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Abstract

Interactive or semi-automatic segmentation is a useful

alternative to pure automatic segmentation in many appli-

cations. While automatic segmentation can be very chal-

lenging, a small amount of user input can often resolve

ambiguous decisions on the part of the algorithm. In this

work, we devise a graph cut algorithm for interactive seg-

mentation which incorporates shape priors. While tradi-

tional graph cut approaches to interactive segmentation are

often quite successful, they may fail in cases where there

are diffuse edges, or multiple similar objects in close prox-

imity to one another. Incorporation of shape priors within

this framework mitigates these problems. Positive results on

both medical and natural images are demonstrated.

Keywords: segmentation; graph cuts; shape priors; level

sets.

1 Introduction

Interactive or semi-automatic segmentation is a useful

alternative to pure automatic segmentation in many appli-

cations. While automatic segmentation can be very chal-

lenging, a small amount of user input can often resolve am-

biguous decisions on the part of the algorithm. One exam-

ple application is the use of segmentation to improve the

accuracy of prostate radiation therapy. A patient may be

scanned prior to treatment; having access to the segmen-

tation of the prostate and surrounding structures can make

the therapy considerably more precise. However, the two

standard options, manual segmentation and fully automatic

segmentation, are both problematic. On the one hand, man-

ual segmentation is very time-consuming – 20 minutes for

the prostate alone; on the other hand, automatic segmenta-

tion is very challenging in this type of medical imagery, due

to diffuse edges and the presence of multiple objects with

similar intensity profiles. As a result, interactive segmenta-

tion, which relies on minimal physician input and is easily

refined, is an attractive option.

Boykov and Jolly [1, 2] proposed a very effective method

for interactive segmentation based on graph cuts. The user

input is minimal, consisting of a few mouse-clicks indicat-

ing some pixels which are inside the object of interest, and

some which are outside. An energy function based on both

boundary and region information is then minimized subject

to these user-imposed constraints. The global minimum is

found by using graph cut techniques. The results from this

method are quite impressive: with a relatively small amount

of user input, the algorithm successfully segments a variety

of objects from both medical and natural images.

Unfortunately, there are some cases in both medical and

natural images, where this cut-based method is insufficient.

Figure 1 shows an example of this phenomenon, in the case

of a medical image of a bladder, even with a significant

amount of user-input. The cause of this failure is often (a)

Figure 1. The graph cuts algorithm fails with
a fair amount of user input. (a) The user in
put: circles indicate object points, squares
indicate background point (colour is for visu
alization purposes only). (b) The segmenta

tion, shown in white, leaks out of the bladder.

the absence of strong boundaries and (b) the presence of a

number of objects with similar intensity profiles. The for-

mer confounds the boundary terms in the energy, while the

latter confounds the region terms.

Our solution to this problem is to include shape priors in

a graph cut based formulation. A variety of segmentation

methods have been designed with the idea of using shape

knowledge; obviously, this knowledge can only improve the

performance of the algorithm. However, to this point, it has

been difficult to find a way to incorporate shape priors into

a graph cuts based approach. This is highly desirable be-

cause, as was mentioned above, the graph cuts approach

1



is one of the few that guarantees a global optimum. Our

solution is simple, yet effective. The idea is to use graph

edge-weights which contain information about a level-set

function of a template, in addition to the usual boundary

and region terms. This allows the edges of the graph to

convey information both about the image as well as about

the prior shape knowledge. The template itself can be trans-

formed, where the particular transformation is chosen based

on the user input. Using this algorithm on a variety of im-

ages shows that it can lead to significant improvements in

segmentation.

The remainder of the paper is organized as follows. Sec-

tion 2 examines related work. Section 3 describes the

algorithm: following a brief description of the original

Boykov-Jolly algorithm, we describe how to emend the

edge-weights to include shape information, and how trans-

formations of the template can be incorporated. In Section

4, we show results on both medical and natural images,

which demonstrate that shape priors can improve perfor-

mance. Section 5 concludes.

2 Related Work

Related work falls into two categories: segmentation us-

ing shape priors, and globally optimal methods for segmen-

tation (including graph cuts). We address each in turn.

Let us begin with segmentation using shape priors. Some

researchers have augmented a level-set active contour seg-

mentation algorithm with a PCA term that biases the curve

evolution towards shapes that are judged to be more likely

based on the training set [13, 16]. Cremers et al. incor-

porated a more sophisticated (non-PCA) shape model [7].

Segmentation of 3-D medical images has also been accom-

plished by the coarse-to-fine deformation of a shape-based

medial representation model, or “m-rep” [14, 17].

