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Interactive Joint Transfer of Energy and Information
P. Popovski, A. M. Fouladgar, and O. Simeone

Abstract—In some communication networks, such as passive
RFID systems, the energy used to transfer information between
a sender and a recipient can be reused for successive com-
munication tasks. In fact, from known results in physics, any
system that exchanges information via the transfer of given
physical resources, such as radio waves, particles and qubits,
can conceivably reuse, at least part, of the received resources.

This paper aims at illustrating some of the new challenges
that arise in the design of communication networks in which
the signals exchanged by the nodes carry both information and
energy. To this end, a baseline two-way communication system
is considered in which two nodes communicate in an interactive
fashion. In the system, a node can either send an “on” symbol
(or “1”), which costs one unit of energy, or an “off” signal
(or “0”), which does not require any energy expenditure. Upon
reception of a “1” signal, the recipient node “harvests”, with
some probability, the energy contained in the signal and stores
it for future communication tasks. Inner and outer bounds on
the achievable rates are derived. Numerical results demonstrate
the effectiveness of the proposed strategies and illustrate some
key design insights.

Index Terms—Two-way channel, interactive communication,
energy transfer, energy harvesting.

I. INTRODUCTION

THE conventional assumption made in the design of
communication systems is that the energy used to transfer

information between a sender and a recipient cannot be reused
for future communication tasks. There are, however, notable
exceptions. An example is given by communication based on
wireless energy transfer, such as passive RFID systems [1] or
some body area networks [2], in which a terminal can transfer
both information and energy via the transmitted radio signal,
and the delivered energy can be used for communication by
the recipients. For instance, a passive RFID tag modulates
information by backscattering the radio energy received from
the reader (see, e.g., [1]). Another, less conventional, example
is that of a biological system in which information is com-
municated via the transmission of particles (see, e.g., [3]),
which can be later reused for other communication tasks.
A further potential instance of this type of networks is one
in which communication takes place via the exchange of
quantum systems, such as photons, which may measured and
then reused [4].
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Fig. 1. Two-way noiseless binary communication with energy exchange. The
total number of energy units is fixed (to five in the figure) and transmission
of a "1" symbol transfers energy from the sender node to the recipient. See
Fig. 3 for a generalized model.

To summarize, any system that exchanges information via
the transfer of given physical resources, such as radio waves,
particles or qubits, can conceivably reuse, at least part, of
the received resources for later communication tasks. This
conclusion is supported by physical considerations [5] and
practically demonstrated by the existing systems based on
this principle [1], [2]. It is emphasized that the possibility
to deliver jointly energy and information promises not only
to ease the energy requirements of various communication
systems, but also, more importantly, to enable novel appli-
cations, such as the body area networks studied in [1], [2].
Moreover, an understanding of the interplay between energy
and information flows could lead to insights on the workings
of some communication systems in nature [3].

A. State of the Art

While the interaction between energy and information con-
tinues to be subject of research in the physics community (see,
e.g., [6]), the topic has been tackled from a communication
and information theoretic level only in a handful of pioneering
works, as reviewed in the following. The references [7], [8],
[9] have focused on the problem of maximizing the infor-
mation rate of a point-to-point system subject to minimum
received energy constraints. Specifically, in [7] a single point-
to-point channel was studied, while [8], [9] investigated a set
of parallel point-to-point channels. To illustrate the trade-offs
between the transfer of energy and information in a point-to-
point channel consider the noiseless transmission of a 4-PAM
signal in the alphabet {−2, 1, 1, 2}. If one requires the received
energy to be the maximum possible, that is, to be equal to 4,
the maximum transferable information rate is 1 bit per symbol,
since one is forced to communicate only with the larger energy
symbols {−2, 2}. However, with no receive energy constraint,
one can clearly convey 2 bits per symbol by choosing all
available symbols with equal probability. This example also
explains the substantial difference between the problems stud-
ied in [7], [8], [9] and that with maximum receive energy
constraints studied in [10]1. The optimization of beamforming

1With a maximal receive energy constraint of 4, one can still clearly
transmit 2 bits per symbol.
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strategies under a receive energy constraint was tackled in
[11], [12] for multiantenna broadcast channels. Considerations
on the design of the receiver under the constraint that, when
harvesting energy from the antenna, the receiver is not able to
use the same signal for information decoding, can be found
in [13].

