisons in Figures 7, 8 and 9 show
that our system offers substantial performance improvement both in
static and dynamic scenes.
In order to compare different caching schemes, we extend the

concept of the render mismatch ratio from [Walter et al. 1999] and



Shading Cache RenderCache Tapestry Corrective Texturing Hierarchical Radiosity

Pre-computation No No No Yes Yes

Normalized Mismatch Ratio 1000 10 1000 1000 N/A

Display Frame Rate >30 10-20 2-10 2-10 >30
(at 512 × 512)

Dynamic scenes Yes Yes No No Yes

Reprojection artifacts No Yes Yes In shading only No

High frequency shading detail Yes Yes Yes Yes (using large textures) No

Restrictions on geometry Locally parameterizable None None Parameterizable Parameterizable

Table 3: Comparison between various interactive global illumination techniques

define the normalized mismatch ratio as the number of pixels in a
frame divided by the number of new points rendered per second
by the sample renderer. The normalized mismatch ratio is essen-
tially the time in seconds to compute each pixel in the image, and
is a characteristic of the sample renderer being used. In all of our
scenes, the normalized mismatch ratio is between 250 and 2500
(using an image size of 512 × 512 and 8 dual Pentium 4 render-
ing clients). Our system is very responsive even at such high ratios,
while the RenderCache is only effective at ratios near 10 (or lower).
In addition to the caching-based schemes, hierarchical radios-

ity solutions can also be updated at interactive rates after object
motion [Drettakis and Sillion 1997]. An extension of this ap-
proach is the hybrid hierarchical radiosity/particle tracing algorithm
of [Granier and Drettakis 2001] which can compute the correct
lighting on diffuse surfaces including non-diffuse effects. Both of
these systems require an initial radiosity solution to be computed
and only illuminate the diffuse surfaces. Also, large changes to the
scene such as moving a light source will cause a severe slowdown.
Moreover, these techniques can only provide a coarse resolution
at interactive rates and so the quality of images may be poor, es-
pecially near shadow boundaries. Our system uses a hierarchical
radiosity-like data structure, but the view-driven refinement allows
us to generate high quality images quickly even in the presence of
sharp shadows and high frequency indirect illumination (see for ex-
ample, Scene 2 in Figure 5).
The comparison between the various interactive global illumi-

nation techniques is summarized in Table 3. We believe that our
approach based on the Shading Cache is the best suited for appli-
cations such as interactive lighting design and modelling while ren-
dering.

8 Discussion and Future Work
The renderings produced by our system in the initial stages have
aliasing artifacts in sharp shadows and specular reflections, along
with light and shadow leaks similar to radiosity. However, unlike
traditional radiosity systems, these artifacts are quickly detected
and removed by our sampler. Non-importance-based radiosity sys-
tems typically need to use discontinuity meshing to remove these
artifacts, whereas the Shading Cache merely needs to be subdivided
to a level that is sufficient for image plane anti-aliasing.
All caching systems suffer from popping artifacts when the ren-

dered samples are noisy; blending new values slowly with the old
values may reduce the popping. In addition, contrast-based adap-
tive sampling schemes are falsely led into regions of noise. In our
current system, we have side-stepped this problem by using Quasi
Monte Carlo sampling and setting the sampling rate high enough
to reduce banding artifacts. However, noise can be easily handled
by our sampler by storing a variance estimate in addition to the ra-
diance estimate at each vertex. The variance can then be used to
decide whether to reduce noise by refining the radiance estimate at
the vertices or to reduce contrast by subdividing the mesh. Such
a scheme would probably also be useful in the RenderCache and
Tapestry systems.
We do not claim to provide real-time global illumination. In-

deed, that goal is still at least an order of magnitude away. At the

same time, we do not stall object or camera motion while shading
values are being updated. This way the user can at least have a
smooth interface and a high frame rate. However, depending on the
application, blocking all motion until a reasonable image is avail-
able may be the right choice and can be easily incorporated into our
system.
Our current implementation can handle all parameterizable sur-

faces. The parameterization does not have to be well-behaved; we
have rendered surfaces with singularities such as spheres without
difficulty. In a manner similar to the REYES algorithm [Cook et al.
1987], our subdivision scheme can be easily extended to handle all
locally parametric surfaces that can be “split” into parameterizable
primitives, including subdivision surfaces of arbitrary topology. Al-
ternatively, a hybrid approach of point sampling the non-parametric
surfaces and using the Shading Cache representation elsewhere also
seems promising.
We have demonstrated the usability of our system in moderately

complex models with up to 10,000 primitives and difficult illumina-
tion conditions. For handling environments that are geometrically
much more complex, the hardware side may need to use frustum
culling or occlusion culling [Schaufler et al. 2000]. However, for
the purpose of computing shading values, only the on-screen geo-
metric complexity matters. Our method will not provide significant
speedups if the on-screen complexity is large, since at least one
sample per visible primitive is required to get a reasonable estimate
of the image. Additional separation of the shading representation
from the geometry is needed, similar to clustering approaches for
radiosity [Sillion et al. 1995; Willmott et al. 1999; Holzschuch et al.
2000]. Note that even without clustering, our system will perform
at least as well as point sampling.

8.1 Conclusion

In this paper, we have described a novel caching and interpola-
tion scheme for global illumination that provides interactivity even
when per pixel shading costs are high. Spatial coherence is ex-
ploited in the reconstruction of a single image from a sparse set
of shaded samples and temporal coherence is exploited by caching
shading values and reusing them for several frames. While our sys-
tem is useful in walkthrough applications, our biggest contribution
is in the area of interactive update of global illumination after dras-
tic changes to the illumination in the scene, such as when moving
the light sources. As a result, we believe that our system will be
very useful in applications such as lighting design and modelling.
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Figure 7: Equal time and equal quality comparison between our system and the RenderCache for glossy reflections
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Figure 8: Equal time and equal quality comparison between our system and the RenderCache for diffuse inter-reflections
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Figure 9: Equal time and equal quality comparison between our system and the RenderCache in dynamic scenes


