
Interactive Inspection of Complex Multi-object Industrial Assemblies

O. Argudo∗, I. Besora∗, P. Brunet∗, C. Creus∗, P. Hermosilla∗, I. Navazo∗, À. Vinacua∗

ViRVIG Research Group, Technical University of Catalonia, Spain

Abstract

The use of virtual prototypes and digital models containing thousands of individual objects is commonplace in complex industrial

applications like the cooperative design of huge ships. Designers are interested in selecting and editing specific sets of objects

during the interactive inspection sessions. This is however not supported by standard visualization systems for huge models. In this

paper we discuss in detail the concept of rendering front in multiresolution trees, their properties and the algorithms that construct

the hierarchy and efficiently render it, applied to very complex CAD models, so that the model structure and the identities of objects

are preserved. We also propose an algorithm for the interactive inspection of huge models which uses a rendering budget and

supports selection of individual objects and sets of objects, displacement of the selected objects and real-time collision detection

during these displacements. Our solution —based on the analysis of several existing view-dependent visualization schemes— uses

a Hybrid Multiresolution Tree that mixes layers of exact geometry, simplified models and impostors, together with a time-critical,

view-dependent algorithm and a Constrained Front. The algorithm has been successfully tested in real industrial environments; the

models involved are presented and discussed in the paper.

Keywords:

2000 MSC: Computer Graphics, Methodology and Techniques

2000 MSC: I.3.6

1. Introduction

A number of algorithms for real-time visualization of huge

digital 3D models have been proposed. While they are well

suited for many applications, they don’t meet the present user

requirements in some industrial applications. Complex virtual

prototypes are essential in many industrial endeavors involv-

ing large models, like in the automotive, aeronautic and ship-

building industries. Moreover, the high cost of many of these

designs, sometimes destined to be built only once, makes the

use of physical prototypes unfeasible. Also, these models con-

tain thousands of individual objects. Instead of relying only

on standard visualization systems, designers are interested in

addressing individual objects and specific sets of objects. We

have identified these requirements for inspection applications

in industrial design of complex multi-object assemblies:

• The View-Dependent Visualization algorithm should guar-

antee a certain frame-rate with good image quality.

• The System must support the selection of individual ob-

jects and of hierarchies of objects, during the navigation,

to access information of these objects or to annotate and

modify them.

∗Corresponding author: Pere Brunet

Email addresses: oscar.argudo.medrano@gmail.com (O. Argudo),

onesvenus@gmail.com (I. Besora), pere@lsi.upc.edu (P. Brunet),

crazycraft@gmail.com (C. Creus), pit2500@gmail.com (P. Hermosilla),

isabel@lsi.upc.edu (I. Navazo), alvar@lsi.upc.edu (À. Vinacua)

URL: http://virvig.eu ()

• Limited scene editing (including displacement of the se-

lected objects) and real-time collision detection during

scene editing must be supported.

As far as we know, no present algorithm fulfills all of the

above requirements. Furthermore, previous solutions often re-

sort to substitutions, modifications or simplifications of the ge-

ometry that blur the scene structure and the individual objects.

Instead, we are interested in preserving the design intent, and

the structure of the design tree of the original CAD model,

that is meaningful to the users. We show that we can achieve

these goals while mantaining sustained frame rates for very

large models. Figure 1 shows the edition and annotation of such

a model. These editions and annotations are saved for later in-

corporation into the CAD model if appropriate. Building on

previous contributions in the literature, we propose a solution

that preserves CAD hierarchies and object identities while al-

lowing simple interactions. The main contributions of this pa-

per are:

• A formal discussion of the front concept in multiresolu-

tion trees, and the characterization of the properties re-

quired for time-critical rendering.

• An object-aware scene simplification and multiresolution

scheme that results in a multilayered, multiresolution tree

with cost and benefit functions per node, which is mono-

tonic by construction. Layers mix geometry and impos-

tors. The layered scheme is based on the results of an

Preprint submitted to Computer Aided Design June 14, 2016

evaluation of user perception of several hierarchical rep-

resentations.

• Support for the selection of individual objects and sets

of objects, displacement of the selected objects and real-

time collision detection during these displacements while

in the interactive navigation, thanks to the object-aware

nature of the representation.

• A time-critical, view-dependent visualization algorithm

with constrained front update based on a greedy opti-

mization per frame, usable in commodity hardware.

The rest of the paper is organized as follows. Next Sec-

tion reviews prior work. After an analysis of front-based ren-

dering algorithms in Section 3, an overview of the algorithm

is presented in Section 4, whereas Sections 5 and 6 detail the

scene tree generation algorithm and its visualization. Section 7

discusses several results on an example scene, and Section 8

presents the main conclusions and outlines future research di-

rections.

2. Previous Work

In this Section we discuss only a selection of the algorithms

most relevant to our work. For an extensive survey, the reader

can refer to [YGKM08] or [PG07]. These algorithms are usu-

ally based on the generation, in a preprocess step, of a scene

data structure which represents the scene model at different lev-

els of detail. During the interactive visualization, a suboptimal

set of nodes is computed and rendered at each frame.

Multiresolution Trees are well-known data structures that

represent scenes and assemblies at multiple resolutions. Mul-

tiresolution Trees can be binary [GM05], quaternary [ABCN10]

or octal [GIGM12], and based on either a spatial subdivision

[YSGM05] or a scene subdivision [ABCN10]. Binary subdivi-

sion structures like Kd-trees have been widely used because of

their splitting flexibility [Sam06].

Multiresolution Trees creation algorithms work in two steps.

In the first step, the Tree structure is generated in a top-down

way by recursively distributing the scene geometry from parent

to son nodes. At the end of this first step, the algorithm has dis-

tributed the scene geometry among all tree leaf nodes, and leaf

nodes have a size not exceeding a predefined value. The sec-

ond step operates bottom-up by merging node information and

simplifying the union of the informations in their son nodes in

a way such that all internal nodes have a size again within the

chosen limit.

The paper from Funkhouser and Sequin [FS93] was semi-

nal in this area. Their scene structure consisted of a simple list

(or array) of objects, which sufficed for scenes of only moder-

ate complexity. The preprocess consisted in the computation

of a 2D array of object representations, storing each of the N

objects at M different levels of detail. Standard simplification

algorithms were used for this purpose. In the kernel of the vi-

sualization scheme, cost and benefit functions were defined and

computed for each object and for each of its M LODs. The

cost (time to render the atomic object) was considered to be

constant, and computed in the preprocess step. Benefit, how-

ever, was dynamic, depending on the camera position and on

how the object was projected on the viewport. Funkhouser and

Sequin further defined a constrained optimization problem per

frame: the goal was to maximize the total benefit per frame,

with the constraint that the total cost of the rendered primitives

did not exceed the rendering budget. For this purpose, they pro-

posed a greedy front update algorithm, applied at each frame.

The object with the maximum benefit to cost ratio was refined,

while one or more objects having the lowest ratio were coars-

ened to keep the total cost below the budget. Based on this

work, Gobetti and Bouvier [GB00] proposed a solution for this

optimization using Lagrange multipliers.

The term view-dependent visualization algorithms was coined

to refer to algorithms based on a hierarchy of objects (the mul-

tiresolution tree) and a dynamic rendering front that adapts it-

self during the visualization. View-dependent algorithms in-

clude FarVoxels, LayeredPointClouds, TetraPuzzles, Quick-VDR

and others. We briefly review these algorithms in the next para-

graphs. In them, the front update is based on a suitable benefit

function, but in all these algorithms no information about the

frame computing and rendering time is taken into account.

Far Voxels [GM05] uses hybrid multiresolution Kd-trees,

with triangle strips of the original scene model in leaf nodes

and approximate volume representations in internal tree nodes.

These nodes are discretized into a fixed number of around 16K

voxels. Voxels contain parameterized direction-dependent ma-

terial models, generated by sampling the geometry in the node

along rays emanating from 256K viewpoints around it. The

rendering algorithm uses a front update algorithm based on the

size of the projection of the nodes in the viewport, performing

reasonably well for inspection tasks in complex environments.