B. Contributions

In all of the previous work summarized above, the re-
quirement on the energy harvested from the received signal
is considered to be an additional constraint imposed to the
system design. This work is instead motivated by the obser-
vation that, in more complex network scenarios, as mentioned
above, the energy harvested from the received signal may
be reused for future communication tasks. In this case, the
energy and information content of the exchanged signals
should be engineered so as to best suit the requirements of
the communication network. To study this aspect, we consider
a baseline two-way communication system, as illustrated in
Fig. 1. This is incidentally the same topology selected by
Shannon to initiate the study of networks from an information
theoretic perspective [18]. In the considered model, the two
nodes interact for the exchange of information and can harvest
the received energy.

To enable analysis and insights, we assume that the two
parties involved have a common clock and that, at each time,
a node can either send an “on” symbol (or “1”), which costs
one unit of energy, or an “off” signal (or “0”), which does
not require any energy expenditure. Upon reception of a “1”
signal, the recipient node can harvest, possibly with some loss,
the energy contained in the signal and stores it for future
communication tasks. Each node communicates in a full-
duplex manner, that is, at a given instant, it can simultaneously
send and receive an energy unit. The channel from Node 1 to
Node 2 is orthogonal to the channel from Node 2 to Node 1,
and hence the full-duplex channel is an ideal composition of
two independent unidirectional channels. In order to introduce
the main concepts with the minimum of the notation and
technical complications, we first consider the case in which
the two nodes start with a given number of energy units in
their batteries, which can neither be lost or replenished from
outside, and the binary channel in either direction is noiseless.

To see that even this simple scenario offers relevant re-
search challenges, we observe the following. If there were
no limitation on the number of energy units, the nodes could
communicate 1 bit per channel use in either direction given
that the channels are ideal. However, if there is, say, one en-
ergy unit available in the system, only the node that currently
possesses the energy unit can transmit a “1”, whereas the
other node is forced to transmit a “0”2. Therefore, the design
of the communication strategy at the nodes should aim not
only at transferring the most information to the counterpart,
but also to facilitate energy transfer to enable communication
in the reverse direction. We study this problem, described in
Sec. II by deriving inner and outer bounds on the achievable
rate region as a function of the available energy units in

2In the case when there is a single energy unit, the system naturally operates
in a half-duplex manner

Sec. III. The main results are then extended to a model that
accounts for energy replenishments and losses, along with
noisy channels. The generalized model is presented in Sec.
IV and the generalized results are presented in Sec. V.

It is finally observed that the class of problems at hand, in
which terminals can harvest energy from the received signals,
is related to the increasing body of work on energy harvesting
(see, e.g., [14]-[17] and references therein). However, in
this line of work, the energy is assumed to be harvested
from the environment in a way that is not affected by the
communication process, unlike the scenario under study.

Notation: [m,n] = {m,m+1, ..., n} for integers m ≤ n. N
is the set of integer numbers. We use the standard notation in
[19] for information theoretic quantities such as entropy and
mutual information. If the distribution is Bern(p) we will
also write H(p) for the entropy. Capital letters denote random
variables and the corresponding lowercase quantities denote
specific values of the random variables. X i for an integer i
denotes the vector X i = (X1, ..., Xi).

