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ABSTRACT

In this paper, we propose the use of inverse dynamics in a closed-form with direct dynamics for interactive

motion control of a human skeleton. An efficient recursive algorithm based on Newton-Euler formulae is used

to calculate the force and torque produced by joint actuator in order to fulfill a desired motion. The resulting

force and torque are then used in direct dynamics to make the final motion with external force and torque.

Armstrong-Green algorithm is used for direct dynamic simulation. To decrease the errors in numerical

integration, we use fourth-order Runge-Kutta method instead of Euler method. Inverse dynamic functions

calculate the required force and torque at every small time interval in the process of direct dynamic

simulation. In this way, it will correct errors at each time interval. The direct and inverse dynamic functions

are integrated in the software TRACK with direct and inverse kinematics functions that provide a more

powerful way for human animation.

1. Introduction

Today, there are two trends in research in motion control: new methodologies of

general control and applications of specific and functional methods to the models. The first

approach consists of finding new ways of using the existing laws either directly or after

simplification for motion control. [1] The major methods include keyframing,[2] functional

method,[3] inverse kinematics,[3] direct and inverse dynamics,[4][5][6] or optimal

control.[7][8] The second approach corresponds to methods coming from various

disciplines. In human animation, recent research includes walking,[9] motion of flexible

torso and spine,[10] jumping,[11] ballroom dances,[12] etc. The goal of all these

applications is looking for realism of the desired motion. To improve motion realism

requires use of a more complex motion control method on a more realistic model. It

motivates our efforts in this paper to use dynamics for motion control of our human

skeleton.



Because of its physics-based nature, direct dynamics can give the best quality

motions. The classic example is dropping of a pinpointed chain. A human is an actuated

system that uses muscles to convert stored energy into time-varying forces and torques

acting on the joint, contrary to a passive object like a pinpointed chain that is only driven by

external force and torque during motion. The problem is how to find the time-varying

forces and torques before using the direct dynamics. There has been some work in this

aspect recently.[6][8][24]. The Spacetime Control in [8] has given an impressive sequence

of a dynamic lamp. The method describes a formation of animation as a constrained multi-

point boundary-value problem, thus allowing the user to specify initial, intermediate and

final configurations. The SQR method used to solve nonlinear optimization requires

considerable computational effort. There is one point in [8] that we think is very helpful in

our work, and that is motion planning done in joint coordinates, or configuration space,

instead of Cartesian space. Our work is also similar to [6] in the use of both direct and

inverse dynamics, but we think the Newton-Euler is more computationally efficient than

the D'Alembert's principle of virtual work which can be calculated in almost real time. An

efficient algorithm is given by Luh, Walker and Paul [23] in robotics. Our human skeleton

model is different from the robotics model in two major parts: in the human body, there are

one to three DOF at one joint, and where no translation DOF in our model, so we adapted

the formulations to our specific purpose. Armstrong-Green method[5] is a very efficient

algorithm based on Newton-Euler  formulation. By using it together with inverse dynamics

in a closed-form, we provide a way for human skeleton motion control.

This paper is organized in two main sections: modeling and motion control. In order

to make this paper self-containing, the computational scheme for inverse dynamics based

on the Newton-Euler formulation is given in the Appendix. This appendix is an adaptation

from the formulation in [23].

2. Modeling

A human skeleton has about 206 bones in total.[21] However, in applications,

human skeleton models are quite different from the easiest five-link planar model[13] to

multiple link 3D model [14]. We have made a simplified model of the human skeleton with

rigid articulated figures connected by one to three DOF at each joint. This model is shown

in Figure 1. It contains 49 joints with 88 degrees of freedom, DOF. We do not represent

joints inside head, not considering the facial animation. The number of links in the spine is

decreased to 4 by neglecting the vertebrae in thorax totally and abdomen partly, that is less

detail than the representation in [10], where the interest is in motion of the spine.



Figure 1. Human Skeleton Model without Hands

In order to use dynamic simulation, the volume of the human should be modeled.

