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Abstract

An interactive image segmentation algorithm, which

accepts user-annotations about a target object and the

background, is proposed in this work. We convert user-

annotations into interaction maps by measuring distances

of each pixel to the annotated locations. Then, we per-

form the forward pass in a convolutional neural network,

which outputs an initial segmentation map. However, the

user-annotated locations can be mislabeled in the initial re-

sult. Therefore, we develop the backpropagating refinement

scheme (BRS), which corrects the mislabeled pixels. Ex-

perimental results demonstrate that the proposed algorithm

outperforms the conventional algorithms on four challeng-

ing datasets. Furthermore, we demonstrate the generality

and applicability of BRS in other computer vision tasks,

by transforming existing convolutional neural networks into

user-interactive ones.

1. Introduction

Interactive image segmentation is a task to separate a

target object (or foreground) from the background. A tar-

get object is annotated by a user in the type of bound-

ing box [51, 24, 42] or scribble [52, 11, 10, 25]. For the

bounding box annotation, a box is supposed to surround

a target. On the contrary, in the scribble-based interface,

foreground and background scribbles are drawn on fore-

ground and background regions, respectively. In general,

scribble-based algorithms yield more detailed object masks

than box-based ones do. In scribble-based algorithms, it is

important to extract an accurate mask of a target using fewer

scribbles.

Thanks to the release of large image datasets [23] and the

use of convolution layers, deep-learning-based algorithms

have been showing remarkable performances in segmen-

tation problems: semantic segmentation [13, 30, 35, 6],

saliency detection [29, 36], and object proposal [39, 38].

Most deep-learning-based segmentation algorithms exploit

convolutional neural networks (CNNs). In [35, 30, 29], the

encoder-decoder architecture [40] is used: deep features

are extracted from the encoders, and they are used to pre-

dict pixel-level segmentation or saliency labels in the de-

coders. The encoder-decoder architecture can provide reli-

able performances, since it can adopt well-trained encoders,

including AlexNet [23], VGGNet [44], GoogLeNet [48],

ResNet [15], and DenseNet [17]. In segmentation tasks, it

is important to achieve segments with accurate and detailed

boundaries. However, deep features from an encoder lose

most low-level details and have high-level (or semantic) in-

formation only [56]. To address this problem, [29, 39] adopt

skip connections that exploit intermediate output responses

of the encoders for improving segmentation qualities.

Backpropagation for activations1 is a process that con-

veys data through network layers backwardly. In [43, 46,

56, 58], backpropagation schemes have been developed to

visualize characteristics of neural networks. Also, texture

synthesis [8] and image style transfer [9] are performed via

backpropagation. They update activation responses back-

wardly, while freezing parameters, in the networks.

In this work, based on a backpropagation scheme, we

propose a novel interactive image segmentation algorithm,

which accepts user scribbles. To segment a target object, we

train a fully convolutional neural network. In the test phase,

we perform the forward pass in the proposed network us-

ing an input image and user-annotations. We also develop

the backpropagating refinement scheme (BRS), which con-

strains user-specified locations to have correct labels and

refines the segmentation result of the forward pass. To this

end, we define two energy functions: corrective energy and

inertial energy. We minimize a weighted sum of the two en-

ergies via backpropagation. Experimental results show that

the proposed BRS algorithm outperforms the conventional

algorithms [11, 10, 3, 52, 50, 2, 27, 26] on the GrabCut [42],

Berkeley [34], DAVIS [37], and SBD [12] datasets. Also,

we generalize BRS for various CNN-based vision tech-

niques to make them interactive with user-annotations. To

summarize, this work has three main contributions.

1This is different from the typical backpropagation for parameters,

which is used for training neural networks.
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Figure 1. Overview of the proposed algorithm: we perform this segmentation process again when a user provides a new annotation.

⊲ Development of a CNN for interactive image segmen-

tation, which is fully convolutional.

⊲ Introduction of the backpropagating refinement strat-

egy, which corrects mislabeled locations.

⊲ Generalization of BRS, which can make existing

CNNs user-interactive without extra training.

2. Related Work

2.1. Interactive Image Segmentation

In interactive image segmentation, a target object is an-

notated roughly by a user and then is extracted as a bi-

nary mask. Interactive segmentation algorithms can be

categorized into box-interfaced or scribble-interfaced ones.