II. SYSTEM MODEL

We consider the binary and noiseless two-way system
illustrated in Fig. 1, in which the total number of energy
units in the system is equal to a finite integer number U ≥ 1
at all times and the channels between the two nodes are
noiseless. Each node has an energy buffer that can store at
least U units. In Sec. IV, the model will be extended to include
stochastic energy losses and replenishments along with noisy
channels. At any given time instant k, with k ∈ [1, n], the
state of the system (U1,k, U2,k) ∈ N

2 is given by the current
energy allocation between the two nodes. Specifically, a state
(U1,k, U2,k) indicates that at the kth channel use there are Uj,k

energy units at Node j, with j = 1, 2. Since we assume here
that U1,k + U2,k = U for each channel use k ∈ [1, n] (i.e.,
no energy losses occur), then, in this section and in the next,
we will refer to U1,k as the state of the system, which always
imply the equality U2,k = U− U1,k.

At any channel use k ∈ [1, n], each Node j can transmit
either symbol Xj,k = 0 or symbol Xj,k = 1, and transmission
of a “1” costs one energy unit, while symbol “0” does
not require any energy expenditure. Therefore, the available
transmission alphabet for Node j, j = 1, 2 during the kth
channel use is

Xu = {0, 1} if Uj,k = u ≥ 1 (1a)

and X0 = {0} if Uj,k = 0, (1b)

so that Xj,k ∈ Xu if Uj,k = u energy units are available at
Node j. The channel is noiseless so that the received signals
at channel use k are given by

Y1,k = X2,k and Y2,k =X1,k (2)

for Node 1 and Node 2, respectively.
Transmission of a “1” transfers one energy unit from the

sender node to the recipient node. Therefore, the state of Node
1 for k ∈ [1, n] evolves as follows

U1,k = (U1,k−1 −X1,k−1) +X2,k−1, (3)
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where we set U1,1 = u1,1 ≤ U as some initial state and
U2,k = U − U1,k. We observe that the current state U1,k

is a deterministic function of the number U of total energy
units, of the initial state U1,1 and of the previously transmitted
signals Xk−1

1 and Xk−1
2 . We also note that both nodes are

clearly aware of the state of the system at each time since
U1,k + U2,k = U is satisfied for each channel use k.

Node 1 has message M1, uniformly distributed in the set
[1, 2nR1 ], to communicate to Node 2, and similarly for the
message M2 ∈ [1, 2nR2] to be communicated between Node
2 and Node 1. Parameters R1 and R2 are the transmission
rates in bits per channel use (c.u.) for Node 1 and for
Node 2, respectively. We use the following definitions for an
(n,R1, R2,U) code. Specifically, the code is defined by: the
overall number of energy units U; two sequences of encoding
functions, namely, for Node 1, we have functions f1,k for
k ∈ [1, n], which map the message M1 and the past received
symbols Xk−1

2 (along with the initial state) into the currently
transmitted signal X1,k ∈ XU1,k

; similarly, for Node 2, we
have functions f2,k for k ∈ [1, n], which map the message M2

and the past received symbols Xk−1
1 (along with the initial

state) into the currently transmitted signal X2,k ∈ XU2,k
;

and two decoding functions, namely, for Node 1, we have
a function g1, which maps all received signals Xn

2 and the
local message M1 into an estimate M̂1 of message M2; and
similarly, for Node 2, we have a function g2, which maps
all received signals Xn

1 and the local message M2 into an
estimate M̂1 of message M1.

We say that rates (R1, R2) are achievable with U energy
units if there exists an (n,R1, R2,U) code for all sufficiently
large n that guarantees reliable communication. We are inter-
ested in studying the closure of the set of all the rate pairs
(R1, R2) that are achievable with U energy units, which we
refer to as capacity region C(U). Given the noiseless nature of
the channels, we note that the initial state U1,1 = u1,1 ≤ U
does not affect the rate region since in a finite number of steps
it is always possible to redistribute the energy according to any
desired state.

III. INNER AND OUTER BOUNDS

In this section, we derive inner and outer bounds to the
capacity region.

A. Inner Bounds

In order to gain insights into the nature of the problem under
study, we consider here various communication strategies. We
start by the simplest, but intuitively important, case with U= 1,
and we then generalize to U> 1.