We approximate it with 15 solid primitives, cylinder, sphere ellipsoid, and truncated cone.

It is easy to calculate the geometric and physical properties with this approximation. The

mass of each volume is derived from the Biomechanical experiment [18]. In Figure 2(a), a

skeleton is associated with solid, and its mass is listed in Figure 2(b). All solid primitives

are rigid. They are linked by joints in a hierarchical structure.
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(a) Skeleton with Solid (b) The Mass of Each Solid

Figure 2. Representation of Body Volume

The motion can be described by the position and orientation of each solid. To

describe its motion, we define a body coordinate frame for each of them with the origin at

the hinge point to another solid. The body coordinate frame is moving together with the

solid. All geometric and physical properties defined in this frame do not change for the

rigidity of solid. For this reason, most formulae are represented in the body frame for

simplicity.

Our human body model is different from [5], where between two solids, there is

only one coordinate frame. The advantage of one frame connection is its simplicity when

updating the structure of the structure in dynamic simulation, but it is very difficult to

represent the different number of DOF at each joint, and the value range of each DOF. In

our human body modeling, between two links, there are one to three DOF coordinate

frames. The frame number is equal the DOF number of the joint. The associated link only

can rotate around the Z axis of the DOF frame. It adds more complexity to update the

structure. In Figure 3, the detail of our model is illustrated from thorax to right arm. It is the

same for other parts.
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Figure 3. Right Arm and Thorax  Model, The origin of all DOFs of same joint is one point  that is the

same point of the origin of the next body frame. Each DOF only can rotate around its Z axis.

The model is introduced in [15], represented by a kind of homogeneous hierarchy

named H3D with neutral node node_3D to retain the geometric, topological and display

information. A node_3D can be combined with other type nodes, such as DOF, SOLID,

FIGURE, FREE and SCENE for applications. One can refer [15] for more detail

description.

3. Motion Control

Since the introduction of physically-based modeling in computer graphics in the late

1980s [25], it provides a new research direction for  computer animation. Its purpose is to

produce more realistic animation by force and torque equations from the physical laws.

With the latest high speed workstation, they can be simulated in real time. Among the work

of motion control of articulated figure [5][6][24], we are most interested in Armstrong-

Green algorithm described detail in [5] for its computational efficiency and the simplicity

of the equations. To use it in our work, we have to solve two problems, the first is adjusting

the equations for the differences of our model, and the second, to get the time-varying

torque produced by muscle at the actuated joint to perform the desired motion. It is the

major problem since the introduction of physically-based modeling. In this paper, we use a

kind of inverse dynamics formulation based on Newton-Euler equation to get the time-

varying force and torque for direct dynamic simulation. The details are described in the

following parts.

3.1 Direct Dynamic Simulation

The most popular algorithm in dynamic simulation is Armstrong-Green algorithm,

based on Newton-Euler formulations (see [5] for details). To get a simplified form in order

to avoid the inversion of matrices larger than three by three, two hypotheses have be made.

The first assumes the linear relationship between the linear acceleration of the link and the

amount of angular acceleration it undergoes. The second is the linear relationship between

the linear acceleration and the reactive force on its parent link. The algorithm can be

divided to two opposite processes, inbound and outbound. The inbound calculates some

matrices and vectors from the geometric and physical structure of the system, and

propagates force and torque along each link from leaves to the root of the hierarchy. The

outbound calculates kinematics quantities, the linear and angular acceleration of each link,

then to get the linear and angular velocity by numerical integration for updating the whole

structure. It is a recursive algorithm along the whole time of dynamic simulation. The

kinematic results of the former time step are used as an initial values of the next step

calculation.

Euler method is used for numerical integration in [5] at each step. In our work, we

find this is not enough when simulating the motion for a long time period. The errors due to

the numerical integration will accumulate from step to step. At the end, unrealistic motion



will happen. To get a higher precision, we use fourth-order Runge-Kutta method for

numerical integration. The general algorithm is described in detail in [26]. To get the

angular velocity for each step, we use the inbound-outbound process four times to calculate

the change rate of angular velocity. By doing so, we find the stability of algorithm is

improved.