A box-interfaced one obtains the mask of a target object

within a given bounding box. On the other hand, a scribble-

interfaced one accepts foreground and background anno-

tations from a user. While a box-interfaced algorithm at-

tempts to obtain a one-shot segmentation result in general, a

scribble-interfaced algorithm allows a user to provide scrib-

bles several times until a satisfactory result is obtained.

Box-interfaced algorithms: Rother et al. [42] construct

Gaussian mixture models for foreground and background,

respectively, and then use the models in graph-cut optimiza-

tion to obtain a foreground mask. These processes are per-

formed iteratively until the convergence. To avoid these

iterations, Tang et al. [49] define a cost function that can

be minimized in a single pass of graph-cut optimization.

Assuming that user-provided bounding boxes are not too

loose, Lempitsky et al. [24] use the notion of box tightness

to prevent excessive shrinking of a target segment. Wu et

al. [51] over-segment an image into superpixels and gen-

erate the foreground and background bags for multiple in-

stance learning. The foreground bag consists of the super-

pixels inside a bounding box, and the background bag con-

tains the other superpixels.

Scribble-interfaced algorithms: Li et al. [25] compute the

distances from each pixel to foreground and background

seeds in terms of RGB colors and employ a graph-cut al-

gorithm to separate a target object from the background.

Grady [10] lets a random walker start at each pixel and finds

the first foreground or background seeds that the walker

reaches. Kim et al. [21] perform the random walk with

restart simulation to compute affinities between pixels. Gul-

shan et al. [11] propose a shape constraint for interactive

image segmentation and use geodesic distances from user

scribbles to pixels for energy minimization. Kim et al. [22]

generate various segmentation maps for an image, by em-

ploying different parameters, and then encourage pixels

within a segment to have the same label in the final result.

To alleviate user efforts, [47, 1] develop error-tolerant in-

teractive image segmentation algorithms. Recently, Xu et

al. [52] propose a deep-learning-based interactive segmen-

tation algorithm. They generate foreground and background

maps from user-annotations and concatenate them with an

input image to feed it into a CNN. The probability that

each pixel belongs to foreground is predicted by the net-

work. Liew et al. [27] refine a global prediction by com-

bining local predictions on patches that include pairs of

foreground and background clicks. Li et al. [26] produce

multiple hypothesis segmentations and select one using the

selection network. Maninis et al. [31] introduce an inter-

active segmentation algorithm that requires human annota-

tions on tight object boundaries. Song et al. [45] locates

foreground and background seeds to multiply annotations

automatically.

2.2. Backpropagation for Activations

In this section, we discuss backpropagation schemes that

update activation responses only while fixing parameters in

neural networks. Zeiler and Fergus [56] visualize charac-

teristics of each convolutional filter using DeconvNet [57],

which performs inverse processes of convolution, rectified

linear function, and max pooling. They discovered that,

while low-level features are extracted in shallow layers,

high-level ones are produced in deep layers. Springen-

berg et al. [46] propose the guided backpropagation strat-

egy, which produces sharper reconstructed images than [56]

does. Simonyan et al. [43] generate the appearance model

of each object class in an image classification task. They

find a regularized image to maximize a classification score,

by updating activation responses in the image classification
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Figure 2. Architecture of the proposed network for interactive image segmentation.

network. Yosinski et al. [55] develop visualization tools for

both convolutional filter reconstruction and class appear-

ance model generation. Also, Zhang et al. [58] estimate

an attention map by performing the probabilistic winner-

take-all backpropagation strategy in CNNs for image clas-

sification. Given a class, they discover rough locations

and shapes of corresponding objects in an image. Gatys et

al. [8] synthesize textures via backpropagation, by encour-

aging a newly synthesized texture to have the same Gram

matrix as an original texture. In [9], they also use back-

propagation for image style transfer.

3. Proposed Algorithm

The proposed interactive image segmentation algorithm

outputs a binary mask of a user-annotated object. It is a

scribble-interfaced method, requiring foreground and back-

ground clicks as annotations, which indicate expected labels

at the corresponding pixels.