Other segmentation methods use both shape priors and

an appearance model. Simple models of appearance are

used in [18, 19]; for example, the intensities within the seg-

mented areas may be forced to have means or variances sig-

nificantly different than the background. There are a va-

riety of methods that model the shape and appearance of

an object using PCA. The standard-bearer for such meth-

ods is the “active shape and appearance model” of Cootes

et al. [5], which has been successfully applied to the three-

dimensional segmentation of medical volumes, including

magnetic resonance images of the brain, heart, and articular

cartilage [9, 12, 20].

Let us now examine globally optimal methods for seg-

mentation. The most relevant papers are those by Boykov

and Jolly [1, 2] which have already been mentioned. How-

ever, there are several earlier papers which are also relevant.

The method of Greig et al. [8] is similar to that of [2] when

there is no user input. Wu and Leahy [21] pose the problem

of segmenting an image into K components (again, with-

out user input) in terms of graph cuts. This technique tends

to have a bias towards small components. While the cur-

rent algorithm, and those already mentioned, can work on

two- or three-dimensional images, there are a slew of algo-

rithms which are specialized to two-dimensional segmenta-

tion. These include snake-related method [4], ratio regions

[6], deformable template methods [22], as well as the work

of Jermyn and Ishikawa [11].

3 The Algorithm

In this section, we describe the method of incorporating

shape priors into graph cut based segmentation. In Section

3.1, we focus on the method of [2] for performing graph cut

segmentation without shape priors. In Section 3.2, we ex-

plain the mechanism for incorporating shape priors within

this formulation for a fixed template. In Section 3.3, we

show how the template itself can be adjusted.

3.1 Interactive Graph Cuts Segmentation

Boykov and Jolly [2] introduced a novel interactive

method for segmentation. The idea is as follows: the user

marks some pixels as being part of the object of interest,

and some as lying outside the object i.e. within the back-

ground. The number of such points is up to the user, but in

practice can be quite small (less than ten). Given these con-

straints, the algorithm tries to find the optimal segmentation

such that these hard constraints are satisfied. In particular, a

segmentation is scored according to the following criteria:

1. Each pixel inside the object is given a value according

to whether its intensity matches the object’s appear-

ance model; low values represent better matches.

2. Each pixel in the background is given a value accord-

ing to whether its intensity matches the appearance

model of the background; low values represent better

matches.

3. A pair of adjacent pixels, where one is inside the ob-

ject and the other is outside, is given a value according

to whether the two pixels have similar intensities; low

values correspond to contrasting intensities (i.e. to an

edge).

Note that the appearance models can be learned a priori, or

they can be learned by examining the points selected by the

user as hard constraints. More will be said on this subject

in Section 4.

Given these criteria for scoring a segmentation, the goal

is to devise an algorithm that can find an optimal segmen-

tation. Specifically, let p be a pixel, let P be the set of all
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pixels, and let Ap = 0 or 1 if p is in the background or

the object, respectively. Let Rp(Ap) be the individual pixel

matching cost for pixel p (items 1 and 2 above); let Bp,q

vary inversely with the difference of intensities of pixels p
and q (see item 3 above). Then the segmentation score is

given by

E = µ
∑

p∈P

Rp(Ap) +
∑

(p,q)∈N :Ap 6=Aq

Bp,q

where N is the set of neighboring pixels. The particular

forms for Rp(Ap) and Bp,q are discussed in Section 4.

A fast (polynomial time) combinatorial algorithm exists

for minimizing E, based on the problem of computing a

minimum cut across a graph. We will defer the discus-

sion of this until after we formulate the new energy function

which incorporates shape priors.

3.2 Adding in Shape Priors

We begin by assuming that our shape prior is a single

fixed template. Clearly, this is not a realistic assumption, as

the object may, at the very least, undergo rigid transforma-

tions to move around the image. We drop this assumption

later on, in showing how to accommodate such transforma-

tions. Our goal will be to emend the energy function to be

E = (1 − λ)Ei + λEs

where Ei is the image energy described in Section 3.1,

while Es is an energy based on the shape prior.

Our first attempt at defining a shape energy might run as

follows. Suppose our fixed template is the curve specified

parametrically as c̄(s). Our segmentation is given by the

variables Ap; the curve surrounding the segmented object

may be written as

c = bd({p ∈ P : Ap = 1})

where bd(S) is the boundary of the set S. (In this case,

the boundary might be extracted by standard set operations

on images.) We could then parametrize this curve to get

c(s); if the parameter s is defined on [0, 1], a natural energy

function is

Es[c(·)] =

∫ 1

0

[c(s) − c̄(s)]2ds

Such an energy will indeed achieve its global minimum

when c(s) = c̄(s) for all values of s. Unfortunately, how-

ever, there are two main problems with this simple energy.