On the other hand, considering that the model we use is not one coordinate frame

connection structure, we can not directly change the rotation matrix as [5] in each step.

Instead, we need to distribute the rotation vector to each DOF coordinate frame of the joint

by solving the following linear equation,

z1θ1 + z2θ2 + z3θ3 = ω ......(3.1)

where zi  is the rotation axis as shown in the Figure 3. It is represented in the body

frame. ω  is the current angular velocity of joint relative to its parent link coordinate frame.

It is also represented in the current body coordinate frame. In a very small time step, the

rotation of the link can be regarded as planar rotation. The normal of the plane has the same
direction as ω . θi  is the change of the ith DOF that should be solved from the equation 3.1.

One will notice the equation 3.1 is for the joint having 3 DOF. For the joint with one or two

DOF, we should update the angular velocity each time from the solution of the equation

3.1. To find the actuator joint force and torque for direct dynamic simulation, we need use

the inverse dynamic formulations described in the next section.

3.2 Inverse Dynamics

The inverse dynamics problem is to find at each joint the force and torque that

generate the desired motion of the structure. It is a fundamental problem of robotics to get

the force and torque for each DOF motor that will drive the robot arm to perform a defined

task [23]. Various forms of robot arm motion equations are derived mainly from Lagrange-

Euler and Newton-Euler formulations. The motion equations are equivalent to each other in

the sense that they describe the dynamic behavior of the same physical robot manipulator.

However the structure of these equations may differ as they are obtained for various

reasons and purposes. Among many formulations, we select a kind of recursive formulation

based on Newton-Euler equations for their computational efficiency. It is described in

[22][23] and is successfully used in robotics control. The best advantage is that the

computation time is linearly proportional to the number of joints of the robot arm and

independent of the robot arm configuration. It is based two basic equations,

F = ma ......(3.2)

N = Jα + ω × Jω ......(3.3)

The first is Newton's second law that describes the linear motion of the rigid body.

F  is the total vector force on the body with mass m . The second one is Euler's equation

that governs the rotation of the rigid body. N  is the total vector torque on the body with the



inertia matrix J  about its center of mass. The linear acceleration a , angular acceleration

α , and angular velocity ω  define the kinematics of the rigid body.

To construct the formulations for the human body model described in part 2, we use

the same way in robotics, writing a series equations for each link, using constrained forces

and torque to guarantee their connection. The details of this formulation for inverse

dynamics are listed in the Appendix. We can see it has two opposite process. The forward

recursion starts from the inertial coordinate frame to the end-effector coordinate frame to

forward propagate kinematics information. The backward recursion propagates the forces

and moments exerted on each link from the opposite direction.

Using inverse dynamics in a closed from with direct dynamic simulation is a key for

getting the desired motion. In Figure 4, we describe the closed-form control with frames.
The desired motion is represented by joint variables q, Çq  and ÇÇq . Here we use the same

notation as robotics. In Figure 4, the time_step is the period to use inverse dynamics. It

is about 10 times of the period of Armstrong-Green algorithm small_time_step from

our experiment. This is what we mean by closed-form control.
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Figure 4. The closed-form control with inverse dynamics

4. Evaluation and Results



In this part, we want to show some examples of motion control method described in

the section 3. The first example uses direct dynamics with only gravity and supporting

force. The supporting force acts on the center of gravity of the whole body located at the

abdomen. Its value equals the gravity of the whole body, but with opposite direction. In

Figure 5, we show some moments by snapshot from SGI workstation. One will find the

motion of arms and legs is like a pendulum because we set all the DOF of them free to

check the correctness of the resulting motion.

Figure 5. The dynamic motion under gravity and supporting force

In the second example, we use inverse dynamics to get the joint torque of the upper

body with root of thorax to keep it still in the gravity field. The motion control is described

in Figure 4. The upper body keep still as shown in Figure 6 in dynamic simulation. In order

to show the value and direction of joint force and torque clear, we do not display the solids

representing the volume. G is the gravity  of each solid which unit is [Newton], and ti is

the internal torque from inverse dynamics which unit is [Newton][Meter].