The Quick-VDR algorithm [YSGM05] uses a Cluster Hier-

archy of progressive meshes (CHPM) organized in a tree. The

algorithm is aimed at the interactive inspection of huge trian-

gular meshes. Tree nodes contain progressive meshes, the least

simplified version of the mesh in a node is the union of the best

representations in its children. Dependencies between nodes

are used to avoid artifacts between neighbor nodes with differ-

ent levels of detail in the viewport. Apart from using dependen-

cies, the dynamic front management is based on the standard

view-dependent scheme. A related work is [eYLPM05]. In this

paper, the authors discuss an optimization algorithm to compute

coherent mesh layouts, and use them to improve the efficiency

of the view-dependent rendering and collision detection algo-

rithms in [YSGM05].

The Tetra Puzzles approach [CGG∗04] is an efficient tech-

nique for out-of-core construction and accurate view-dependent

visualization of very large surface mesh models. The method

uses a regular conformal hierarchy of tetrahedra (organized in

diamonds) to spatially partition the model. Each tetrahedral

cell contains a precomputed simplified version of the original

model, represented using cache coherent indexed strips for fast

rendering. The view-dependent algorithm uses out-of-core and

batched rendering techniques, with metrics based on the visual

quality but with no budget for the frame rendering time.

Gobetti et al. proposed a suggestive approach in [GM04].

2

Layered Point Clouds is an efficient multiresolution structure

for rendering very large point sampled models on consumer

graphics platforms. Tree nodes contain partial point clouds

that are combined to produce the rendered primitives per frame.

Sample densities are locally and dynamically adapted, accord-

ing to their projected size on the viewport. The progressive

block-based refinement nature of the rendering traversal uses

prefetching, view frustum and occlusion culling, as well as com-

pression and view-dependent progressive transmission. Remark-

ably, the authors recognize that, for interactive applications, it is

often useful to have a direct control on rendering time, instead

of being only based on metrics and tolerances on the rendering

quality. Lacking an a priori estimate of the cost as in [FS93],

their proposed solution iterates tree-traversals while adjusting

the threshold to meet the budget.

Giga Voxels, as proposed by Crassin et al. [CNLE09], is

an algorithm to efficiently render large volume datasets. The

solution is based on an adaptive data representation depending

on the current view and occlusion information, coupled to an

efficient ray-casting rendering algorithm. Filtering, occlusion

culling, procedural data creation, and level of detail mecha-

nisms are integrated in an efficient GPU voxel engine. Data

production and streaming is guided from information extracted

during rendering.

A view-dependent approach for the interactive rendering

of large-scale urban models has recently been proposed in

[ABCN10], based on the Omni-Directional Relief Impostors

(ORIs, see [ABB∗07]). The approach is oriented to medium-

range distance visualization of massively photo-textured cities.

The authors use an image-based approach in the multiresolution

tree. For each node of the tree, a set of relief maps that provide a

multiresolution representation of the urban scene is stored. The

rendering algorithm combines relief mapping with projective

texture mapping, using only a subset of the precomputed re-

lief maps, and wavelet compression to simulate two additional

levels of the tree. The scheme is claimed to run considerably

faster than polygonal-based approaches. Our approach is re-

lated to this method, using nodes with relief impostors in one

of the tree layers, but improves it by considering a cost function

besides the benefit function in an optimization framework.

Other proposals to visualize very large models have been

made, including [BSGM02, BGBL05] and [PC12], for exam-

ple, but like the schemes above, they cannot distinguish the

different objects that make up the scene. Moreover, we ob-

serve that Funkhouser’s paper (which was focused on moder-

ately large scenes) contained some key ideas that have not been

used, nor adapted to scene trees. Most present algorithms do

not consider view-dependent rendering as a constrained prob-

lem with an upper bound in the rendering cost of the primitives.

Of the solutions discussed above, notice that only Far Voxels

and the method in [ABCN10] lend themselves to treat multiple,

distinct objects.

3. View-Dependent, Front-Based Rendering

In this Section we propose a taxonomy of algorithms using

rendering fronts in Multiresolution Trees by sorting the exist-

ing algorithms into two categories: those using visual contribu-

tion fronts and those adopting more advanced fronts. We then

introduce new concepts: tree monotonicity —an extension of

Funkhauser’s list monotonicity— and constrained fronts, and

discuss the properties and advantages of fronts fulfilling these

conditions, and show how to achieve them.

Multiresolution geometric models supporting view-

dependent rendering must encode the steps performed by a

simplification or coarsening process in a compact data structure

from which a virtually continuous set of variable-resolution

models can be efficiently extracted, [CGG∗04]. Multires-

olution Trees are a well-established data structure for this

purpose.

A Multiresolution Tree is a hierarchical scene representa-

tion which encodes parts of the scene at a full range of different

resolutions. The leafs of any subtree constitute a representation

of a portion of the scene, with possibly mixed resolution levels.

Multiresolution Trees have been extensively used for the rep-

resentation of huge triangular mesh models [CGG∗04], huge

assemblies [GM05] and volume models [GIGM12]. They can

encode scenes with multiple objects or highly complex meshes.

We define the following concepts concerning Multiresolu-

tion Trees:

The Visual Contribution v(n,C) ≥ 0 of a tree node n viewed

with camera C measures the benefit of rendering node n with

that camera in terms of the final visual quality. Authors often

define v(n,C) as an empirical function of the complexity of the

geometric information in n and a number of view-dependent

parameters like the size of the node projection in display co-

ordinates. See the next section for our choice of v(n,C). The

visual contribution of nodes outside the visualization frustum is

zero.

Tree Monotonicity with respect to a function f (n) is an

essential property in Multiresolution Trees. A Multiresolution

Tree is said to be monotonic with respect to the function f (n)

if, for any node n and for any rendering conditions, f (n) ≤
∑

m∈sons(n) f (m). For example, tree monotonicity with respect to

v(n,C) ensures that we will get better visual qualities when we

render deeper tree levels with camera C, a strongly desirable

property for Multiresolution Trees. Of course, the maximum

visual quality is reached when all tree leaves with unsimplified

geometry are rendered.

A Staircase Subtree is a subtree such that if a node is in

the subtree, all its siblings are also included. Notice this implies

that this subtree is rooted at the root of the original tree.

A Front F is the set of leafs of a Staircase Subtree S F .

In what follows, we will note nF the number of nodes in F.

Any front partitions the multiresolution tree. From the point

of view of rendering quality, one wishes the trimmed subtree

S F to have interior nodes with insufficient visual contribution,

while the multiresolution tree nodes trimmed out —those with

an ancestor in the subtree— have unnecessaryly high quality

for the frame being rendered. Any front F is a representation

of the scene for certain choice of resolution at each portion of

the scene. Observe that any multiresolution tree can generate a

huge combinatorial set of potential view-dependent fronts F.

Two different approaches appear in the litearature to prune

3

the scene tree at rendering time. We call them Visual-Contribution

Fronts and Constrained Fronts, which we define next.

Visual-Contribution Fronts Fv are based on the visual con-

tribution function v(n,C) and a quality threshold Qv. The vi-

sual contribution front Fv is the set of leaves of a staircase sub-

tree such that all the interior nodes have a visual contribution

smaller than Qv, and where the leaves have a visual contribution

larger or equal to Qv, or are leaves of the complete tree. Usu-

ally, the front Fv is computed at each frame through a top-down

tree traversal clipped by the frustum. At each frame, the new

front is usually computed in the CPU and sent to the GPU for

rendering, but avoiding sending information which is already

residing in the GPU. Therefore algorithms using this approach

do not take the frame-rendering time into consideration.

For time-critical rendering, we need to have an estimation

of the cost of rendering a given node, which we shall denote by

c(n). We consequently call c() the Cost Function. The cost of

rendering a given front F is then c(F) =
∑

n∈F c(n). In polyg-

onal models, for example, the rendering cost is proportional to

the number of polygons in the geometry of n, so the cost in this

case can be measured as the number of polygons. It could also

be measured in Bytes, as the memory size of the geometry in n

is also proportional to the number of polygons.

Constrained Fronts Fc have a bounded cost
∑

n∈Fc
(c(n)) ≤

MaxCost. They are required by time-critical visualization al-

gorithms, which guarantee a predefined minimum frame rate.

At each frame, the time-critical algorithm must solve a con-

strained optimization problem, i.e. finding the constrained front

which maximizes the total visual contribution:

arg max
Fc

∑

n∈Fc

v(n,C)

(1)

As observed by [FS93] this is a knapsack-type problem, and

suboptimal solutions must be considered. A good option is the

greedy front update scheme already proposed in [FS93].