1) U= 1 Energy Unit: We start with the special case of
one energy unit (U = 1) and assume the initial state u1,1 = 1,
so that the energy unit is initially available at Node 1. The
other case, namely u1,1 = 0, can be treated in a symmetric
way. In this setting, during each channel use, “information”
can be transferred only from the node where the energy unit
resides towards the other node, and not vice versa, since the
other node is forced to transmits the “0” symbol. This suggests
that, when U = 1, the channel is necessarily used in a time-
sharing manner, and thus the sum-rate is at most one bit per

channel use. The first question is whether the sum-rate of 1
bit/c.u. is achievable, and, if so, which strategy accomplishes
this task.

A Naïve Strategy: We start with a rather naïve encoding
strategy that turns out to be insufficient to achieve the upper
bound of 1 bit/c.u.. The nodes agree on a frame size F = 2b >
1 channel uses for some integer b and partition the n channel
uses in n/F frames (assumed to be an integer for simplicity).
The node that has the energy unit at the beginning of the frame
communicates b = log2 F bits to the other node by placing
the energy unit in one specific channel use among the F = 2b

of the frame. This process also transfers the energy unit to
the other node, and the procedure is repeated. The sum-rate
achieved by this scheme is

R1 +R2 =
log2 F

F
[bits/c.u.], (4)

which is rather inefficient: the maximum is achieved with F =
2, leading to a sum-rate of R1 +R2 = 1/2 bits/ c.u..

The previous strategy can be easily improved by noting that
the frame can be interrupted after the channel use in which the
energy unit is used, since the receiving node can still decode
the transmitted b bits. This strategy corresponds to using
a variable-length channel code. Specifically, we can assign,
without loss of optimality within this class of strategies, the
codeword “01” to information bit “0” and the codeword “1”
to bit “1”. The average number of channel uses per bit is thus
1/2+1/2·2 = 3/2 . Therefore, the overall number of channel
uses necessary for the transmission of m bits is upper bounded
by 3m

2 +mε with arbitrarily small probability for large m by
the weak law of large numbers (see, e.g., [19]). It follows that
an achievable sum-rate is given by

R1 +R2 =
1

3/2
=

2

3
, (5)

which is still lower than the upper bound of 1 bit/c.u..
An Optimal Strategy: We now discuss a strategy that

achieves the upper bound of 1 bit/c.u.. The procedure is based
on time-sharing, as driven by the transfer of the energy unit
from one to the other node. Each node j encodes its data
in codewords of size m, where each codeword is selected
uniformly from the set of

(
m
m
2

)
binary sequences bj,1, ..., bj,m

with an equal fraction of zeros and ones. The number of
information bits carried by each codeword is log2

(
m
m
2

)
=

mH(1/2)−O(logm) = m−O(logm), which can be shown
by using Stirling’s formula3. Since the initial state is u1,1 = 1,
Node 1 is the first to transmit: it sends its information bits,
starting with b1,1 up until the first bit that equals “1”. Specif-
ically, assume that we have b1,1 = b1,2 = · · · b1,i1−1 = 0
and b1,i1 = 1. Thus, in the i1th channel use the energy unit is
transferred to Node 2. From the (i1+1)−th channel use, Node
2 then starts sending its first bit b2,1 and the following bits until
the first bit equal to “1”. The process is then repeated. Since
the codewords of the two nodes have the same number of ones,
the process completes without stalling in 2m channel uses.

Hence, the achieved sum-rate is equal to R1+R2 =
log2 (

m
m
2
)

m
and tends to 1 bit/c.u. as m tends to infinity.