Figure 1 is an overview of the proposed algorithm. Given

user-annotations, we first generate foreground and back-

ground interaction maps. Then, we feed the input image and

the interaction maps into a CNN, which yields a probability

map of a user-specified object. Even though the interaction

maps clearly represent the annotated labels in the clicked lo-

cations, the probability map may convey wrong information

at those clicked locations. Therefore, we force the clicked

locations to have the user-specified labels by employing the

proposed BRS. Finally, we obtain the segmentation mask of

the target object by performing the forward pass again.

We initiate this process when a user provides the first

click on a target object. Then, by taking into account the

segmentation result, the user may click a new location ei-

ther on the object or the background. Then, the proposed

algorithm is executed again to achieve more accurate seg-

mentation. Note that these two steps are conducted recur-

sively until the user stops clicking.

3.1. CNN for Interactive Image Segmentation

We perform interactive image segmentation using a

CNN, which accepts user-annotations. The user-annota-

tions are converted into interaction maps, as done in [52].

Specifically, the foreground and background interaction

maps are obtained, respectively, by computing the distance

of each pixel to the closest user-annotated foreground and

background pixels. We limit the maximum distances to 255.

Figure 1 includes examples of interaction maps.

Network architecture: The proposed CNN has the

encoder-decoder architecture [40] in Figure 2. As input, the

proposed network takes an image and two interaction maps

for foreground and background. We adopt DenseNet [17]

as the encoder to extract high-level features, as well as low-

level features. We use the extracted features by employ-

ing the skip connections, which have been used in many

image-to-image transition tasks [39, 41, 19]. Also, we add a

squeeze and excitation module [16] at the end of each dense

block.

We have a coarse decoder and a fine decoder. The two

decoders produce probability maps, whose elements have

high probabilities on target object regions. While we pre-

dict a rough segment of a target object in the coarse decoder,

the fine decoder improves its detail using low-level features.

The coarse decoder consists of four decoding blocks. Each

decoding block includes three convolution layers. After ob-

taining a coarse segment, we concatenate it with the input of

the network, and feed them into the fine decoder. In the fine

decoder, we use atrous convolutions [4] to expand receptive

fields at high resolution tensors. Each convolution layer is

followed by a parametric rectified linear unit [14] and batch

normalization [18], except for the prediction layers ‘Coarse

ConvP’ and ‘Fine ConvP.’ We employ the deconvolution

layers to restore the spatial resolutions of down-sampled

features to the original input image size. The output of the

proposed network is normalized to [0, 1] using the sigmoid

layer. We use 3× 3 and 1× 1 kernels in convolution layers.

Since the proposed network is fully convolutional, it does
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(a) 3 FG / 0 BG (b) 2 FG / 2 BG (c) 5 FG / 3 BG

Figure 3. Examples of generated user-annotations for training. The

foreground and background annotations are depicted in red and

blue circles, respectively. Also, the ground-truth object masks are

highlighted in yellow.

not need to modify the spatial resolution or aspect ratio of

an input image for its segmentation.

Training phase: We use the SBD dataset [12] to train the

proposed CNN. It includes 8,498 training images. Around

each object instance, we randomly crop a 360 × 360 patch

to yield pairs of an image patch and its object mask. We

declare that the center pixel of a cropped patch belongs to

foreground in the object mask. We further augment the data

with horizontal flips.

Since user-annotations are not available in the SBD

dataset, we imitate them through a simple clustering strat-

egy. First, the numbers of foreground and background

clicks are determined randomly within [1, 10] and [0, 10],

respectively. Then, we set pixels in a ground-truth object

mask as foreground candidates. On the other hand, we set

background candidates to be at least 5 pixels and at most

40 pixels away from the boundaries of the ground-truth ob-

ject. By applying the k-medoids algorithm [20] on each set

of candidates, we find foreground and background medoids

and use them as foreground and background annotations, re-

spectively. Figure 3 exemplifies generated user-annotations.

We employ the cross-entropy losses between ground-

truth masks and inferred probability maps. Whereas the ini-

tial parameters of the encoder are from [17], we initialize

parameters in the decoders with random values. We train

the network via the stochastic gradient descent. While we

set the learning rate to 10−9 in the encoder, we set it to 10−7

for the decoders. A minibatch is composed of four train-

ing data. We first train the proposed network for 20 epochs

without the fine decoder. Then, we perform learning for

another 15 epochs with the fine decoder.