To use Constrained Fronts, Multiresolution Trees benefit

from being cost-monotonic (monotonic w.r.t. the cost function),

to guarantee that the total cost can be decreased by moving up

the tree. Cost monotonicity is usually ensured by the bottom-up

construction process of internal nodes.

Several properties follow easily from these definitions:

Property 1. Visual-Contribution Fronts can guarantee a

certain image quality, but cannot guarantee a given frame rate.

Constrained Fronts, on the contrary, can guarantee a frame-rate,

but at a variable image quality.

Notice that the property that characterizes a Constrained

Front is a global one, and therefore Constrained Fronts can-

not be computed by a top-down tree traversal, since the infor-

mation about a node (given by the pair (v(n,C), c(n)) is insuf-

ficient to ascertain if it needs to be refined or not. Thus, the

constrained optimization transforms the problem into a global

one, which may be solved using tree monotonicity with respect

to cost and visual contribution, with a greedy front update per

frame [FS93]:

Property 2. Constrained fronts Fc must be computed by

updating the front of the previous frame. They cannot be ob-

tained by a top-down tree traversal.

When the camera moves suddenly and drastically, an algo-

rithm computing Fv faces the same task as in any other case:

it will traverse the tree, starting from the root and collecting

the necessary nodes in the front. It may be hindered only by

the need to exchange more information with the GPU. On the

other hand, an algorithm computing a Constrained Front Fc will

usually face, in this case, an exceedingly large number of nec-

essary front-update operations, which cannot be met within the

budget. For this reason, rendering algorithms which use con-

strained fronts rely on lazy updates and CPU-GPU transmission

algorithms. At each frame, only a few updates are performed

and sent to the GPU:

Property 3. Confronted with drastic camera movements, an

algorithm computing Fc will still comply with the frame-rate,

but will need several frames to maximize the image quality.

Because fronts Fv are usually computed at each frame from

the root of the tree, whenever a node is occluded or outside the

frustum it can be discarded, along with all of its progeny. In the

case of a front Fc, however, one needs to keep in it a complete

representation of the scene, to be able to perform incremental

updates even when some new nodes of the tree become unoc-

cluded or enter the view-frustum:

Property 4. Time-critical rendering algorithms require spe-

cific data structures to manage visibility; see for example Sec-

tion 6, for our approach to this problem.

Object identifiability

No Yes

Fv

[ABCN10], [CGG∗04],

[CNLE09], [GM04],

[GM05], [YSGM05],

[BSGM02] and [PC12]

—

Fc [GB00] [FS93], Our proposal

Table 1: Classification of the papers discussed in section 2 according to the kind

of front they use, and whether the objects are distinguishable in the rendering

data structures.

Sumarizing, the four properties discussed above show that

time-critical visualization with a rendering budget requires a

monotonic Multiresolution Tree with respect to both c(n) and

v(n,C), and should be based on a constrained front Fc, with lo-

cal, incremental front updates at each frame, lazy transmission

and updates, and visibility management. As Table 1 shows,

the literature is lacking in contributions addressing all of these

requirements. However, a sustained frame rate is desirable in

many applications, and generally improves perceived respon-

siveness of the application, in spite of isolated decays in image

quality when the camera is changed drastically. The approach

presented in this paper is intended to address this need.

4. Hybrid Multiresolution Trees (HMTs)

To meet the requirements discussed in the introduction, we

have developed a visualization algorithm based on a specific

scene binary tree, a Hybrid Multiresolution Kd-tree (HMT in

4

what follows). HMTs contain three different layers of nodes

and associated object data. Tree leaves contain the exact ge-

ometry of the objects, and constitute the Exact-layer. Nodes

above them, but at depths larger than three make up the SP-

layer, and contain simplified polygonal representations of the

portion of the scene described by all the leaves that are descen-

dants of them. The nodes in the upper levels of the tree form

the RI-layer, and contain the most aggressive simplifications of

their subtrees. Based on our experiments, we observed that set-

ting the RI-layer to the top three or four levels yielded a fair

compromise between speed and image quality. To choose how

to populate them, we studied the behavior of some of the ex-

isting algorithms for the visualization of complex scenes with

many differentiated objects, we performed a set of tests to ex-

perimentally compare the direct visualization of the polygonal

scene with the main alternatives. From the results of our tests

(detailed in Section 7.1) we conclude that image-based repre-

sentations (specially, ORIs, see [ABB∗07]) are well behaved in

nodes with extremely complex geometry, presenting a better ef-

ficiency (measured in frames per second) and a good perceptual

visual quality. Because of their better behavior, we adopt ORIs

as the representation for the RI-layer.

HMTs can support selection of objects and groups of ob-

jects by clicking anytime on any of their triangles, as discussed

in section 5, making HMTs object-aware.

Our algorithm to render HMTs implements a constrained

front to address the requirement of a guaranteed frame-rate.

Each tree node n has an associated cost c(n) and an associated

visual contribution v(n,C). The cost and visual contribution sat-

isfy these monotonicity properties:

• For any non-leaf node in the tree, its cost is lower than

the sum of the costs of its direct children.

• For any non-leaf node in the tree, its visual contribution

is lower than the sum of the visual contributions of its

direct children, regardless of the camera location.

We generalize Funkhouser’s algorithm to render the HMT

data structure, and try to (suboptimally) solve a constrained op-

timization problem at each frame. In what follows we discuss

our choices to define the cost and visual contribution of the

nodes in the HMT. Readers already familiar with[FS93] may

find it preferable to skip to Section 5 first, and return to these

details later.

The cost is static, and is computed for each node during the

tree generation. The cost of nodes in SP and Exact layers is

defined as the number of triangles in the corresponding node

representation. Therefore, in these nodes, the rendering time is

roughly proportional to their cost. Cost in the RI layer is com-

puted as an equivalent triangle count, based on their rendering

time.

The visual contribution of a certain node is a function which

estimates its contribution to the overall perceived image quality.

It is dynamic, depending on some intrinsic node information

and on the camera parameters during the navigation. The visual

contribution v(n,C) is defined as a base term v0(n,C) which is

modulated by several other camera-depending functions. For

a given node n that passes the frustum culling, we define the

dynamic visual contribution function v(n,C) by the following

expression, inspired on the ideas from [FS93]:

v(n,C) = v0(n,C) ∗Centered(n) ∗Change(n) ∗ Vis(n)

The base visual contribution function v0(n,C) for a node n is

a function of its projected size p(n,C) and of its level in the tree

l(n) (where the root sits at level 0). It measures the contribution

of the node to the overall visual quality of the image, when

n is projected and remains in the center of the viewport. The

projected size p(n,C) is the surface area (in pixels) of the screen

projection of the axis-aligned bounding box of n, AABB(n). We

define the base contribution as,

v0(n,C) = p(n,C) ∗ Quality(l(n)).

v0(n,C) models the fact that nodes with a large projection size

will have a greater visual contribution to the final result. More-

over, nodes in deeper tree levels present a higher visual quality,

as modeled by the increasing function Quality. In our imple-

mentation we have used Quality(k) =
√

k + 1, for which we

show below that it results in monotonic visual contributions.

Other increasing functions for which a monotonical contribu-

tion could be proved would be suitable replacements, but we

have found that this gives good results.

The remaning three factors in the definition of v(n,C) mod-

ify v0(n,C) by taking into account the camera parameters and

their variation over time. They are controlled by coefficients set

experimentally. For the first two, we have found that limiting

their influence to a maximum reduction of 20% gives good re-

sults. This represents a compromise between the two extremes.

If these functions are given much larger strength, then they may

reduce the value of a nodes’ contribution excessively, inducing

in turn a simplification much larger than really necessary, and

ultimately increasing the number of artifacts. If they are given

to little influence, the result will be that nodes that are moving

fast, or near the boundaries of the viewport, will be excessively

detailed, producing an increase in cost, and since we run on a

limited budget, inducing a decrease in quality somewhere.

The first one is the Centered function:

Centered(n) = 0.2

(

1 −
dist

vpsize

)

+ 0.8

which decreases with the distance dist from the center of the

viewport to the projection of AABB(n) onto the viewport (here

vpsize is half the diagonal of the viewport). Thus, Centered(n)

is one if the projection contains the center of the viewport, and if

not, it decreases down to 0.8 near the boundary of the viewport.

This factor attempts to capture the loss of visual acuity in the

viewport periphery.

