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One of the main problems in computer-aided design is how to input shape information to the com-
puter. The paper describes a method developed for the interactive interpolation and approximation
of curves which has been found in practice to provide a natural interface between the mathematically

unsophisticated user and the computer.
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1. Introduction

In computational geometry (the computer representation,
analysis and synthesis of shape information*) interpolation and
approximation techniques are often used for both curves and
surfaces. However, the properties of ‘shape’ are different from
the properties of functions and the well-known techniques of
functional interpolation and approximation are not necessarily
suitable. Shape is, for example, an axis independent pheno-
menon and vector valued parametric curves and surfaces are
often adopted for this reason alone. Indeed, parametric
notation will be used throughout this paper, both for conven-
ience and to emphasise that the paper is concerned with the
approximation of shapes rather than the approximation of
functions. Sometimes, but by no means always, the functional
form of a particular shape is known—a curve may be a cir-
cular arc. In such cases conventional fitting techniques may be
used, but in general what is required is an acceptably close fit
(to within a given tolerance) which maintains the character
of the curve or surface and is smooth or fair.

This paper considers the interactive design of curves, ab
initio, and the interactive approximation of curves. Just as
mathematical techniques are modified or developed to cope
with shape, so they must be amended when interaction between
a computer and a human operator is involved. A particularly
elegant technique has been developed by Bézier (1968a, 1968b,
1970) of Régie Renault. This paper develops the mathematical
properties of Bézier’s methods for interactive approximation.

In the car industry the problem is to find a mathematical
representation for a stylist’s clay model or sketch. The data
has two basic kinds of error: measurement error and error due
to the stylist and the inherent properties of his working
medium. The former are to some extent predictable but the
latter errors are only really apparent to the stylist himself,
There is no definable ‘best’ fit; rather the goodness of fit
depends on human judgement. It is thus logical to use an
interactive technique because no fully automatic technique
can be expected to distinguish between the intent of the stylist
and his errors and will at the best employ ad hoc procedures.
Fig. 1 shows the kind of curve data which might be encountered
in the car industry and acceptable and unacceptable (in the
.author’s opinion) solutions. In order to be useful the interactive
procedure must be easy to apply and a user should not need to
know the mathematical principles involved. At Renault, data
from a small clay model, or a hand sketched curve, is plotted,
full size, on a drafting machine. The stylist then estimates
graphically the parameters of an approximating curve which
is then drawn by the machine. Three-dimensional curves are
.approximated in two plane projections. An acceptable approxi-
mation is usually achieved in a few iterations by adjusting the
curve parameters. In some cases, no doubt, the stylist will do

some redesigning as well as fitting. As smoothness is of para-
mount importance the system in effect gives the designer a
‘perfect’ medium in which to work rather than an imperfect
one such as clay because the shapes which are created are
basically smooth and irregularities must deliberately be
designed. It is much easier to create a ‘bump’ in a curve than
to remove an unintended ‘bump’ caused by bad data.

2. The basic principle

A curve segment, in Bézier's method, is defined by a polygon,
two of whose vertices are the end points of the arc, Fig. 2. For
a curve which is an nth degree polynomial or which is expressed
as a linear combination of (# + 1) linearly independent func-
tions of the parameter the polygon has (n + 1) vertices. Let

the vertices be denoted by the vectors P(i), 0 < i < n. Then
P(0) is the start point of the arc and P(n) is the final point.

(We shall employ the notation P(t) to denote the N component
vector in the real Cartesian space Ry. Usunally, N = 2 or 3.)

The Bézier curve defined by the polygon will not in general
pass through the vertices other than ;(0) and 1;(1) but will have
its derivatives at ;(0) and ;’(n) defined by the vertices. Thus at
I_;(O) the curve is tangent to the first side of the polygon and at
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*The term computational geometry has been used by Minsky and Papert (1969) as a pseudonym for pattern recognition. We employ here a

less restricted definition.
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Fig. 2. Bézier’s notation
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Fig. 3. Generalised notation

P(n) to the last side of the polygon; in general the mth derivative
at P(O) is dependent on the vertices P(O) to P(m) and the mth
derivative at P(n) is dependent on the vertices P(n — m) to

P(n). There are two basic ways of defining the curve—in terms
of the polygon vertices, and in terms of the polygon sides. We
shall first consider the latter as it is the form used by Bézier
(1968a, 1968b, 1970).