First, it is dependent upon a parametric specification of both

c and the template c̄. This implies that there must be a rea-

sonable correspondence made between the parameters of c

and c̄; otherwise, the functional Es can give meaningless

values. For example, suppose that c(s) = c̄(1−s); geomet-

rically, then, c and c̄ represent the same curves. However,

they are parametrically distinct, and therefore the value of

Es will be positive in comparing these curves (and could,

potentially, be quite large). Furthermore, combining this

shape-based criterion with the image-based criterion of the

previous section may lead to even more unpredictable re-

sults. The second problem is perhaps even more impor-

tant: we cannot use graph cut techniques to minimize such

a function. As a result, we cannot guarantee the global op-

timality of the solution, which is critical to our approach.

Thus, we must find a functional which allows us to match

the segmented curve c with a template curve c̄, and yet

does not rely on a parametric specification of either the seg-

mented curve or the template. In order to achieve this goal,

let us specify the template as a distance function whose

zero level set corresponds to the template. That is, let

φ̄ : R
2 → R be such that

c̄ = {x ∈ R
2 : φ̄(x) = 0}

where c̄ so specified is given as a collection of points. Note

that unlike much of the work in the active contours litera-

ture [15], φ̄ is not a signed distance function; it is a regular,

unsigned distance function. An example of such a function

for a curve which is the contour of a fish is given in Figure

2.

Figure 2. Distance function φ̄(x) for the con
tour of a fish.

Using this idea of a level-set template, the shape energy

can be written in the following form.

Es =
∑

(p,q)∈N :Ap 6=Aq

φ̄

(

p + q

2

)

where N is the set of neighboring pixels. Let us explain the

meaning of this function. The energy will be low if

φ̄

(

p + q

2

)

≈ 0

for all neighbouring pixels p and q where one of the pixels

belongs to the object and the other to the background (i.e.
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Ap 6= Aq). But recall that if a point x lies near the shape

template, then it will satisfy φ̄(x) ≈ 0. Since (p + q)/2 is

roughly a point on the boundary of the segmented object,

the condition for Es to be small is the same as the condi-

tion that the boundary of the segmented object lies near the

shape template. Thus, this particular form for Es neatly

captures the idea of shape priors.

Finally, we have that the energy function is

E =
∑

p∈P

(1 − λ)µRp(Ap) (1)

+
∑

(p,q)∈N :Ap 6=Aq

[

(1 − λ)Bp,q + λφ̄

(

p + q

2

)]

3.3 Transforming the Template

The foregoing discussion centered on using a fixed tem-

plate. In reality, we would like to deal with a deformable

template, which can undergo a variety of transformations,

i.e. with a family of learned curves. In what follows, we

will focus on the group of euclidean similarity transforma-

tions of a particular fixed template; we will treat the rigid

part of the transformation and the scale part separately. It

is important to note that we are not dealing with any other

types of non-rigid deformations, which may be specific to

the object at hand. At the same time, the algorithm seems to

be experimentally quite robust to the situation in which the

template is not exact, i.e. in which the true object and the

template are related by some non-rigid deformation. More

will be said on this topic in Section 4.

Let us now turn to the treatment of rigid transformations

of the template, i.e. to rotations and translations. The key

idea is to realize that we already have a pretty good idea of

where the segmented object is, based on the user input. For

example, the centroid of the user input gives us a reasonable

idea of the centroid of the true object. More formally, we

can treat this input as landmark data, and use the Procrustes

Method [10] to match the template curve c̄ to the data,

yielding the transformed template curve c̄trans. (In fact, we

use a variant of the Procrustes Method, see [23].) Given this

transformed curve c̄trans, we can then compute its distance

function φ̄trans as our input to the scale-based algorithm

described in the next paragraph. Note that the rigid trans-

formation we will compute via the Procrustes Method will

not be extremely accurate, due to the paucity of user input.

However, this method turns out to be sufficient for the rea-

sons mentioned in the previous paragraph, namely that the

algorithm is robust to the situation in which the template is

not exact. This is born out in the experiments of Section 4.

It remains to deal with scale. Once we have computed

the optimal rigid transformation, our approach to scale is

based on brute force. We compute a gaussian pyramid of

the image, and simply minimize the energy function given

in (1) – via the graph cut techniques described in the next

section – for each level of the pyramid. The key is that for

each level we use the level-set template φ̄trans at the same,

fixed scale.1 By keeping the scale of the template fixed, but

shrinking the scale of the image, we are effectively looking

for a larger object.