Change(n) is a decreasing function, measuring the rate of

change in the projected position of the node. The main idea is

that we have a reduced visual acuity for objects (nodes) present-

ing apparent movement in the viewport. In our implementation,

we have found that a good compromise is to define

Change(n) = 0.2 max

1 −

∥

∥

∥

∥

Cn −Cn
prevframe

∥

∥

∥

∥

0.4 ∗ vpsize
, 0

+ 0.8

5

where Cn is the center of the projection of the AABB of node n.

Finally, Vis(n) takes occlusions into account. For efficiency

reasons, we use information from occlusion queries from the

previous frame. We define Vis(n) = VisPixels/TotalPixels,

where TotalPixels is the projected size p(n,C) and VisPixels

is the number of visible pixels of AABB(n), both in the previous

frame.

Let us prove now that base visual contributions are mono-

tonic. To this end, let us now consider the base visual con-

tributions of node n and of its two children. To simplify the

notation, assume that p is the surface area of the screen projec-

tion of n, and p1 and p2 the areas corresponding to its children

nodes n1 and n2. We do not indicate explicitly from here on the

dependency on C of these surface areas, in the interest of more

compact equations. To see that the base visual contribution is

locally monotonic (see Figure 2), notice that p ≤ p1 + p2, so

v0(n,C) =
(√

l(n) + 1
)

p ≤
(√

l(n) + 1
)

(p1 + p2)

<
(√

l(n) + 1 + 1
)

p1 +
(√

l(n) + 1 + 1
)

p2

= v0(n1,C) + v0(n2,C)

So

v0(n,C) < v0(n1,C) + v0(n2,C)

no matter what camera C we’re using.

The (approximate) optimization performed during render-

ing generalizes [FS93] to hierarchical data structures and is de-

tailed in Section 6.

Monotonicity of dynamic visual contributions comes from

the fact that the Centered, Change and Vis functions are not sig-

nificantly different between any node n and its children. More-

over, the cost of HMT nodes is monotone by construction, as

shown in next Section. We can therefore conclude that HMTs

are monotonic and support constrained fronts Fc. We now turn

to the details involved in the construction of an HMT.

5. Generation of the HMT

HMTs can handle huge models distributed among several

input files. These files contain triangles with color per vertex

and data is structured in objects that point to triangle lists. Ob-

jects in the input files are assigned sequential integer labels, and

a single triangle soup is created and stored in external memory.

Triangles in this soup contain their object index as an attribute.

The next step is the creation of the Kd-tree structure. This is

done by a standard recursive space splitting algorithm. Every

node in the Kd-tree represents an axis-aligned box and all tri-

angles contained in it. The box of the root corresponds to the

scene’s bounding box. At each step, the recursive algorithm

tests the three coordinate directions and chooses the best (most

centered) orthogonal plane that splits the set of triangles in the

father node into two sets with similar cardinality. Long trian-

gles —whose extent into both sub-nodes is substantial— that

are stabbed by the splitting plane are subdivided, whereas the

rest of stabbed triangles are simply assigned to one of the two

new regions. In practice, very few triangles need to be split, and

at any rate this only impacts the pre-processing of the scene.

Subdivision is repeated until nodes contain less than 50K tri-

angles each (this number has been experimentally determined

to be the size for VBOs that achieves good performance across

diverse GPUs). At the end of this step, the Kd-tree structure

has been generated and leaf nodes (the Exact-layer of the tree)

already contain their final geometry.

Nodes in the SP-layer are computed by bottom-up simplifi-

cation, starting by the parents of the already defined Exact-layer

nodes. After many experiments and tests, we concluded that

standard simplification algorithms were not adapted to huge

assemblies with a large number of objects and many disjoint

meshes. Our simplification scheme uses volumetric techniques

with surface reconstruction per node, and proceeds as follows:

1. Visibility culling. The node is enlarged with one layer of

neighbor leaf nodes, and it is then rendered from 320 di-

rections around its center. Triangles which don’t appear

in any of the renders are marked as invisible. Invisible

triangles in the node can be removed, as objects close to

the camera will be always rendered as Exact-layer nodes,

while nodes in the SP-layer will be used in medium dis-

tances (see Figure 3, middle).

2. Complexity test. If the node, after visibility culling, has

less than 50K triangles, we are done. If not, we proceed

with the next steps:

3. Node voxelization. We extend each node’s box by a 5%

in each direction to avoid cracks between nodes, we fill

it with geometry from neighbor nodes, and voxelize it.

We denote by Nv the number of voxels in the longest ex-

tended box direction. The number of voxels in the other

directions is computed to guarantee almost cubic cells.

Voxels can be either void or full. We initialize Nv= 200.

4. Surface simplification. Our algorithm is based on [Wil11]

and on [RB93]. For every voxel v, we classify all ver-

tices of the initial model in v. Vertex labels are assigned

according to the index of their object and to the direc-

tion of their normal vector. We consider eight direction

classes by packing the signs of the three normal compo-

nents. Triangles having two or three vertices with the

same label are considered dangling and removed. Then,

all vertices in v having the same label are collapsed into

their centroid, which becomes their representative vertex.

5. Clipping. The resulting geometry is clipped inside the

box of the node (see Figure 3, right).

6. Cost computation. The resulting number of polygons in

the node (cost) is tested for monotonicity. If the cost is

not lower than the sum of the children’s costs, Nv is de-

creased by a 10% and steps 3... 6 are repeated.

The upper tree layer (the RI-layer) is computed with an al-

gorithm based on [ABB∗07], but modified for our purposes. For

each node in the RI-layer, we render its geometry on a 300×300

viewport, from 102 almost isotropic directions and using or-

thogonal projection. Color, depth and normals per pixel are

stored in one relief impostor per view direction (relief impos-

tors are implemented as two textures). Neighbor nodes are also

rendered, to complete the information in the impostors. We

6

derive the 102 viewing directions from the regular subdivision

of an octahedron, as axis-aligned viewing directions are rele-

vant in industrial design. In our implementation, the RI-layer

fills levels 0 . . . 2 of the HMT, and each node in this layer is

represented by 30 or less relief impostors. A node-dependent

rendering simulation is performed in order to discard poor im-

postors and find a set with (at most) 30 best impostors. This

rendering step is based on [ABB∗07]. It renders the node from

320 equally-distributed viewpoints, derived from the subdivi-

sion of an icosahedron. For each one of them, it tests different

subsets of the eight relief impostors which are closest to the

viewing direction. For each subset, the rendered image of the

node is obtained and a visual error metric is computed as the

mean squared error in the per pixel perceptual comparison be-

tween this image and a polygonal rendering of the node geome-

try from the same viewpoint. The best subset for a certain view-

point direction is the one giving the lowest error value. Errors

are also accumulated in the contributing impostors. Impostors

not used in the rendering subset for any of the tested directions,

and impostors with high accumulated errors are removed from

the initial set, until the target of 30 RIs is reached. In short, we

use 102 renders per node to compute candidate impostors, and

320 extra RI-renders per node to discard non-informative im-

postors. Nodes in the RI-layer are assigned a cost which is con-

stant (because of the uniform number of impostors per node).

Cost monotonicity is therefore guaranteed by construction. The

cost value is computed as an equivalent triangle count, based on

the node rendering time.

As a last test, cost monotonicity is checked between the

upper SP layer and the lowest RI layer of the tree. If neces-

sary, the parameter Nv of the upper SP layer nodes is further

decreased until the whole tree is monotonic with respect to the

cost. This update has never been necessary in the examples we

have tested.

In order to make the HMT object-aware, we store for each

triangle an integer identifier of the object it belongs to. In or-

der to efficiently access material properties we store them in an

N × N Object Texture, with N such that N2 is greater or equal

to the total number of objects in the scene. Observe that a tex-

ture size of 1024 × 1024 supports more than 106 differentiated

objects, which is sufficient for large current-day industrial as-

semblies. In our implementation we use one RGBA texture stor-

ing the color and transparency attributes of each object. Given

an object index oi we use the equations u = oi mod N and

v = oi div N to compute the (u, v) coordinates of the texel stor-

ing the color attribute. Extra attributes could be stored, but if

they do not participate in rendering, they can be directly ac-

cessed through other data structures in the application.