Let the sides of the defining polygon be denoted by the vectors

;(i) where

ai)=PG) —PGi—1) 1<i<n @.1)
and let
a(0) = P(0) .
Then the Bézier curve is given by:
o0 = 3 ali) /i () 2.2)

where ¢ is the parameter and the functions f;(¢) have properties

consistent with the end conditions previously mentioned. As
we shall be adopting a slightly different formulation we shall
not go into details of these properties (see Bézier 1968a, 1968b,
1970). In all cases f,(¢) = 1.

In the case where the functions fi(¢) are polynomials of degree
n, and for ¢t € [0, 1], we have: ’

_—(=0" d e,
70 ==

71 1<i<n 2.3)

where

B (1) = #‘_’) 2.4)

Hence

00) = P(O) and Q() = P(n)

3. The general Bézier polynomial

There are two reasons for developing a formulation of the
Bézier curve in terms of polygon vertices rather than polygon
sides. Firstly the formulation becomes more elegant, and
secondly as a general principle it is better to program in terms
of absolute vectors rather than a chain of relative vectors,
irrespective of the particular user interface, when transform-
ations such as rotation are to be applied to the vectors because
rounding errors do not have the cumulative effect which some-
times give rise to poor drawings. This can be particularly
noticeable when transformations are performed, for reasons of
speed, m a small satellite graphics computer.

Let f(t) denote the curve to be approximated and g(t) =

72

Be’,,( f; t)denote an nth degree Bézier polynomial approximation

of f o, for t e [0, 1]. Let the vertices of the polygon be denoted
by f *

that the vertices do not lie on the curve being approximated but
are related, in some fashion to be specified, to that curve. Then:

A () Ju i) G.1)

pal f*( ) (:’) AL — ot (3.2)

, 0 < i < n, Fig. 3. The asterisk is used to indicate

Bé(f; 1)

]
u[v];

=

J,..i(t) denotes the interpolation function associated with the

ith vertex of an n-sided polygon. (The author uses I, () to
denote the interpolation function dual to the rth derivative
at the point ¢ = ¢; on the curve (Forrest, 1970a); J, (¢) is used
to emphasise that these interpolation functions are dual to
vertices which do not in general lie on the curve.)

Note that

—>* 0 _ Ed

7 (3) =70
and

—»* n - -

7 (3) =7

The interpolation functions
perties:

J..i{(t) have the following pro-

Jo0) =1,021) =0for 0<p<n (3.3)
(1) =1,J4,0) =0for 0<gq<n (3.4)

where the indices denote derivatives with respect to ¢, and for
I<ig<n-—1:

,n

JI0) =0, 0<p<i 3.5)
Jigl) =0, 0<g<(n—1i (3.6)
S0 = (=1 T4 = 7, &)
n!
PR = (T = (G T s (68
In addition
J,f,(—lr-l) =0, I<i<@m-1) .(3.9)

i.e. the interpolation functions have maximum values for
te[0, 1] at ¢t = i/n. The maximum value is:

- s
\nl T\ a"
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Thus the vertex f*(i/n) has its maximum influence on the shape

of the curve Bé,(f; t) at the point ¢ = i/n.

The Bézier polynomials, in parametric form, are axis indepen-
dent, because the polynomial interpolation functions obey the
Cauchy relationship:

Y T =1 G.11)
i=0

(since the successive polynomial interpolation functions J, ()

are terms in the binomial expansion of [(1 — ) + ¢]").
Because of the binomial form of the interpolation functions,

there are symmetry relationships between the J, (r) of the form:

Jn,l'(t) = Jn,n—i(l - t) (312)
Writing Bé,,(f; 1) = ;(t) for the sake of brevity, the end

derivatives of the Bézier polynomial in terms of the polygon
vertices are:

_)p ___.L Y —_1y—i p -** l_

g(0>—(n_p)!Z< 1) (,-)f <n> (3.13)
n! : NECADE RSN

(n—q)!Z("l) (i>f (T> 19

Conversely, in terms of end derivatives, we have:

(1Y _ i (n—) f
()= 2 () o

Z( 1)"( )(" DUk @16

These relationships are useful when Bézier polynomials are to
be manipulated when joined piecewise; their derivation is
obvious.