3Stirling’s formula leads to the bounds 1
m+1

2mH(k/m) ≤ (m
k

) ≤
2mH(k/m) see, e.g., [20].
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2) U > 1 Energy Units: In the sum-capacity strategy
discussed above with U = 1 energy unit, both nodes transmit
equiprobable symbols “0” and “1”. When there are U > 1
energy units in the system, maximizing the sum-capacity
generally requires a different approach. Consider the scenario
with U = 2 energy units: now it can happen that both energy
units are available at one node, say Node 1. While Node 1
would prefer to transmit equiprobable symbols “0” and “1”
in order to maximize the information flow to the recipient,
one must now also consider the energy flow: privileging
transmission of a “1” over that of a “0” makes it possible
to transfer energy to Node 2, leading to a state in which both
nodes have energy for the next channel use. This might be
beneficial in terms of achievable sum-rate.

Based on this insight, in the following, we propose a coding
strategy that employs rate splitting and codebook multiplexing.
The strategy is a natural extension of the baseline approach
discussed above for the case U = 1. Each Node j constructs U
codebooks, namely Cj|u, with u ∈ [1,U], where codebook Cj|u
is to be used when the Node j has u energy units. Each code-
book Cj|u is composed of codewords having approximately a
fraction p1|u of “1” symbols4. The main idea is that, when the
number u of available energy units is large, one might prefer
to use a codebook with a larger fraction p1|u of “1” symbols
in order to facilitate energy transfer.

Proposition 1. The rate pair (R1, R2) satisfying

R1 ≤
U∑

u=1

πuH(X1|u)

and R2 ≤
U∑

u=1

πuH(X2|u), (6)

where Xj|u ∼ Bern(pj|u), j = 1, 2, for some probabilities
0 < p1|u, p2|u < 1, u = 1 . . .U, with p1|0 = p2|U = 0, is
included in the capacity region C(U). The probabilities πu ≥
0, u = 0 . . .U, in (6) satisfy the fixed-point equations

πu = πu(φ0,0|u + φ1,1|u) + πu−1φ0,1|u + πu+1φ1,0|u (7)

with π−1 = πU+1 = 0,
∑U

u=1 πu = 1, and we have defined

φ0,0|u = (1− p1|u)(1 − p2|U−u)

φ0,1|u = (1− p1|u)p2|U−u

φ1,0|u = p1|u(1− p2|U−u)

and φ1,1|u = p1|up2|U−u. (8)

This proposition is proved by resorting to random coding argu-
ments, whereby codebook Cj|u is generated with independent
and identically distributed (i.i.d.) entries Xj|u distributed as
Bern(pj|u), j = 1, 2. As introduced above, the idea is that,
when the state is U1,i = u, Node j transmits a symbol from
the codebook associated with that state, namely codebook
C1|u for Node 1 and codebook C2|U−u for Node 2 (which
has U − u energy units). Both nodes know the current state
U1,i and thus can demultiplex the codebooks at the receiver

4Since the proof is based on random coding, the fraction of “1” symbols
is close to p1|u as guaranteed by the law of large numbers (see Appendix A
for details).

side. According to the random coding argument, the state
U1,i evolves according to a Markov chain: the system stays
in the same state u with probability φ0,0|u + φ1,1|u (both
nodes transmit “0” or “1”), changes to the state u + 1 with
probability φ1,0|u (Node 1 transmits a “1” and Node 2 a “0”)
or changes to the state u − 1 with probability φ0,1|u (Node
1 transmits a “0” and Node 2 a “1”). The definition of the
conditional probabilities (8) reflects the fact that the codebooks
are generated independently by the two nodes. A full proof is
given in Appendix A.

B. Outer Bounds

In this section, we derive an outer bound to the capacity
region C(U). Similar to the standard cut-set bound [19, Ch. 17],
the outer bound differs from the inner bound of Proposition 1
in that it allows for a joint distribution φx1,x2|u of the variables
X1|u and X2|u.