6. Visualization and Interactive Scene Editing

The visualization algorithm is based on a dynamic con-

strained front. The front Fk is the list of HMT nodes to be

rendered at frame k, together with the device coordinates of the

center of AABB(n) for each front node. The front also includes

upper tree representations of regions outside the current frus-

tum, to support efficient update in fast camera movements. The

front structure is CPU-based, but front nodes are cached in the

GPU as Vertex Buffer Objects when appropriate.

The rendering algorithm solves the constrained optimiza-

tion problem in equation (1) at each frame, trying to maximize

the total visual quality of the rendered image while ensuring

that the total cost is not greater than MaxCost.

The optimization starts with the front at the previous frame

and updates it. Front update is based on two operations, node

split and node collapse (see Figure 2). A node split refines a

certain node n and increases the cardinality of Fk by one, in-

creasing also the total cost and the total visual contribution of

the front (because of the monotonicity property). Collapse acts

on a pair of siblings and replaces them by their common parent

node, decreasing the front cardinality by one, decreasing by the

same token the front cost and visual contribution.

Front nodes are labeled as nodes outside the present frus-

tum, occluded nodes or visible nodes. Occluded nodes are nodes

that were completely occluded in the previous frame. Visible

nodes are nodes neither occluded nor completely outside the

frustum. In what follows, we will use the term invisible nodes

for the union set of occluded nodes and nodes outside the frus-

tum.

The front update implements a greedy suboptimal optimiza-

tion and transforms Fk into Fu
k
. This is achieved in three sub-

steps. First, pairs of siblings such that both of them are invisible

nodes are collapsed. This is repeated until no pair of invisible

siblings exists. Then, the dynamic visual contribution of every

visible node in Fk is computed. Afterwards, the visible node

n with the maximum dynamic visual contribution vd(n) is de-

tected and refined, being substituted in Fk by its two children,

which become visible. Finally, candidates to collapse are com-

puted and collapsed. Candidates to collapse are pairs of brother

nodes, both in Fk, with at least one of them being visible. The

candidate pair (n1, n2) with the lowest v(n1,C) + v(n2,C) is col-

lapsed (both nodes are substituted by their parent, which is la-

beled as visible), and this collapse is repeated (with the next re-

maining candidate pair with the lowest joint visual contribution)

until the total front cost is lower than MaxCost. The resulting

updated front is named Fu
k
. Next, the GPU cache is updated by

transmitting the (few) changed nodes that have a visible label.

Finally, the front Fu
k

becomes Fk+1 by updating the occlu-

sion labels. Occlusion queries are sent by all nodes in Fu
k

in-

tersecting the frustum. In the case of visible nodes, one query

per node is sent, but in the case of occluded queries, they are

sent in groups (we use four nodes per group) to reduce the total

number of queries and the frame update time.

In our implementation, the number of polygons per node

is fairly constant by construction. Therefore, constraining the

total cost to be lower than MaxCost is basically equivalent to

constraining the maximum front cardinality. Our experimental

results have shown a stable number of nodes in the front. Fur-

thermore (see Section 7, especially Figure 10), we have seen

that in most cases, the numbers of splits and of collapses of

visible nodes per frame are similar.

Our experiments show (see Section 7, Figure 11)) that the

increments in visual contribution due to the splits are always

greater than the decreases produced by the collapses, empiri-

7

cally validating our greedy optimization. Nonetheless, the total

visual contribution remains bounded because of the visibility

changes and because of nodes leaving the frustum.

This lazy algorithm with suboptimal constrained optimiza-

tion shows a good performance and user acceptance, as will

be discussed. Since time-critical requirements disappear when

users stop the navigating camera, we detect these cases, save the

current front and temporarily increase the value of MaxCost,

but allow only splits, to avoid oscillations. When the camera

starts again the navigation, we retrieve the previous front and

MaxCost and continue the standard per-frame optimization.

While this rendering strategy successfully brings together

and extends several different techniques to produce quality nav-

igations of very complex models, its true singularity rests in

doing so while preserving each and every object in the original

CAD model, which makes these navigations meaningful in the

middle of the design loop, and better supporting collaborative

design discussions. Operations on sets of selected objects —

optionally selected directly in the CAD design tree— use the

Object Texture. Selection feedback is performed via a change

of the objects material color. Previous attributes in the texel

corresponding to the selected objects are saved, and a tempo-

rary selection color is assigned to them. Upon the end of se-

lection, original colors and attributes are retrieved and restored.

Interactive dragging of the set of selected objects is possible,

in sets of moderate cardinality. After the selection, a tempo-

rary Vertex Buffer Object is constructed and transferred to the

GPU with the triangles of the selected objects. Edition in this

case is performed by making the objects transparent in the HMT

(temporarily modifying the Object Texture) and rendering and

dragging this additional VBO of the selected objects. The over-

head of rendering twice the set of selected objects is negligible

in practical editing operations. Edition results are saved in a

log file for ulterior batch update of the design and HMT trees.

Selected objects can be made transparent in the same way, but

in this case the Alpha component of the corresponding texel is

modified. Unique global indices allow to log also other sorts of

user annotations or modifications to the selected objects. Ap-

proximate collision detection is supported during edition and

dragging of the selected objects in a hierarchical way (see Fig-

ure 4, bottom). This is reminiscent of [YSLM04] in that bound-

ing boxes are rotated with the objects. However, we deal with

relatively simple objects and are therefore able to construct the

collision hierarchy for the selected objects on the fly, instead of

requiring a long pre-process. This is done at the leaf level only,

since the user is assumed to focus his attention on these parts.

To this end, we compute on the fly a six-level octree of the se-

lected objects, and use it to check for collisions with a six-level

octree of the leaf (which is computed during the pre-process

and stored in each leaf of the HMT). The octree representation

of the selected objects is computed in a second thread, while

their polygonal representation is being transferred to the tem-

porary VBO in the GPU. These two black-and-white octrees

are stored in a compact, pointer-less depth-first representation,

with two bits per node. They are bounding octrees: any point in

the model is in the set of black nodes and any black node con-

tains points of the model. This octree is transformed following

the user interaction, so that the collisions are actually tested be-

tween an axis aligned octree (of the leaf-node geometry) and the

resulting rotated octree. Obviously, the collisions are detected

with an error up to the length of the diagonal of the leaf nodes

of these octrees, which is sufficient for the applications consid-

ered. Changing the model would require a new pre-processing

of the scene, so these changes are kept only as annotations that

allow their reproduction, and may be afterwords processed in

the CAD system if so desired.

7. Results

We have tested the performance of our algorithms using real

models from the ship industry, which was our main focal appli-

cation. The most complex ship model we were able to use in

these tests —due to confidentiality restrictions— corresponds

to a cargo ship of 219.124 meters length overall, consists of

some 14.4×106 polygons, and is shown in Figure 1. This model

contains some imperfections, where geometry interpenetrates

other geometry, causing some artifacts, but our algorithm per-

forms without any special repair, albeit displaying, of course,

the same artifacts.

In order to test our algorithm under more stressing condi-

tions, we have run it on a scene made up of a fleet of sixteen

copies of this same ship model. We have also tested our re-

sults with the model of a Boeing 777-200 (see Figure 5 and the

second accompanying video).

7.1. User-Perceived Visual Quality in ORIs and Far Voxels

To understand the behavior of some of the existing algo-

rithms in the visualization of complex scenes with many dif-

ferentiated objects, we prepared a set of tests to experimentally

compare the direct visualization of the polygonal scene with the

Far Voxels approach [GM05] and with ORIs [ABB∗07]. We

selected these two approaches because of their ability to vi-

sualize huge scenes with distinct objects. We implemented a

testing platform with different variants of these approaches and

designed a suitable interface for the experiments.

Our first test was on rendering efficiency. We rendered dif-

ferent parts of a ship model with the previously mentioned vi-

sualization algorithms. Since we intend to use these algorithms

to render nodes that are far from the camera, whose projection

onto the viewport has a diameter of not more than 200 pix-

els, we performed three tests with viewport sizes of 100 × 100,

150 × 150 and 200 × 200 pixels. In each case, we rendered

parts of the model of increasing complexity, see Figure 6. The

plots in this figure show the frame rates in four different cases:

a polygonal rendering of the original geometry (no hardware

occlusion culling); a polygonal rendering of the original geom-

etry with internal, non-visible geometry removed; an ORI ren-

dering; and finally, a Far Voxels rendering. The ORI consisted

of 32 relief impostors from equally distributed directions, each

of them having a 300 × 300 resolution. Far Voxels was imple-

mented at a higher resolution than usual, with five million vox-

els per tree node to achieve similar visual quality at this resolu-

tion; five million rays were used for computing voxel material

properties in each tree node.