For the general range [a, b] the Bézier polynomial of degree n
may be written:

Bé(f: 1) = Z o (gﬂ) () (t - (b> fba} oyt
=0

(3.17)

For computational reasons it is often convenient to use the
power series expansion of the Bézier polynomial, particularly
as the coefficients of the power series can be obtained from the
polygon vertices by a difference technique

g'(l) =

(3.15)

Bé,,(}; ) = )"i Ei A (3.18)
i=0
where )
e d A . -— k
(D )FE) o
ie. i
t n\gi ) 7efi
R0
where V; is the backwards difference operator
w{f G =r ) e

We assume f* (%) =0fori<.
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4. Comparisons with the Bernstein polynomial

The Bézier polynomial approximation bears a striking resem-
blance to the corresponding nth degree Bernstein polynomial
(Davis, 1963):

Bn(f; 1) = Z}(%)(f) i1 - 0"t (4D
i=0

where the (2 + 1) points f(i/n) are equally distributed, with
respect to the independent variable f, along the arc of the
curve being approximated. Bernstein polynomials are norm-
ally mentioned in interpolation theory in connection with the
proof of the Weierstrass Approximation Theorem (Davis,

1963); Bn(/:; t) will provide a uniform approximation to f(¢),
for a sufficiently large n, provided }(t) is C° continuous (con-
tinuous only in position), and will converge uniformly to ;(t)
and its derivatives as n — 0. In particular if f(t) is a poly-

nomial of degree m, Bn(f t) will not coincide with f(t) for
n=m, butonlyforn = 0.

It will be seen that the Bernstein polynomial is in fact defined
by a polygon whose vertices lie on the curve being approxi-
mated. In contrast to the Bernstein polynomial we must
assume C" continuity (continuous up to and including the nth

derivative) for the curve f(¢) if we are to derive the polygon
vertices of an nth degree Bézier polynomial from derivatives of

order up to n of f{(r). This does, however, ensure that the
convergence process is fast for such curves, and in particular

that Bé,(f;t) = f(¢) if f(¢) is an mth degree polynomial and
n > m. However, it would be wrong to think solely of defining
the polygon vertices in terms of the end derivatives. Where the
Bézier polynomials are used interactively to approximate non-
analytic curves such as car body lines (as at Renault) polygon
vertices may be chosen by eye, and convergence becomes a
matter of opinion and taste; a similar approach can be taken to
the interactive approximation of analytic functions, but in this
case a measure of error is available.

If, on the other hand, we use Bézier methods to design a curve
ab initio then in a sense we are approximating the polygon or a
curve (e.g. the polygon itself) through the vertices (Gordon,
1971). In such circumstances the Bézier method is simply a
vector valued extension of the Bernstein approximation. Thus
when discussing the convergence or variation diminishing
properties (Gordon, 1971) of the Bézier method, we must take
care in distinguishing what we are approximating (the polygon,
or some other curve) and the method by which the vertices are
selected (in terms of end derivatives or by interactive trial and
error).