The reason for proceeding in this way, rather than by

expanding the template, has to do with the complexity of

the operation. Rather than dealing with several operations

on an image of a fixed size, we are dealing with operations

on multiple smaller images. In fact, despite the brute force

nature of the operation, it is not very expensive. The total

number of pixels in a pyramid are less than 4/3 times the

number of pixels in the original image, as each level is 1/4
the size of the previous one. Since the graph cut techniques

used are, in practice, linear in the number of pixels [3], the

time to run the algorithm should only increase by 1/3 at

most.

To decide on the best segmentation amongst all of the

scales, we may simply compare the scale-normalized values

of the optimal energies at each level. That is, for pyramid

level k (where level 1 is the finest), we must multiply the

optimal energy by 4k, as there are 4k more pixels in level 1

as there are in level k. In practice, using four levels of the

pyramid gives good results.

3.4 Minimizing the Energy

In order to minimize the energy function given in (1), we

can use graph cut techniques. Our undirected graph G =
(V,E) is as follows. The set of vertices is just the set of

pixels augmented by two special vertices: V = P ∪ {S, T}
where S is the source and T is the sink. The set of edges

consists of all neighbouring pairs of pixels, along with an

edge between each pixel and the source and sink:

E = N ∪ {(p, S), (p, T ) : p ∈ P}

In terms of the weights on the edges, there are three cases

to consider. If (p, q) ∈ N , then

w(p, q) = (1 − λ)Bp,q + λφ̄trans

(

p + q

2

)

On the other hand, if the edge contains the source S as one

of its vertices, then

w(p, S) =











∞ p ∈ O

0 p ∈ B

(1 − λ)µRp(Ap = 0) otherwise

1Of course, for bookkeeping purposes, we must shift the template ac-

cording to the decimation entailed by the gaussian pyramid. That is, the

pixel (2i, 2j) at level n of the pyramid corresponds to the pixel (i, j) at

level n + 1; thus, we must shift the centroid of the template accordingly.
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Figure 3. Segmenting a bladder. (a) The user input: circles indicate the object, squares indicate
the background (colour is for visualization purposes only). (b) The result without shape priors –
segmentation is shown in white. (c) The levelset of the shape template after transformation, φ̄trans.
(d) The result with shape priors.

Figure 4. Changing the template. (a) The levelset of the deformed template (compare with Figure
3). (b) The segmentation result is largely unchanged. (c) The levelset of the deformed and shifted
template. (d) The segmentation result is largely unchanged.

where O is the set of pixels selected by the user to belong to

the object, and B is the set of pixels selected by the user to

belong to the background. Finally, if the edge contains the

sink T as one of its vertices, then

w(p, T ) =











0 p ∈ O

∞ p ∈ B

(1 − λ)µRp(Ap = 1) otherwise

It is relatively straightforward to show that the minimum

cut on the graph G corresponds to the minimum of the en-

ergy function in (1). We refer the interested to [2] for a

formal proof of this fact. The actual maximum flow algo-

rithm which is used for solving minimum cut problem is

that described in [3].

4 Results

We have run the algorithm on a number of examples,

both of natural and medical images. Before describing the

results, let us discuss some aspects of the implementation.

As in [2], we use the following form for Bp,q:

Bp,q ∝
e−(I(p)−I(q))2/2σ2

‖p − q‖

The idea is to make the edge-weight large when pixels have

similar intensities, and small when they are dissimilar; in

this case, we will prefer to cut through edges where the

pixels are quite different, i.e. along contours in the im-

age. The denominator is the distance between pixels p and

q; this term is relevant because we use 8-neighbourhoods,

rather than 4-neighbourhoods, so that not all neighbours are

equally close. Note the single parameter σ; in all of the ex-

periments except for the corpus callosum, we set σ = 3,

which gave the best performance for the algorithm without

shape priors. In the case of the corpus callosum, σ was var-

ied over a wide range in an effort to improve the results of

the algorithm without shape priors; please see the discus-

sion below.

The form for Rp(Ap) given in [2] requires knowledge of

some information about the object and the background. In

particular, suppose that we know the probability distribu-

tions over intensity for both the object and the background,

i.e. Pr(I|obj) and Pr(I|back). In this case,

Rp(Ap = 0) = − log Pr(I|back)

Rp(Ap = 1) = − log Pr(I|obj)

(Recall that Ap = 0 corresponds to the background and

Ap = 1 corresponds to the object.) These distributions can

either be learned beforehand, or they can be learned based

on the user input: two histograms can be built up of the

intensity information, one based on the object seeds, and

one on the background seeds. In the experiments we have
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Figure 5. Segmenting the transformed bladder image. (a) The user input: circles indicate the object,
squares indicate the background (colour is for visualization purposes only). (b) The result with
out shape priors – segmentation is shown in white. (c) The levelset of the shape template after
transformation, φ̄trans. (d) The result with shape priors.

performed, we have found that this region-based term has

been helpful sometimes, but not others; for example, in the

bladder image, it is not particularly useful, as much of the

surrounding tissue is roughly similar to the bladder in inten-

sity. As a result, we have tried running the algorithm with

and without this region-based term; we show the result that

is best for the original Boykov-Jolly algorithm.