Inference phase: The proposed network accepts an image

and foreground and background interaction maps as the in-

put. Given user clicks, we first update the foreground and

background interaction maps by computing the distance of

each pixel to the nearest clicks. Then, we feed them into the

proposed network to yield a probability map of the target

object. We determine the locations, whose probabilities are

higher than 0.5, as the foreground.

Figure 4. Notations for the proposed network. The concatenated

zk(r)−1 and yr−1 are fed into a convolution layer fr .

3.2. Backpropagating Refinement Scheme

The forward pass of the proposed algorithm yields a de-

cent segmentation quality. However, it has a shortcoming

of being incapable of guaranteeing that clicked pixels have

user-annotated labels. In other words, even clicked pixels

may have incorrect labels in the segmentation result. There-

fore, we enforce them to be labeled correctly to achieve

more accurate segmentation. The proposed BRS performs

backpropagation iteratively until all clicked pixels have cor-

rect labels.

Let us first define notations for the proposed network.

In Figure 4, tensors yr−1 and zr−1 are concatenated, and

parameters θr and φr are used to obtain yr, which denotes

the responses of the rth layer in the network. Hence, y0, yR,

and z0 become an input image, the output of the network,

interaction maps, respectively, where R is the index of the

last layer in the fine decoder. Thus, yr can be formulated as

yr = fr(yr−1, zr−1, θr, φr). (1)

Note that this formulation can represent all convolution lay-

ers in the proposed network including the first layer and the

layers with skip connections.

Initial interaction maps, which are converted from the

user-annotations, may be imperfect for making the network

yield correct labels in user-annotated locations. The cor-

rection can be done by modifying initial interaction maps

or fine-tuning the network. However, the re-trained net-

work may lose the knowledge learned in the training phase.

Therefore, we choose to modify interaction maps, instead of

fine-tuning network. The goal of BRS is to assign correct

labels to user-annotated locations by optimizing interaction

maps z0. By combining a corrective energy EC and an iner-

tial energy EI, the energy function E(z0) of the interaction

maps z0 is defined as

E(z0) = EC(z
0) + λEI(z

0) (2)

where λ matches scale differences between the two ener-

gies, which is fixed to 10−3. Then, we find an optimal z0

by minimizing E(z0),

ẑ0 = argmin
z0

E(z0). (3)

The minimization of the corrective energy compels the

proposed network to yield correct labels in user-annotated
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(a) User clicks (b) Initial (c) Before BRS (d) Ground-truth

(e) 5 iterations (f) 10 iterations (g) Convergence (h) After BRS

Figure 5. Foreground and background user-annotations are pre-

sented in red and blue dots in (a), respectively. An initial FG in-

teraction map in (b) is updated in (e), (f), and (g). Segmentation

results before and after BRS are in (c) and (h). The BG interaction

map is not shown due to limited space.

locations. We define the corrective energy as

EC(z
0) =

∑

u∈U

(

l(u)− yR(u)
)2

(4)

where U is the set of annotated pixels. Also, l(u) denotes

a user-annotated label, which is 1 for foreground and 0 for

background, and yR(u) is the output of the proposed net-

work. The derivative of the corrective energy can be com-

puted through a backpropagation technique. By employing

these backward recursive equations, we obtain the partial

derivative, ∂EC

∂z0 , of the corrective energy with respect to the

interaction maps.

The inertial energy prevents excessive perturbations of

the interaction maps, which is defined as

EI(z
0) =

∑

x∈N

(

z0(x)− z0i (x)
)2

(5)

where N is the set of coordinates in the interaction maps, z0i
denotes the initial interaction maps used in the forward pass.

The inertial energy yields a high cost when the interaction

maps are different from their initial values. We compute the

partial derivative of the inertial energy with respect to the

interaction maps by

∂EI

∂z0
= 2×

∑

x∈N

(

z0(x)− z0i (x)
)

, (6)

which is easily obtainable at the input layer of the network.

We blend the derivatives of the corrective energy and the

inertial energy using the parameter λ in (2) as

∂E

∂z0
=

∂EC

∂z0
+ λ

∂EI

∂z0
. (7)

Finally, we minimize the energy function, by employing L-

BFGS algorithm [28], and obtain the optimal interaction

Kernels

Input image

(a) Baseline architecture

Input image

Interaction maps

Kernels

(b) Interactive architecture

Figure 6. Reconfiguration of a network architecture in the first con-

volution layer. The baseline architecture in (a) is transformed to

the interactive one in (b) by the training-free conversion scheme.

maps. Note that the forward pass and the backpropaga-

tion are performed alternately. Figure 5 shows how BRS

updates a foreground interaction map to correct mislabeled

pixels. Note that BRS considers the background user click

when modifying the foreground interaction map.