5. The general Bézier curve

As Bézier (1968a, 1968b, 1970) has pointed out, his inter-
polation method is not confined to polynomials. In general:

BéS; 1) = Zf* (;) NG (5.1)
=0

where the J, ;(¢) are the (n + 1) interpolation functions which
may be formed by linear combinations of (# + 1) linearly
independent functions of the variable t. The interpolation
functions J, ,(t) and J, () may be generated directly from the
conditions:

Joo@ =1, JEs(1)=0, 0<p<n 5.2)

3
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Jos) =1, JL(0) =0, 0<g<n (5.3)

The remaining interpolation functions may then be derived
from:

JP0) =0, 0<p<i (5.4)

J ) =0, 0<g<(n—1i (5.5)
and either

T3 {0) = (= 1)°. J;, (0) (5.6)
or

L) = (=" I .7

For axis independence
2 J.=1 (5.8)
i=0

E.g. for the basis functions:

2T, . 2T T, . W
COS” - fSIn° ~tCcoS— tsin - ¢
[ 2 3 2 2]

2 T 2 T .
= ~ -t—-2 -t
J3 ,0(t) = cos 3 t + 2sin 3 sin o
from (5.2) and

J3.3(t) = 2coszgt + sin? 7_; t — 2cosgt

from (5.3)
Therefore:
7!2
B0 = —n J3o0) = =
T 2
Ba)=n ) =%
whence
J3,4(t) = —2sin? g t + 2sin 7-2t t
J3 o(t) = —2cos? g t + 2cos 7_2r t

with maxima at ¢ = % forJ; ,(t)and at r = ;% for J; »(1).

Note

3
.20 i) =1

Although the use of bases other than polynomials has not been
investigated to any extent, a different extension of Bézier’s
work has proved fruitful. The use of rational cubic curves for
computer-aided design has been suggested by the author and
others (Coons, 1967; Forrest, 1968; Lee, 1969) and an elegant
form of these curves can be derived when they are defined in
terms of a three sided polygon (Forrest, 1970b). A particularly
welcome feature of the form is that the factors controlling the
shape of the curve are not affected by the parametrisation (i.e.
rate of traverse of the arc with respect to the parameter ¢), a
feature not shared by some other formulations of the curve.
Fig. 4 shows various Bézier curves with similar polygons but
different bases.

6. Curve splitting and changing of order of polygons

When working interactively it is often found that a particular
curve segment is not sufficiently powerful or flexible (i.e. does
not have sufficient degrees of freedom) to adopt a desired shape.
There are two possible ways to resolve this difficulty: the
segment may be split into two or more segments, retaining

74

a) vector valued polynomial

b) vector valued trigonometric function

Fig. 4. Different functional bases ~

Fig. 5. Increasing polygon order

-+

Fig. 6. Decreasing polygon order
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initially the same shape, or a higher order curve segment,
again of the same shape, may be substituted. Curve splitting
is simple, mathematically, and may be advantageous where it is
desired to use only curves of up to a certain order. Increasing
the order of a curve whilst retaining the same shape is slightly
more involved. It is probably simplest to use the following
easily proved procedure (Talbot, 1971) to increase the order
from nton + 1:

o) el () o107 ()

0<i<n+1 (6.1)

Fig. 5 shows an example of increasing the order of Bézier
polynomials. Note how the higher order polygons converge
towards the curve.

It might sometimes be desired to attempt to decrease the
order of the curve from n to (n — 1) in order to reduce com-
plexity. This is a rather more tricky procedure as some inform-
ation has to be discarded. If n is odd, then in effect two vertices
are merged, but if # is even then the middle vertex is eliminated.
In general, the reduction of degree of a curve will cause a
change in shape, but the procedure outlined here is such that,
in the case of polynomials at least, if the polynomial described
by an n-sided polygon is in fact a polynomial of degree less
than » then the reduction of the number of sides from » to
(n — 1) will not change the shape of the curve.

The two cases n even and n odd differ slightly. In both cases
we use the formulae:

k) b)) e
’;*(n;: 1>:(nl_i)[”;*<n " )"f*(z _li)]

(6.3)

For n even, compute f* (;] ) from(6.2) for0 < i < n_—2—_2
n -—

and f* (n—_’—_;—l) from (6.3) for 0 < i < "_%2

If the curve described by the n-sided polygon was in fact of
degree <n, then:

L2\ 1 =22\ . [ a2

P =) )] e
For n odd, compute;’t (n-—i—l)from (6.2) for0<z<—2—1
and }*(;—iT—> 2 —3 st

-

n—1
f* ( 2 ) equal to the mean of the two values obtained from

n— 1

(6.2) and (6.3). If these values were identical then the original
curve was of degree <n. Fig. 6 shows the effects of decreasing
the order of Bézier polynomials using this algorithm.