8

From the results shown in Figure 6, we can conclude that

in our platform, rendering raw geometry is less efficient when

the polygon count is larger than one million polygons, the con-

sequence being a decrease in the frame rate. Moreover, the ef-

ficiency of ORIs is always higher than the corresponding one

for the Far Voxels scheme. This is true independently of the

viewport size.

To test the visual quality, we implemented a platform to

visualize a chosen tree node simultaneously in six viewports,

each one having 200 × 200 pixels. As we shall see in Section 7

(especially Figure 12), nodes with ORIs are very rarely used

at larger projection sizes. Users interact with the model and

see exactly the same camera changes in all viewports. Users

can load any tree node and experiment with it. The platform

manager prepares the experiment by assigning different visual-

ization schemes to each of the viewports. Figure 7 shows the

layout of the interface for this experiment.

The comparison of visual quality was performed by 20 users,

in the aforementioned test platform. Each user could interact

with eight randomly-chosen nodes from the full tree; for each

node, the user could change the camera, and was shown si-

multaneously six viewports for 30 seconds with different algo-

rithms (see Figure 7). The six viewports displayed, from left to

right, the reference polygonal model (ground truth), three ORI

renderings obtained using 32 viewing directions and textures of

300 × 300 pixels (the leftmost is the original ORI algorithm,

the next viewport is a blending between the original ORI ren-

der and a down-sampled version, and the third is upsampled

with 4 rays per fragment). The fifth viewport displayed a re-

peat of the reference model in the first viewport, and the last

viewport displayed a high resolution rendering with Far Vox-

els (with nodes of 5 million voxels, computed using 5 million

rays). Each user was asked to grade the visual quality of each

viewport with respect to the ground truth of the first one. The

conclusion was that users clearly preferred the ORI rendering

with respect to Far Voxels. Users gave the maximum grade to

viewport 5, which they did not know was a repetition of view-

port one, confirming their reliability in running the test.

We also compared the images themselves at a resolution of

200×200 pixels (the maximum resolution intended for them in

our application). Given the images of the same node from the

same viewpoint using Far Voxels (with the parameters above)

and ORIs, we computed the RMS value of the deviations from

the ground truth (represented by the exact geometry), measured

for each pixel as the euclidean distance between the colors of

the pixels in RGB space. The average was taken over the rele-

vant pixels for each view, defined as those that were not back-

ground-colored in at least one of the three images. The results

for some representative nodes are given in Table 2

Two conclusions can be derived from the results of our tests.

Nodes containing polygonal representations have a better per-

formance when their cardinality is well below 1M polygons.

Moreover, image-based representations (specially, ORIs) are

well behaved in nodes with extremely complex geometry, pre-

senting a better efficiency (measured in frames per second) and

a good perceptual visual quality.

Node relevant pxls rmsE(ORI) rmsE(FV)

1 4419 0.1324 0.2657

2 10019 0.1177 0.2434

6 9048 0.1682 0.3141

740 13653 0.2063 0.4340

Table 2: Comparison of image quality for several nodes and random cameras.

The root mean square averages are computed with respect to the relevant pixels,

i.e. those that are not background.

7.2. Results Analysis and Discussion

Our algorithm applied to the model in Figure 1 resulted in

an HMT of 993 nodes and depth ten. Notice that a balanced

tree of this size would have nine levels, so the HMT is close

to balanced. This is a consequence of our Kd-tree construc-

tion algorithm, which enforces an as-balanced-as-possible dis-

tribution of primitives between siblings. The construction time

for this Kd-tree took in this case just 58.84 seconds. In this

HMT, the first three levels form the RI-layer. Each of the ORIs

in this tree took between 3.59Mb and 9.98Mb. The simplified

nodes occupied anywhere from 0.62Mb to 4.47Mb, and the leaf

nodes with the exact geometry weighed in the range of 1.29Mb

and 2.64Mb. The pre-processing time for computing the ORIs

was 3192 seconds and the simplified nodes took 8011 seconds

to compute. The total number of triangles at the leafs of the

resulting HMT was 17.5 × 106, due to the splitting of trian-

gles at node boundaries. These timings correspond to running

the pre-processing algorithm on a PC with an Intel Core Duo

E7600 CPU at 3.06GHz, with 8Gb of RAM, and an nVidia

geForce GTX280 graphics card, running Windows Vista En-

terprise 64bits.

The rest of the results with this model were run on the scene

made up of sixteen copies of this model (each with distinct col-

ors to distinguish them). Since the scene is, however, sparse,

we represented it internally with a forest of sixteen HMTs, to-

taling 208× 106 triangles in their leaf nodes. We have recorded

a real-time execution of our application exploring this scene,

which is shown in the first of the accompanying videos. The

numbers given hereunder correspond to this execution on an

PC with an intel Core i7 with 4 cores, running at 3.2GHz, and

having 12Gb of DDR3 RAM. The graphics card was an nVidia

geForce GTX 570 with 1.25Gb of dedicated memory.

We have attempted to use trajectories and operations that

display the real potential of our proposal. Figure 4 shows three

snapshots from this video, presenting operations at the object

level. Objects can also be annotated (see Figure 1) as required

in cooperative design.

The model of the Boeing 777 in Figure 5 consists of more

than 180 × 106 faces of different arity, and equivalent to more

than 330×106 triangles. Table 3 details the sizes and character-

istics of the resulting HMT. Notice that for this larger model we

have used four levels for the RI-layer. Notice that in this case

the first four levels are occupied by ORIs, levels four through

thirteen contain simplified geometry, and leaves with exact ge-

ometry appear from level eleven onwards.

Figure 8 shows the time spent in each of the frames of the

first video. Notice that the vast majority of the frames are un-

9

Level

Num.

Nodes

Num.

ORIs/simp./leafs Min Avg Max

0 1 1/0/0

1 2 2/0/0

2 4 4/0/0

3 8 8/0/0

4 16 0/16/0 43360 63243 78565

5 32 0/32/0 53036 68793 96291

6 64 0/64/0 28004 60765 79155

7 128 0/128/0 51649 66157 89414

8 256 0/256/0 30878 62802 76425

9 512 0/512/0 39886 65408 74954

10 1024 0/1024/0 22325 57707 74969

11 2048 0/2045/3 29906 64150 89841

12 4090 0/3489/601 23079 61932 91321

13 6978 0/118/6860 21909 48572 78094

14 236 0/0/236 33454 44190 69893

Table 3: Size of each level of the HMT for the model in Figure 5. The third col-

umn shows the number of nodes that contain ORIs, simplified geometry or full

geometry. The last three columns show the minimum, average and maximum

number of triangles per node for that level, and provide a coarse measure of the

extent to which our algorithm produces a reasonably balanced tree.

der 40ms, since we chose the cost to achieve a minimum frame

rate of 25fps. This budget is only exceeded for isolated frames

where drastic changes in the image content, and thus in the ren-

dering front, occur (for example when the camera goes through

a wall).

Next, we show in Figure 9 the cost, as computed by the

algorithm, of rendering each front. Notice that the plot repro-

duces the shape of the frame rate in Figure 8, validating exper-

imentally —in this case— our computation of the cost.

In Figure 10 we show at the top a plot of the size of the front

at each frame. The curves show the number of nodes of each

kind: total number of nodes in the front (in blue), visible nodes

(in red), culled by the frustum (in green) and culled by the oc-

clusion test (in purple). Notice this total is consistently below

roughly 120 nodes. The plot at the bottom of the figure shows

the number of nodes updated in the GPU cache at each frame,

which is almost always eight or less. Blue bars correspond to

nodes uploaded to the GPU due to split and merge operations.

The green bars show nodes uploaded due to changes in the vis-

ibility of nodes. The few isolated spikes correspond again to

instances where this visibility changes abruptly.

Next, we show in Figure 11 the evolution of the visual con-

tribution of the nodes in the front. In this plot, the blue bars rep-

resent increments in visual contribution due to splits, whereas

the red plot represents (in negative values) the losses of visual

contribution due to collapses. Notice that increases are pre-

dominant, thus validating, again at an experimental level, our

heuristics.