3.3. Generalization

We apply the proposed BRS to the well trained network

with the interaction maps. However, we can employ BRS

for general networks that are not trained with interaction

maps. Note that the recursive backpropagation computa-

tions in (4) are still applicable, even when the architecture

of a network (e.g. the number of convolution layers and skip

connections between the encoder and the decoder) is differ-

ent from that of the proposed network. Based on this gener-

ality, we show that BRS can transform existing CNNs into

user-interactive ones without extra training.

The development of interactive algorithms requires time

and expertise for training, in terms of composition of train-

ing data, network architectures, and hyperparameters. Also,

even though interactive algorithms are trained successfully,

they often yield inferior results compared to non-interactive

algorithms when user interactions are not given.

We develop a training-free conversion scheme to over-

come these issues. Given a baseline network, we reconfig-

ure its architecture at the first convolution layer, as shown

in Figure 6. In addition to an input image, we also use in-

teraction maps. As input, we concatenate the image and the

maps, which share the same weight parameters in the first

convolution layer. Then, we can perform BRS in the recon-

figured network to achieve interaction. Notice that the net-

work needs no additional training. Moreover, it yields the

same output as the original algorithm, when the interaction

maps are filled with zeros. Applications of the training-free

conversion will be shown in Section 4.

4. Experimental Results

We evaluate the performance of the proposed interac-

tive image segmentation algorithm on four datasets: Grab-

Cut [42], Berkeley [34], DAVIS [37], and SBD [12]. The

GrabCut dataset [42] has 50 images for assessing interactive
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Figure 7. Comparison of the average IoU scores according to the number of clicks on the GrabCut [42], Berkeley [34], DAVIS [37], and

SBD [12] datasets. The legend contains the AuC score for each algorithm. An ablation study of the proposed algorithm is also in (e).

image segmentation algorithms. It provides a single object

mask for each image. The Berkeley dataset [32] consists

of 200 training images and 100 test images. We use 100

object masks on 96 test images, provided by [34]. Thus,

some images have more than one object masks. The DAVIS

dataset [37] is for benchmarking video object segmentation

algorithms. Even though they are composed with video se-

quences, we can use their individual frames to evaluate in-

teractive image segmentation methods. The dataset have

50 videos with high quality segmentation masks. We ran-

domly sample 10% of the annotated frames as done in [26].

In total, 345 images are used in the evaluation. The SBD

dataset [7], for evaluating object segmentation techniques,

is divided into a training set of 8,498 images and a valida-

tion set of 2,820 images. Note that we use the training set to

train the network in Section 3.1. Therefore, we use the vali-

dation set, which includes 6,671 instance-level objet masks,

for the performance evaluation.

We use two performance measures, as in [29]. First, we

compute the mean intersection over union (IoU) score ac-

cording to the number of clicks and its area under curve

(AuC). When computing AuC, we normalize the area to be

within [0, 1]. Second, we adopt the NoC metric, which is

the mean number of clicks required to achieve a certain IoU.

We set the target IoU score as 90%.

To compare interactive segmentation algorithms fairly,

we use the same clicking strategy as done in [26, 52]. In

general, a user first decides the type of an annotation (i.e.

foreground or background) by finding the dominant type

of prediction errors. Thus, the clicking strategy counts the

numbers of false foregrounds and false backgrounds, re-

spectively. It chooses a background annotation if there are

more false foregrounds, and a foreground annotation oth-

erwise. Also, a user tends to click a location around the

center of false predictions. Hence, the clicking strategy de-

termines a pixel to click, which is far from the boundaries of

false predictions. The maximum number of clicks is limited

to 20 in all experiments.