In computational geometry piecewise techniques are often
appropriate. The conditions for derivative continuity between
two Bézier polynomials may be obtained from the expressions
for end derivatives. First and second derivative continuity can
readily be assured by simple graphical constructions, but higher
order continuity necessitates more complex constructions.

Volume 15 Number1
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Suppose

0 = > i (#) . (';’) (1 - o
and
gn) = Zﬁ’: (1) : (”) t(L — 1y
n J

j=0
are to be joined so that

;1(1) =_]'1*(1) i ;11(0) = }ﬁ(g) = ;

Let
- - m — 1 —
g - fF ("—‘> =4q (6.5)
m
and
= (m—1 ~. [m =2 -
f1*< ) —f1 ( > =r (6.6)
m m
Then for first order continuity, in the Cartesian sense,
gi(1) = 291,(0) (6.7
where A is a + ve scalar constant.
For second order continuity, in the Cartesian sense,
g:(1) = pgri(0) (6.8)

and for curvature continuity, u = A%,

Evaluating the end derivatives for g, and g,;; we can show: for
first order continuity,

.1 = im”
fﬁ(;l>=17+7‘q

and in addition for curvature continuity,

(6.9)

“. (2 - im” mim—1) > ~
) = — 32—~ (g —F 1
f"<n> p+2 - q + A n(n — 1) (g — 1) (6.10)

Inthecase m =n, 2 =1

Py (’-11) =p+q (Fig. 7(a))
and
b7 (i) —p+3g—r (Fig. 7(b))

These relationships lead to simple graphical constructions for
1st and 2nd order continuity. Higher order relationships can be
derived but are obviously more complex. In Fig. 7(c), Fig. 7(d)
A=1m=3,n=>5.

7. Interactive design and approximation by Bézier methods

It might be thought that because all the vertices of the polygon
can be related to the end derivatives of the curve, there is little
point in thus disguising what is essentially a Taylor or Hermite
type approximation or interpolation. This is not so, for two
reasons which are connected with computational geometry. In
the first place, as remarked earlier, when the Bézier method is
used for approximation the polygon vertices need not be related
to the end derivatives of the curve to be approximated but may
be selected manually (in some interactive system); they will, of
course, control the end derivatives of the approximant.
Secondly, for reasons of axis independence, convenient bound-

16

(@)

Ve

approximat ion/\

{~—original curve

original curve ~
8 .

\

approximation

Fig. 8. (a) 6th order polynomial approximated by Sth order polynomial
(b) 4th order polynomial approximated by 4th order polynomial

ing of segments, ease of affine transformation, etc., parametric
curves are often used in computational geometry. This intro-
duces problems. In a Lagrange type of interpolation, para-
meter values have to be assigned to each of the interpolation

b) y = a(e™ 1 e'-16(x-1)2)

Fig. 9. Interactive approximation of functions
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Fig. 10(a). Successive approximations to a hand-drawn curve

Fig. 10(b). Successive approximations to a hand-drawn curve

points and even to a mathematically sophisticated user this
presents difficulties. The shape of the interpolated curve
depends somewhat critically on the selected parametric values;
automatic methods are not generally satisfactory. In Hermite
or Taylor type interpolation, parametric derivative vectors
must be defined. The difference between the tangent and the
tangent vector is sometimes difficult for users to grasp, as is
the exact role of the tangent vector’s magnitude. The difficulties
are compounded as the order of derivative increases. With
Bézier’s method both these problems are avoided. The user
need not consider parametric derivatives or parameter values
(although the polygon vertices are associated with the para-
meter values ¢t = ifn, and control the end parametric deriv-
atives) because the polygon vertices directly control the curve
shape in a manner which may readily be appreciated. With
very little experience a user can predict the shape of curve
which can be generated by a particular polygon. Figs. 8, 9 and
10 show examples of the use of Bézier polynomials for approxi-
mation. Fig. 8 illustrates the approximation of vector valued
polynomials, Fig. 9 the approximation of other analytic func-
tions (explicit, not vector valued, in this case) and Fig. 10, the
successive approximation of hand drawn curves, starting from
the vector valued Bernstein approximation.