Figure 12 shows the maximum (blue), minimum (red) and

average (green) size of the nodes in the RI-layer (rendered us-

ing ORIs) that appear in each frame. While the maximum un-

dergoes some sharp spikes, notice that average values (and even

maximum values for most frames) roughly stay under the thresh-

old of 200 pixels. Notice that these plots represent the size of

the projection of the whole node. In most cases, large ORIs, in

the few instances that occur, correspond to large nodes in the

HMT that are almost completely occluded.

Figure 13 offers a comparison of the time spent per frame

at different points in the first accompanying video (the fleet)

by two different algorithms. The abscissae in this case repre-

sent seconds of video. The red curve plots the time spent when

drawing the full polygonal model using Coherent Hierarchical

Culling [BWPP04] (culling polygons that are not visible, which

accounts for the reasonable speed at certain points along the

video). The blue line represents the time per frame spent by our

algorithm, which remains downright flat.

The tests on the Boeing 777 model were run on a single-

threaded application in a PC with an i7-5820K CPU and 32Gb

of RAM, and rendered using a GeForce 980Ti GPU. Figure 14

shows the time it took to render each frame in a navigation in-

side this model. The first frames are much slower until data are

updated to the GPU, and then sustain good framerate. A slight

decrease in framerate near frame 800 corresponds to a sudden

increase in the number of visible nodes after going through a

wall. Finally, Figure 15 shows, with the same color codes as

the top grafic in Figure 10, the evolution of the number of nodes

in the front during the same navigation reported in Figure 14.

Notice that, despite the much higher complexity of the model,

a very large proportion of it becomes culled by the frustum

culling, as seen from the approximately constant gap between

the total number of nodes and the number of nodes culled (blue

and green curves).

8. Conclusions and future work

The paper contributes to the field by proposing a formaliza-

tion of the front concept and a new object-aware algorithm for

the interactive inspection of huge models which uses a render-

ing budget and supports selection of individual objects and sets

of objects, displacement of the selected objects and real-time

collision detection during these displacements.

As far as we know, no present algorithm addresses render-

ing such huge sets of objects with guaranteed frame rates, while

allowing for the modification of individual objects during the

inspection and attempting to optimize image quality. Our pro-

posal addresses these needs, and is also able to verify on the fly

possible collisions when moving objects around. The proposed

algorithm has proved to succesfully solve a precise need in the

design of huge assemblies and is now being used in real ship

design environments.

In our tests, we have not perceived differences between

the quality of the images rendered by our algorithm with re-

spect to the ground truth represented by the input models. Iso-

lated frames may present transient artifacts when the visibility

changes abruptly, since the updates exceed the budget, but they

very quickly disappear.

Although we have not discussed it here, our current imple-

mentation supports textured polygons and selection through at-

tributes. To be able to fully support textured models, however,

we need to further improve the ORIs to handle them. This is

intended as future work.

10

Because of the locallity in space afforded by the Kd-trees,

the whole pre-processing is amenable to being done out-of-

core, and hence our approach should scale well for even larger

models and modest hardware. Another avenue of improvement

is therefore the implementation of this out-of-core approach in

a fully authomatic way.

Acknowledgments

The source 3D datasets were provided by and are used with

permission of the Boeing Company and Sener Ingenierı́a y Sis-

temas; Sener also provided the initial industrial problem from

which this work stems. The authors would like to thank for the

partial support by grant TIN2014-52211-C2-1-R of the Minis-

terio de Economı́a y Competitividad with funds from FEDER,

from the European Community and grant CENIT–BAIP2020 of

the Spanish government.

References

[ABB∗07] Andújar C., Boo J., Brunet P., González M. F., Navazo I.,

Vázquez P.-P., Vinacua A.: Omni-directional relief impostors.

Comput. Graph. Forum 26, 3 (2007), 553–560.

[ABCN10] Andújar C., Brunet P., Chica A., Navazo I.: Visualization of

large-scale urban models through multi-level relief impostors.

Comput. Graph. Forum 29, 8 (2010), 2456–2468.

[BGBL05] Borgeat L., Godin G., Blais F., Lahanier C.: Gold: interactive

display of huge colored and textured models. ACM Trans. Graph

24 (2005), 869–877.

[BSGM02] Baxter III W. V., Sud A., Govindaraju N. K., Manocha D.: Gi-

gawalk: Interactive walkthrough of complex environments. In

Proceedings of the 13th Eurographics Workshop on Rendering

(Aire-la-Ville, Switzerland, Switzerland, 2002), EGRW ’02, Eu-

rographics Association, pp. 203–214.

[BWPP04] Bittner J., WimmerM., Piringer H., PurgathoferW.: Coherent

hierarchical culling: Hardware occlusion queries made useful.

Computer Graphics Forum 23, 3 (2004), 615–624.

[CGG∗04] Cignoni P., Ganovelli F., Gobbetti E., Marton F., Ponchio F.,

Scopigno R.: Adaptive tetrapuzzles: efficient out-of-core con-

struction and visualization of gigantic multiresolution polygonal

models. ACM Trans. Graph. 23 (August 2004), 796–803.

[CNLE09] Crassin C., Neyret F., Lefebvre S., Eisemann E.: Gigavoxels:

ray-guided streaming for efficient and detailed voxel rendering.

In Proceedings of the 2009 Symposium on Interactive 3D Graph-

ics, SI3D 2009, February 27 - March 1, 2009, Boston, Mas-

sachusetts, USA (2009), Haines E., McGuire M., Aliaga D. G.,

Oliveira M. M., Spencer S. N., (Eds.), ACM, pp. 15–22.

[eYLPM05] eui Yoon S., Lindstrom P., Pascucci V., Manocha D.: Cache-

oblivious mesh layouts. ACM Trans. Graph 24 (2005), 886–893.

[FS93] Funkhouser T. A., Sequin C. H.: Adaptive display algorithm

for interactive frame rates during visualisation of complex virtual

environments. Proceedings of SIGGRAPH’93 (1993), 247–254.

[GB00] Gobbetti E., Bouvier E.: Time-critical multiresolution rendering

of large complex models. Computer-Aided Design 32, 13 (2000),

785–803.

[GIGM12] Gobbetti E., Iglesias Guitián J. A., Marton F.: Covra:

A compression-domain output-sensitive volume rendering archi-

tecture based on a sparse representation of voxel blocks. Comp.

Graph. Forum 31, 3pt4 (June 2012), 1315–1324.

[GM04] Gobbetti E., Marton F.: Layered point clouds: a simple and

efficient multiresolution structure for distributing and rendering

gigantic point-sampled models. Computers and Graphics 28, 6

(Dec. 2004), 815–826.

[GM05] Gobbetti E., Marton F.: Far voxels: a multiresolution frame-

work for interactive rendering of huge complex 3D models on

commodity graphics platforms. ACM Trans. Graph 24, 3 (2005),

878–885.

[PC12] Peng C., Cao Y.: A gpu-based approach for massive model ren-

dering with frame-to-frame coherence. Computer Graphics Fo-

rum 31, 2pt2 (2012), 393–402.

[PG07] PajarolaR., Gobbetti E.: Survey of semi-regular multiresolution

models for interactive terrain rendering. The Visual Computer 23,

8 (2007), 583–605.

[RB93] Rossignac J., Borrel P.: Multi-resolution 3D approximations for

rendering complex scenes. In Modeling in Computer Graphics:

Methods and Applications (Berlin, 1993), Falcidieno B., Kunii

T., (Eds.), Springer-Verlag, pp. 455–465. Proc. of Conf., Genoa,

Italy, June 1993. (Also available as IBM Research Report RC

17697, Feb. 1992, Yorktown Heights, NY 10598).

[Sam06] Samet H.: Foundations of Multidimensional and Metric Data

Structures. Morgan Kaufmann, 2006.

[Wil11] Willmott A.: Rapid simplification of multi-attribute meshes. In

Proceedings of the ACM SIGGRAPH Symposium on High Perfor-

mance Graphics (New York, NY, USA, 2011), HPG ’11, ACM,

pp. 151–158.

[YGKM08] Yoon S.-E., Gobbetti E., Kasik D. J., Manocha D.: Real-Time

Massive Model Rendering. Synthesis Lectures on Computer

Graphics and Animation. Morgan & Claypool Publishers, 2008.