Figure 7(a)∼(d) compares the proposed algorithm with

eight conventional algorithms: graph-cut (GC) [3], geodesic

matting (GM) [2], random walk (RW) [10], Euclidean star

convexity (ESC) [11], geodesic star convexity (GSC) [11],

Growcut (GRC) [50], deep object selection (DOS) [52], re-

gional image segmentation (RIS) [27], and segmentation

with latent diversity (LD) [26]. Note that the scores are from

[26, 27]. We report two versions of the proposed algorithm

using different backbone networks: BRS-VGG and BRS-

DenseNet. The proposed BRS outperforms all conventional

algorithms on all four datasets, with a single exception of

LD [26] on the GrabCut dataset.
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Table 1. Comparison of NoC 85% and 90% indices on the GrabCut [42], Berkeley [34], DAVIS [37], and SBD [12] datasets. The best and

the second best results are boldfaced and underlined, respectively.

GrabCut Berkeley DAVIS SBD

Algorithm 85% 90% 90% 85% 90% 85% 90%

GC [3] 7.98 10.00 14.33 15.13 17.41 13.60 15.96

GM [2] 13.32 14.57 15.96 18.59 19.50 15.36 17.60

RW [10] 11.36 13.77 14.02 16.71 18.31 12.22 15.04

ESC [11] 7.24 9.20 12.11 15.41 17.70 12.21 14.86

GSC [11] 7.10 9.12 12.57 15.35 17.52 12.69 15.31

GRC [50] - 16.74 18.25 - - - -

DOS [52] 5.08 6.08 8.65 9.03 12.58 9.22 12.80

RIS [27] - 5.00 6.03 - - - -

LD [26] 3.20 4.79 - 5.95 9.57 7.41 10.78

BRS-VGG 2.90 3.84 5.74 - - - -

BRS-DenseNet 2.60 3.60 5.08 5.58 8.24 6.59 9.78

Figure 8. Segmentation results of the proposed algorithm. The

segmented object masks are highlighted in yellow masks. Fore-

ground and background user-annotations are depicted in red and

blue dots, respectively.

Table 1 reports the NoC 85% and 90% indices, the mean

numbers of clicks required to achieve the 85% and 90%

IoU scores, respectively. The proposed algorithm requires

much fewer clicks than the conventional algorithms, which

indicates that the proposed algorithm yields accurate object

masks with less user efforts. While the proposed algorithm

is comparable to LD [26] in terms of AuC, BRS outper-

forms LD in both NoC 85% and NoC 90% measures sig-

nificantly. This means that even though LD outputs precise

segmentations, it has more failure cases than BRS does.

Figure 8 shows segmentation results of the proposed al-

gorithm. It is observable that the proposed algorithm delin-

eates target objects precisely and robustly. It segments out

even small objects well. Also, it yields object masks with

accurate boundaries, even when the colors of a target object

and its background are similar. We provide more segmenta-

tion results in the supplementary materials.

Ablation study: We analyze the efficacy of each compo-

nent in the proposed algorithm, by performing three abla-

tion studies on the GrabCut and Berkeley datasets. First, we

measure the performance of the proposed algorithm when

Table 2. NoC 85% and 90% indices of the proposed algorithm in

various settings.

GrabCut Berkeley

Setting NoC 85% NoC 90% NoC 85% NoC 90%

FD 4.12 6.12 5.33 7.65

w/o FD 14.34 17.4 17.80 19.63

w/o FD + BRS 6.60 10.28 10.09 15.30

FD+BRS 2.60 3.60 3.16 5.08

only the forward pass is executed. Second, we do not em-

ploy the fine decoder. Third, we apply BRS without the

fine decoder. Let us refer to the first, second, and third set-

tings as ‘FD,’ ‘w/o FD,’ and ‘w/o FD + BRS.’ Table 2 lists

the NoC 85% and 90% indices. In all results, the perfor-

mances are degraded severely, which indicate that the pro-

posed BRS and the fine decoder are essential for accurate

interactive image segmentation. Figure 7(e) also shows that

the performance of the proposed BRS is much better than

the other ablated settings.

Moreover, we report the accuracy for each ablation set-

ting by calculating the average ratio of correctly labeled pix-

els over user-annotated locations on the images in the Grab-

Cut and Berkeley datasets. Figure 9 plots the accuracy in

terms of the number of clicks. It is observable that BRS

makes the network yield correct labels at user-annotated lo-

cations. Moreover, there is a significant improvement in the

‘w/o FD + BRS’ setting compared to the accuracy of ‘w/o

FD.’ It means that the proposed BRS can correct labels at

user-annotated locations regardless of the performance of

networks.