Bézier has shown (in the English edition of his book, 1970)
that the hodographs of polynomial Bézier curves can readily
be computed using the sides of the curve polygon.

Given the curve

-3
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then the (n — 1)th degree Bézier polynomial A(z) whose suc-
cessive polygon vertices are

[**(k+1)—fﬂ*<l—c>],0sk5n—1,
n n

is the hodograph of g(z), i.e.:

-S4 (B o

k=0 .
g@® (.1

Sl

(The proof is simple and is omitted.)

The hodograph provides a convenient graphical method for
detecting points with zero curvature and points of inflexion.
If a vector can be drawn from the origin tangent to the hodo-

graph A(¢) then there is a point of zero curvature (Fig. 11(a))
or a point of inflexion (Fig. 11(b)) at the corresponding point

on gzt). If the hodograph passes through the origin, there is a

cusp at the corresponding point on g(z) (Fig. 11(c)). In practice
the hodograph also provides a good indication of whether a
curve under design is tending towards an undesirable shape (an
unwanted flat or point of inflexion).

8. Practical experience in the use of Bézier methods

It is clearly evident from the decision of Régie Renault to
increase the number of its computer-controlled drafting

77

Zz0z 1snbny Lz uo 1senb Aq €G48 L1/1L2/LIG L/2IoIe/|ulwoo/woo dnoolwapede//:sdiy woli papeojumo(



machines and numerically controlled machine tools that
Bézier’s method is well-suited to the types of problems encoun-
tered at Renault.

Experience at Cambridge University has been gained from four
Bézier curve programs. Pankhurst’s program (1970) is for the
design of single curve segments of any order; polygon vertices
are changed positionally by typed commands. The order of the
curve may be increased or decreased, as outlined in Section 6,
and a vertex may be constrained to move along one of the
polygon sides which intersect at that vertex. Bézier’s curves
have also been implemented by Armit (1970) in his Multiobject
system. Again the curve is manipulated by the typed commands
of an interactive language and more powerful facilities are
provided. In addition, curve splitting is implemented, and
multiple curve segments may be constructed. Although intended
primarily for design, the system can also be used for interactive
approximation to point data. Talbot (1971) starts from an
assembly of cubic spans with C° continuity, each span being
obtained by a local least squares fit. Successive improvements
to the curve shape with automatic creation and maintenance of
C' continuity between spans are effected by moving polygon
vertices.

All Figures in this paper were produced by a small experi-
mental program written by the author for a PDP-7 computer.
Input to the program is either a data tape describing the curve
to be approximated (this method was used for Figs. 4(b), (¢),
8 and 9) or curves hand drawn using light pen (as in Fig. 10).
The program computes Bézier polynomials of 2nd to 9th
degree. At present only single curve segments may be handled.
The program is intended primarily for interactive approxi-
mation, and unlike the Pankhurst, Armit and Talbot programs,
a visual comparison between the required curve, whether hand-
drawn or analytic, and the approximation is always available.
As an initial approximation the vertices of the polygon are
equally distributed along the arc of the curve to be approxi-
mated; the initial approximation is thus a vector valued
Bernstein polynomial (top curve in Figs. 10(e¢) and 10(5)).
Thereafter interior vertices of the polygon may be repositioned
by light pen with the curve distorting accordingly in real time.

There are several shortcomings of the author’s program which
must be borne in mind. Approximations are made visually and

a discrepancy of less than 1 part in 500 cannot be detected.
For example, most of the errors in Figs. 8 and 9 could not be
detected on the c.r.t. display but were revealed when the display
files were plotted. However, Bézier’s system using a high
resolution plotter overcomes the disadvantages of a low
resolution device. It proves difficult to draw a really smooth
curve with the light pen, and it would be reasonable to assume
that much better approximations to hand-drawn smooth curves
than those shown in Fig. 10 could be obtained. Surprisingly,
no difficulty has been found in manipulating high order
curves. A much better initial approximation would be the
vector valued Lagrange polynomial through points spaced
equidistantly on the curve, but this has not been implemented
because of the limited arithmetic capabilities of the PDP-7.
More experience is needed in using Bézier curves in a piecewise
manner with automatic maintenance of continuity. The present
program has already demonstrated to the author’s satisfaction
that successful approximations can readily be constructed by
the mathematically uninitiated.