Proposition 2. If the rate pair (R1, R2) is included in
the capacity region C(U), then there exist probabilities
πu ≥ 0 with

∑U
u=1 πu = 1, and φx1,x2|u ≥ 0 with∑

x1,x2∈{0,1} φx1,x2|u = 1 for all u ∈ {0, 1, ...,U}, such that
φ1,x2|0 = 0 for x2 ∈ {0, 1}, φx1,1|U = 0 for x1 ∈ {0, 1},
condition (7) is satisfied, and the following inequalities hold

R1 ≤
U∑

u=0

πuH
(
X1|u | X2|u

)
(9)

R2 ≤
U∑

u=0

πuH
(
X2|u | X1|u

)
(10)

and R1 +R2 ≤
U∑

u=0

πuH
(
X1|u, X2|u

)
, (11)

where variables X1|u and X2|u are jointly distributed with
distribution φx1,x2|u.

The outer bound is proved in Appendix B using information-
theoretic inequalities. We remark here that, unlike the achiev-
able strategy described in the previous section, the outer
bound is evaluated using a joint distribution φx1,x2|u of the
random variables X1|u and X2|u representing the transmitted
symbols when the state is U1,k = u. In fact, we recall that,
in the achievable strategy described in the previous section,
the codebooks are generated independently. Intuitively, al-
lowing for a joint distribution φx1,x2|u leads to an enhanced
performance and hence to an outer bound on the achievable
rate region. Analyzing the tightness of the inner and outer
bounds for arbitrary U is highly nontrivial, due to the fact
that the distribution φx1,x2|u affects the bounds through the
stationary probabilities of the Markov chain. We therefore
resort to numerical analysis in the next section.

C. Numerical Results

Fig. 2 compares the achievable sum-rate obtained from
Proposition 1 and the upper bound (11) on the sum-rate
obtained from Proposition 2 versus the total number of energy
units U. As for the achievable sum-rate, we consider both a
conventional codebook design in which the same probability
pj|u = 0.5 is used irrespective of the state U1.i = u, and
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Fig. 2. Achievable sum-rate obtained from Proposition 1 and upper bound
(11) versus the total number of energy units U.

one in which the probabilities pj|u are optimized. It can be
seen that using conventional codebooks, which only aim at
maximizing information flow on a single link, leads to sub-
stantial performance loss. Instead, the proposed strategy with
optimized probabilities pj|u, which account also for the need
to manage the energy flow in the two-way communication
system, performs close to the upper bound. The latter is indeed
achieved when U is large enough.

A remark on the optimal probabilities pj|u is in order. Due
to symmetry, it can be seen that we have p1|u = p2|U−u.
Moreover, numerical results show that p1|u increases mono-
tonically as u goes from 0 to U, such that p1,U > 0.5. In
particular, when the number of states U + 1 is odd, it holds
that p1,U/2 = p2,U/2 = 0.5. It is finally noted that the energy
neutral transitions (both nodes emitting “0” or both emitting
“1”) occur with equal probability (i.e., (1− p1,u)(1− p2,u) =
p1,up2,u).

IV. SYSTEM MODEL WITH STOCHASTIC

REPLENISHMENTS AND LOSSES

In this section we extend the two-way communication
system with energy exchange studied above to include energy
losses and replenishments, which may occur in different parts
of the system, as illustrated in Fig. 3. Specifically, the energy
units can be lost either while in transit through a lossy channel
or locally at either node during processing. The first event is
due to, e.g., path loss or fading, while the second is due to
the inefficiencies of the energy storage system, see, e.g., [21].
Similarly, energy units can be replenished either by harvesting
energy from the channel, e.g., from an interfering signal or
a source of RF energy [22], or through a source of power
locally connected to the node, e.g., a solar panel. All loss
and replenishment events are assumed to be independent. As
above, we assume that the two parties involved have a common
clock, and that, at each time, a node can either send a “1”,
which requires one unit of energy cost, or a “0”, which does
not require any energy expenditure. We also assume that Node

Node 1 Node 2

1iU 2iU

1iX

2iX

( ) ( )
12 12,r lp p

( ) ( )
21 21,r lp p

( ) ( )
22 22,r lp p( ) ( )

11 11,r lp p

2B1B

Fig. 3. Two-way noisy binary communication with energy exchange. The
probabilities of replenishments through the channel or locally at the nodes
are referred to as p

(r)
ij , with i �= j or p

(r)
ij , with i = j, respectively, and

similarly for the probabilities of losses p
(l)
ij . See Fig. 4 for an illustration of

the channel and Fig. 5 for an illustration of the harvesting process.
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Fig. 4. Channel from Node i to Node j.