Running time analysis: We measure the average compu-

tational time of the proposed algorithm in seconds per click

(SPC). We test it on the DAVIS dataset [37] using a PC with

an Intel i7-5820K 3.30 GHz CPU and a Titan X GPU. The

proposed algorithm runs in 0.81 SPC, which is fast enough

for practical usage. A realtime demo of the proposed algo-

rithm is available in the supplementary video. Figure 10

plots how the computation time varies as the number of

clicks increases. We see that the complexity is acceptable
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Figure 9. Comparison of accuracy curves. An accuracy is defined

as the average ratio of correctly labeled pixels over user-annotated

locations.

0 2 4 6 8 10 12 14 16 18 20

Number of clicks

0

0.5

1

1.5

C
o
m

p
u
ta

ti
o
n
 t
im

e
 (

s
)

Figure 10. Computation time according to the click number.

Table 3. The average accuracy of the interactive FCN according to

the number of clicks.
# of clicks Baseline 1 2 3 4 5

Avg. acc. (%) 65.4 70.9 72.5 73.5 74.0 74.4

even when a large number of clicks are given.

Applications of the training-free conversion: To demon-

strate the generality and the versatile applicability of BRS,

we apply the training-free conversion scheme in Section 3.3

to three vision tasks: semantic segmentation, saliency de-

tection, and medical image segmentation.

First, we use FCN [30] as a baseline semantic segmen-

tation algorithm. A user annotates a label on a single pixel,

which indicates its class, such as aeroplane, bicycle, and

bird. We evaluate this interactive FCN on the validation set

in the PASCAL VOC 2012 dataset [7]. Table 3 lists average

accuracies according to the number of clicks. The perfor-

mance is significantly improved even with a small number

of user-annotations.

Second, for saliency detection, DHSNet [29] is used

as a baseline network. As an annotation, a binary label

of being salient or non-salient is used to correct a mis-

labeled location. We use three datasets: ECSSD [53],

DUT-OMRON [54], and MSRA10K [5]. Figure 11 shows

the precision-recall curves of the interactive DHSNet in

terms of the number of clicked locations on the ECSSD

dataset. It is observable that, with BRS, DHSNet pro-

vides better saliency detection performance by accepting

user-annotations. Due to the page limitation, we report the

performance of the interactive DHSNet on the other two
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Figure 11. Comparison of the precision-recall curves of the inter-

active DHSNet, according to the numbers of annotations, on the

ECSSD [53] dataset. A legend includes the maximum F-score for

each algorithm.

Table 4. Average IoU scores and gains according to the number of

clicks. An IoU gain is measured on annotated cells only.

# of clicks Baseline 1 2 3 4 5

Avg. IoU (%) 88.2 88.9 89.1 89.4 89.5 89.6

Avg. gain (%) - 3.6 1.8 0.8 1.3 0.3

datasets in the supplementary document.

Third, U-Net [41] is one of the most well-known med-

ical image segmentation algorithms. It segments out cells

from the background. We assess the performance of the in-

teractive U-Net on the two test sequences in the PhC-U373

dataset [33]. Since ground-truth segmentation maps are not

available, we extract them manually. Table 4 reports the av-

erage IoU scores according to the numbers of annotations.

For a focused analysis, we also measure the average IoU

gains on only the cells that include annotated locations. The

interactive U-Net yields better segmentation qualities when

more clicks are given. To summarize, the training-free con-

version, based on the proposed BRS, can convert various

CNN-based vision algorithms into interactive ones effec-

tively and easily.

5. Conclusions

In this work, we proposed a novel interactive image seg-

mentation algorithm. First, a user-annotation is transformed

into the interaction maps. Then, the proposed network

yields a probability map, which is an initial segmentation

result. We perform BRS to enforce user-specified locations

to have correct labels. Experimental results demonstrated

that the proposed algorithm outperforms the conventional

algorithms [11, 10, 3, 52, 50, 2, 27, 26] on the GrabCut [42],

Berkeley [34], DAVIS [37], and SBD [12] datasets. More-

over, we generalized BRS to make CNN-based techniques

interactive with user-annotations. Specifically, we showed

that the training-free conversion scheme can be successfully

applied to semantic segmentation, saliency detection, and

medical image segmentation.
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