9. Extensions to surfaces

Bézier’s method may obviously be extended to the interpolation
and approximation of surfaces. There are three basic ways in
which this may be achieved. The method actually employed

Fig. 12. Typical Bézier surface and net

Corresponding hodograph

vector valued polynomial

a) zero curvature

N

b) inflexion

e 7

c) cusp

8

Fig. 11. Hodographs of polynomial curves
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by Bézier and others (Bézier 1968a, 1970, Armit, 1970, Sabin,
1969) is the product method in which the surface is defined by
a grid of points, only four of which (the surface corner points)
lie on the surface, Fig. 12. In the polynomial case,

o3 S
=0 ‘j=0
(3) wi(l — u)"/

A surface may also be defined by Bézier interpolation to a
single family of curves

GEDEA)

in a manner akin to lofting:

g(t, u) = Z 1* (—’; , u) (':’) 0L — " (9.2)

i=

©9.1)

(in the polynomial case)

Thirdly, the surface may be defined in a manner analogous to
that of Coons (Coons, 1967, Forrest, 1968) by two families of
curves:
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Of these methods the first is probably the most suitable for
interactive design.
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10. Conclusions
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Book review

Picture Language Machines, by S. Kaneff (editor), 1970; 425 pages.
(Academic Press Ltd., £4-50)

This book is concerned with pictures and with attempts to describe
them in a precise language having meaning to a machine (the term
‘machine’ implying an appropriately programmed computer). These
descriptions are formulated in such a way that the machine receives
essentially the same information about a picture as would an
observer viewing the picture.

Generally speaking, it is the structure of a picture which carries
what is regarded as the important information. Thus the relative
positions of black areas in a picture is more informative than a count
of the areas. In the same way, the ordering of words in a sentence,
together with a notion of how such words interrelate, enables the
meaning of a sentence to be conveyed. It is suggested that pictures
can be regarded as two-dimensional sentences and that studies of the
structured description of natural languages, as has been proposed
by Chomsky, can be adapted to the analysis of pictures.

A conference held in Canberra in 1966 drew together workers from
various disciplines including Picture Languages, Graphical Com-
munication, Interaction Systems, Pattern Recognition, Linguistics
and Psychology in an attempt to explore aspects of these areas of
study which would throw light on the development of picture
language machines. As is stated in the Foreword by Dr. Max Clowes,
the first four papers were intended to be primarily tutorial in
character to provide an introduction to the notion of a picture

Volume 15 Number 1

language machine whereas the remaining 11 papers reported current
research interests of the authors.

The volume taken as a whole provides a valuable review of this
relatively new and fast developing subject and is particularly useful
in a field where publications tend to be distributed over a wide range
of journals. The important discussions during the conference are
reported verbatim; these discussions add useful comments to the
formal papers and are effective in putting over some of the atmos-
phere of the Canberra conference. The photographed typescript
is beautifully printed and the illustrations are both clear and
plentiful. Academic Press Ltd. have produced an attractive 425-page
volume at the reasonable price of £4-50.

M. J. B. DuFr (London)

Errata
In Algorithm 69, Trigonometric curve fitting to equally or unequally
spaced data (this Journal, Volume 14, Number 2, pp. 213-214) there
were a number of typing mistakes. These were all at the top of the
second column of page 214.

Line 2 should read

‘we will have a full set of coefficients A;’.

In line 11 ‘A[mmax, mmax} should read ‘a[mmax, mmax].

In line 16 ‘A[k, i]’ should read ‘alk, iT.

In line 17 *A[k, k]; should read ‘alk, kY.
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