1 and Node 2 have energy buffers of capacities B1 and B2

energy units, respectively, to store the available energy.
Unlike in the previous sections, we assume that the binary

channel from Node i to Node j with i �= j, is noisy as shown
in Fig. 4, with the probability of P (01)

ij of flipping a “0” symbol

to a “1” symbol and the probability P
(10)
ij of flipping symbol

“1” to symbol “0”. These probabilities can be interpreted in
terms of replenishments and losses across the channel. To
elaborate, let us define as p(r)ij the probability of replenishment
via harvesting from the channel (for i �= j), e.g., thanks to an
RF source that operates on the same bandwidth as the ij link.
Moreover, define as p

(l)
ij the probability that an energy unit is

lost while in transmit through the channel for the ij link. With
these definitions, assuming that losses and replenishments are
independent, we can write the transition probabilities as in
Fig. 4.

Losses and replenishments can also take place locally at
the nodes with the probability P

(01)
ii of flipping a “0” symbol

to a “1” symbol and the probability P
(10)
ii of flipping symbol

“1” to symbol “0” at Node i upon reception. Specifically, let
us define as p

(r)
ii the probability of replenishment at Node i,

whereby an energy unit is received by Node i from an external
source of energy directly connected to the node, such as a
solar panel. Note that this energy unit is not received through
the channel but is directly stored in the buffer and therefore
does not affect the decoder, unlike replenishment events over
the channel. We emphasize that the model limits the peak
harvested energy to one energy unit. Moreover, define as p

(l)
ii

the probability that an energy unit, while correctly received
by the decoder at Node i, is lost during processing before
reaching the energy buffer. Note that in this case the decoder
at Node i correctly records a "1", but this energy unit cannot
be reused for future channel uses. This event is thus different
from a loss over the channel in which the decoder at Node i
observes a "0" symbol. With these definitions, assuming that
losses and replenishments are independent and that no more
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Fig. 5. Statistical relationship between the received signal Yi and the energy
Hi harvested by Node i.

than one energy unit can be harvested in each time instant,
we can write the transition probabilities between the received
signal Yi and the harvested energy Hi at Node i as in Fig. 5.

Based on the discussion above, at any given time instant k,
with k ∈ [1, n], the state of the system (U1,k, U2,k) ∈ N

2 is
given by the current energy levels U1,k and U2,k in the buffers
of Node 1 and Node 2, respectively. By the capacity limitations
of the buffers, we have u1 ∈ [0, B1] and u2 ∈ [0, B2] for each
channel use k ∈ [1, n]. The transmitted symbols are limited
as per (1).

The channel is noisy with transition probabilities as in Fig.
3. Moreover, the relationship between received signal and
harvested energy is as in Fig. 5. Therefore, the state of battery
at Node 1 for k ∈ [1, n] evolves as follows

Ui,k = (Ui,k−1 −Xi,k−1) +Hi,k−1. (12)

Similar to Sec. II, we use the following definitions for
an (n,R1, R2, B1, B2). Specifically, the code is defined by:
the buffer capacities B1 and B2; two sequences of encoding
functions, fi,k for k ∈ [1, n] and i = 1, 2, which map the
message Mi, the past received symbols Y k−1