We show the results of experiments on several images;

in all cases, the template is captured by hand from an image

of a similar object. Let us first examine a case from medi-

cal imagery: segmentation of the bladder from a slice of a

CT scan. This is a challenging task, as the bladder and the

surrounding tissue have similar intensity profiles. In the left

two panels of Figure 3, one can see the effect of running the

Boykov-Jolly algorithm, even with a relatively large amount

of user input: the bladder segmentation bleeds out into the

surrounding tissue. The right two panels show the shape

template, and the effect when it is used: the segmentation

is much more accurate. A natural question is whether the

algorithm without shape priors would proceed successfully

by simply adding a little more user input. In the experi-

ments in this paper, the answer is generally no; one needs to

add significantly more input, typically 2-3 as many points,

to find the correct segmentation.

It is a natural question to wonder how accurate the tem-

plate needs to be for this method to be successful.2 This

is answered in two separate ways. First, we deform the

bladder template somewhat, and run the algorithm; this is

illustrated in the left two panels of Figure 4. Second, we

translate this deformed template by 10 pixels in both verti-

2In many of the images, the template appears very well aligned with

the object. This is not always the case – as already noted, the Procrustes

Method is not perfect. However, in examining the images side-by-side, the

eye tends to line up the objects.

cal and horizontal directions (for comparison purposes, note

that the bladder has dimensions of about 40 pixels); the re-

sults are shown in the right two panels of Figure 4. In both

cases, the segmentation remains successful, and is only al-

tered slightly.

Figure 5 shows the success of the algorithm in dealing

with transformations. The image in Figure 5 is gotten by

rotating the image of Figure 3 by 100◦ and scaling it down

by a factor of 2. The resulting segmentation, shown in the

rightmost panel, is once again correct.

Figures 6, 7, and 8 show the segmentations of a maple

leaf, a fish, and a corpus callosum, respectively. In all

cases, the algorithm without shape priors cannot deal with

the complex imagery, despite quite a lot of user input; the

shape priors are critical to computing the correct segmen-

tation. In particular, the case of the corpus callosum is

interesting. Distinguishing the middle part from the sur-

rounding brain tissue is quite complicated for the non-shape

based algorithm; indeed, we tried varying σ over the range

0.1−6 without significant improvement in the final segmen-

tation. (σ = 1, which gives the best performance without

using shape priors, is shown.) By contrast, the shape-based

method is successful.

5 Conclusions and Directions for Future Re-

search

We have devised an algorithm for incorporating shape

priors into a graph cuts based interactive segmentation. The

shape priors are embedded into the weights on the edges

in the graph, by using a level-set formulation. Transforma-

tions of the shape template are also taken into account. The

results of the algorithm on medical and natural images show
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Figure 6. Segmenting a maple leaf. (a) The user input: circles indicate the object, squares indicate
the background (colour is for visualization purposes only). (b) The result without shape priors –
segmentation is shown in white. (c) The levelset of the shape template after transformation, φ̄trans.
(d) The result with shape priors.

Figure 7. Segmenting a fish. (a) The user input: circles indicate the object, squares indicate the
background (colour is for visualization purposes only). (b) The result without shape priors – seg
mentation is shown in black. (c) The levelset of the shape template after transformation, φ̄trans. (d)
The result with shape priors.

Figure 8. Segmenting a corpus callosum. (a) The user input: circles indicate the object, squares
indicate the background (colour is for visualization purposes only). (b) The result without shape
priors – segmentation is shown in white. (c) The levelset of the shape template after transformation,
φ̄trans. (d) The result with shape priors.
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the new method shows some promise in making graph cut

segmentation more precise.

The main direction for future research is to examine

whether more complex transformations of the template can

be easily incorporated into the scheme. Many objects can

bend and shear in ways that are not taken account of through

euclidean similarity transformations. While we have seen

that the current algorithm is robust to modest modifications

of the shape, it will be interesting to see whether this robust-

ness holds in the case of greater modifications; and if this is

not the case, how the algorithm may be modified to account

for these changes.
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