Figure 6. Keep upper body still in gravity field

We want to show a swing motion in the final example. It is similar to the motion as

forehand hit tennis ball.  In Figure 7, we show series postures of the motion in two views.

The time step for simulation is 0.001 seconds, and the total time is 1.8 seconds.

(a ) side view (b) top view

Figure 7. Swing arm by dynamics with 0.04 second time step in display



The joint force and torque is calculated from inverse dynamics to drive the motion.

In Figure 8, the joint torque of shoulder is drawn with curves.

Figure 8. The joint torque from inverse dynamics

Color Plate 1 : Part of the interface layout of the TRACK system

5. Implementation

The software has been implemented in ANSI C on SGI Indigo 2. The Lig 5D

Toolkit [20] is used for the user interface. The dynamic functions are integrated in TRACK,

a human motion control software developed in the Computer Graphics Lab, EPFL. [16]

The resulting motion can be represented by multiple tracks, that is the same representation

of motion produced by other functions.

6. Conclusion and Future Work

Our approach seems very promising to implement complex motion. In the future, we

will try to dynamically animate a game with information from the sensor of synthetic actor,

and use a more sophisticated control strategy. We should also further consider interaction

between the actor and the environment.
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8. Appendix : Recursive Newton-Euler Formulation

Table 1. Summary of Notation

-------------------------------------------------------------------------------------------------------------------------------

All vectors with sub index i are expressed in the body coordination frame of the ith link.

The following items except mi  are vectors.

Çqij , ÇÇqij   : the first and second derives of generalized variable for the jth DOF of the ith joint.

ωi
  : angular velocity of the ith link.

α i
  : angular acceleration of the ith link.

ai   : linear acceleration of the ith link at the origin of its local coordination frame.

ac
i
  : linear acceleration of the ith link at the center of mass.

g   : gravitational acceleration vector in the inertial coordination frame.

gi   : gravitation of the ith link.

f i   : force exerted on the ith link by the (i-1)st link.

ni   : moment exerted on the ith link by the (i-1)st link.

τ i   : joint generalized actuator torque at the ith joint.

pi   : vector from the origin of ith link to the origin of (i+1)st link.

si   : vector from the origin of ith link to its center of mass.

zij   : rotation vector of the jth DOF of the ith joint.

mi   : mass of link i.

Fi   : total external force exerted on the ith link.

Ni   : total external torque exerted on the ith link.

The following items are 3 by 3 matrix.

Ji   : inertia matrix of the ith link.

Ai
j
 : pure rotational matrix from the jth link coordination frame to the ith.

Integer
    ndi  : number of DOF at joint i.

-------------------------------------------------------------------------------------------------------------------------------

Table 2. Recursive Newton-Euler Algorithm

-------------------------------------------------------------------------------------------------------------------------------

Initialization

ω0 = α 0 = v0 = 0

f n+1 = force required at the end − effector
nn+1 = moment required at the end − effector



Forward recursion

For i = 1,...,n do:

ωi = Ai
i−1ωi−1 + zij Çqij

j=1

ndi

∑

α i = Ai
i−1α i−1 + ziÇÇqij

j=1

ndi

∑ + Ai
i−1ωi−1 × zij Çqij

j=1

ndi

∑
ai = Ai

i−1
(ai−1 + α i−1 × pi−1 + ωi−1 × (ωi−1 × pi−1))

ac
i = ai + α i × si + ωi × (ωi × si )
gi = Ai

0
(mig) / * g = (0.0,0.0,−9.8) * /

Fi = miac
i

Ni = Jiα
i + ωi × Jiω

i

Backward recursion

For i = n,...,1 do

f i = Fi + Ai
i+1 f i+1 − gi

ni = Ni + Ai
i+1ni+1 + si × (Fi − gi ) + pi × Ai

i+1 f i+1

τ i = ni ⋅ zi
end;

-------------------------------------------------------------------------------------------------------------------------------
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