[YSGM05] Yoon S.-E., Salomon B., Gayle R., Manocha D.: Quick-VDR:

Out-of-core view-dependent rendering of gigantic models. IEEE

Trans. Vis. Comput. Graph 11, 4 (2005), 369–382.

[YSLM04] Yoon S.-E., Salomon B., Lin M., Manocha D.: Fast Collision

Detection between Massive Models using Dynamic Simplifica-

tion. In Symposium on Geometry Processing (2004), Scopigno

R., Zorin D., (Eds.), The Eurographics Association.

11

Figure 1: The model used in the tests. The top image shows a portion of the hull

selected by the user in gray. In the middle image the user has moved the selected

portion of the hull, partially revealing the complexity of the model inside. The

bottom image shows data associated to an object, that the user may annotate.

Notice the ships in the background, which are rendered using omnidirectional

relief impostors

Collapse Split

n

n1 n2

P

P1 P2

Figure 2: Base Visual contribution is monotonic. The Split operation increases

it, while the Collapse operation decreases it.

12

529,258 tri. 100,625 tri. 50,884 tri.

Figure 3: Node simplification: The leftmost image shows the exact geometry corresponding to one of the nodes in the Kd-tree. In the center image, some of this

geometry has been removed by the visibility culling (which is conducted including geometry from neighboring nodes, since the simplified versions are not meant

to be used from close-up). The rightmost image shows the result of the simplification of this node. Notice that there are large holes in the front wall; they happen

because those portions of the wall are occluded by geometry in the neighboring node, and will therefore never be visible when this simplification is used.

13

Figure 4: The top snapshot shows a partial view of the fleet scene. Here we

have drawn the AABB’s of the nodes, color-coding their nature: green nodes

are ORIs, red nodes contain simplified geometry, and blue nodes are leaves

(with the exact geometry). The middle image shows a portion of the inside of

the ship, with part of the hull removed. The image at the bottom shows the

result of selecting and displacing three pipe elbows (in gray). Notice the red

highlighting where the elbows interfere with other geometry.

Figure 5: Two frames from a navigation inside the Boeing 777-200. The top

frame shows a view near the top of the cabin, where sight extends all the way to

the rear end of the airplane. Notice that upon careful inspection, far elements,

rendered as ORIs, can be distinguished as slightly more blurred. Nodes at a

mid-distance are simplified, and geometry close to the camera is exact. The

bottom figure shows a frame where we see that the model has preserved intact

the detail of the original for close inspection.

14

10000 100000 1000000 10000000 100000000

1

10

100

1000

10000

100000

200x200

Original

Visibility

ORI (res300 d32 nobest)

FV (5000K 5000K)

Polygons

F
P

S

10000 100000 1000000 10000000 100000000

1

10

100

1000

10000

100000

150x150

Original

Visibility

ORI (res300 d32 nobest)

FV (5000K 5000K)

Polygons

F
P

S

10000 100000 1000000 10000000 100000000

1

10

100

1000

10000

100000

100x100

Original

Visibility

ORI (res300 d32 nobest)

FV (5000K 5000K)

Polygons

F
P

S

Figure 6: Comparative speeds in different rendering techniques for large

datasets in a 200 × 200 viewport (top), a 150 × 150 viewport (middle) and a

100 × 100 viewport. The test was run on a machine with a 4-core intel i7 at

3.2Ghz, with 12Mb of memory and a GeForce GTX570 graphics card with

1.25Gb of DDR5 memory, using Windows 7 Professional 64bits.

15

Figure 7: Interface for the user perception study.

7

8
4

1
6
1

2
3
8

3
1
5

3
9
2

4
6
9

5
4
6

6
2
3

7
0
0

7
7
7

8
5
4

9
3
1

1
0
0
8

1
0
8
5

1
1
6
2

1
2
3
9

1
3
1
6

1
3
9
3

1
4
7
0

1
5
4
7

1
6
2
4

1
7
0
1

1
7
7
8

1
8
5
5

1
9
3
2

2
0
0
9

2
0
8
6

2
1
6
3

2
2
4
0

2
3
1
7

2
3
9
4

2
4
7
1

2
5
4
8

2
6
2
5

2
7
0
2

2
7
7
9

2
8
5
6

2
9
3
3

3
0
1
0

3
0
8
7

3
1
6
4

0

0.02

0.04

0.06

Figure 8: Fleet scene: time for each frame.

7

8
4

1
6
1

2
3
8

3
1
5

3
9
2

4
6
9

5
4
6

6
2
3

7
0
0

7
7
7

8
5
4

9
3
1

1
0
0
8

1
0
8
5

1
1
6
2

1
2
3
9

1
3
1
6

1
3
9
3

1
4
7
0

1
5
4
7

1
6
2
4

1
7
0
1

1
7
7
8

1
8
5
5

1
9
3
2

2
0
0
9

2
0
8
6

2
1
6
3

2
2
4
0

2
3
1
7

2
3
9
4

2
4
7
1

2
5
4
8

2
6
2
5

2
7
0
2

2
7
7
9

2
8
5
6

2
9
3
3

3
0
1
0

3
0
8
7

3
1
6
4

0

10

20

30

40

50

60

Figure 9: The cost computed for rendering the front at each frame for the fleet

scene

7

8
4

1
6
1

2
3
8

3
1
5

3
9
2

4
6
9

5
4
6

6
2
3

7
0
0

7
7
7

8
5
4

9
3
1

1
0
0
8

1
0
8
5

1
1
6
2

1
2
3
9

1
3
1
6

1
3
9
3

1
4
7
0

1
5
4
7

1
6
2
4

1
7
0
1

1
7
7
8

1
8
5
5

1
9
3
2

2
0
0
9

2
0
8
6

2
1
6
3

2
2
4
0

2
3
1
7

2
3
9
4

2
4
7
1

2
5
4
8

2
6
2
5

2
7
0
2

2
7
7
9

2
8
5
6

2
9
3
3

3
0
1
0

3
0
8
7

3
1
6
4

0

20

40

60

80

100

120

140

7

8
4

1
6
1

2
3
8

3
1
5

3
9
2

4
6
9

5
4
6

6
2
3

7
0
0

7
7
7

8
5
4

9
3
1

1
0
0
8

1
0
8
5

1
1
6
2

1
2
3
9

1
3
1
6

1
3
9
3

1
4
7
0

1
5
4
7

1
6
2
4

1
7
0
1

1
7
7
8

1
8
5
5

1
9
3
2

2
0
0
9

2
0
8
6

2
1
6
3

2
2
4
0

2
3
1
7

2
3
9
4

2
4
7
1

2
5
4
8

2
6
2
5

2
7
0
2

2
7
7
9

2
8
5
6

2
9
3
3

3
0
1
0

3
0
8
7

3
1
6
4

0

2

4

6

8

10

12

14

16

18

Figure 10: The evolution of the front (top) and the effort to update the cache

(bottom) in the video of the fleet scene.

-10000

-5000

0

5000

10000

15000

20000

25000

Figure 11: Fleet scene: evolution of the total visual contribution of the front.

7

7
7

1
4
7

2
1
7

2
8
7

3
5
7

4
2
7

4
9
7

5
6
7

6
3
7

7
0
7

7
7
7

8
4
7

9
1
7

9
8
7

1
0
5
7

1
1
2
7

1
1
9
7

1
2
6
7

1
3
3
7

1
4
0
7

1
4
7
7

1
5
4
7

1
6
1
7

1
6
8
7

1
7
5
7

1
8
2
7

1
8
9
7

1
9
6
7

2
0
3
7

2
1
0
7

2
1
7
7

2
2
4
7

2
3
1
7

2
3
8
7

2
4
5
7

2
5
2
7

2
5
9
7

2
6
6
7

2
7
3
7

2
8
0
7

2
8
7
7

2
9
4
7

3
0
1
7

0

200

400

600

800

Figure 12: Fleet scene: sizes of the projections of the ORIs onto the viewport

per frame in the first test video of the fleet scene.

0 20 40 60 80 100 120

0

0,1

0,2

0,3

0,4

0,5

0,6

Figure 13: Comparison of time spent per frame by drawing visibility-culled

polygons (in red) and by our algorithm (in blue) along a test trajectory in our

fleet scene.

16

Figure 14: Time to render each frame for a navigation inside the Boeing 777.

Figure 15: Evolution of the front for the same navigation shown in Figure 14.

17