i along with the
past and current states (Uk

1 , U
k
2) into the currently transmitted

signal Xi,k ∈ XUi,k
; two decoding functions gi, for i = 1, 2,

which map the received signal Y n
i , the local message Mi and

the sequence of states Un
1 , U

n
2 into an estimate M̂j of message

Mj of the other node j �= i. Achievability is defined as in Sec.
II. Finally, the closure of the set of all the rate pairs (R1, R2) is
defined as the capacity region C0(B1, B2), where the subscript
“0” denotes the fact that the capacity region generally depends
on the initial state and we have made explicit the dependence
on the battery sizes (B1, B2). Note that the capacity region
C0(B1, B2) is non-decreasing with respect to both (B1, B2),
since a node can always discard any additional battery capacity
and thus achieve the same performance as with a smaller
battery. The performance advantage of using large buffers
arises from the possibility to better manage the energy received
through replenishment by avoiding battery overflow. This,
in turn, allows the nodes to focus the optimization of their
transmission strategies towards information transfer rather
than energy transfer. Related numerical results can be found
in Sec. V-D.

Remark 3. In the definition of code given above, we have
assumed that the nodes can track the state of the batteries
(U1,k, U2,k) at both nodes. We refer to this scenario as having
Global Energy Information (GEI). We remark that in the
presence of losses and replenishment, the nodes generally
cannot track the amount of energy available at the other node

based only on the knowledge of the received signal. Instead,
information about the state of the other node needs to be
acquired through additional resources such as control channels
or appropriate sensors. In general, the assumed model with
GEI can thus be thought of providing a best-case bound on
system performance. In Sec. V-C, we will study the scenario,
referred to as having Local Energy Information (LEI), in
which each node is only aware of the energy available in its
own local battery.

V. GENERALIZING THE INNER AND OUTER BOUNDS

In this section, we first propose a communication strategy
that leads to an achievable rate region by generalizing the
approach discussed in Sec. III. The outer bound of Sec. III
is similarly extended. While the strategy at hand is based on
GEI (see Remark 3), we then discuss an achievable strategy
with LEI in Sec. V-C, and present some numerical results in
Sec. V-D.

A. Transmission Strategy

The proposed strategy is an extension of the approach put
forth in Sec. III, and operates as follows. Node i, with i =
1, 2, constructs one independent codebook Ci|(u1,u2) for each
possible state (u1, u2) ∈ [0, B1] × [0, B2]. As in Sec. III, at
each time k, if the state is (U1,k, U2,k) = (u1, u2), then Node
i transmits the next symbol from the codebook Ci|(u1,u2). At
the end of the last channel use, each node, being aware of
the sequences of states, can demultiplex the transmission of
the other node and decode the messages encoded in all the
(B1 + 1)(B2 + 1) codebooks.

The codebook of Node i corresponding to state (u1, u2)
is generated by drawing each bit independently with a given
probability pi|(u1,u2) for i = 1, 2 and all states (u1, u2) ∈
[0, B1]× [0, B2]. Note that, due to (1), we have p1|(0,u2) = 0
for all u2 ∈ [0, B2] since, when U1,k = 0, Node 1 has
no energy available and thus must transmit a “0” symbol;
and similarly we have p2|(u1,0) = 0 for all u1 ∈ [0, B1].
Given the probabilities pi|(u1,u2) for i = 1, 2 and all states
(u1, u2) ∈ [0, B1] × [0, B2], the (B1 + 1)(B2 + 1) × (B1 +
1)(B2+1) transition probability matrix P can be obtained that
contains the transition probabilities from any state (u1, u2) ∈
[0, B1]×[0, B2] to any state (u′

1, u
′
2) ∈ [0, B1]×[0, B2]. These

transition probabilities depend on the parameters (p
(r)
ij , p

(l)
ij ),

(p
(r)
ii , p

(l)
ii ), and pi|(u1,u2) for i, j = 1, 2 and (u1, u2) ∈

[0, B1]× [0, B2], as detailed in Appendix C.

B. Inner and Outer Bounds

In order to derive the rates achievable with this strategy,
denote as π(u1,u2) the average fraction of channel uses k
such that we have (U1,k, U2,k) = (u1, u2) for all states
(u1, u2) ∈ [0, B1] × [0, B2], as done in Sec. III. Note that∑

(u1,u2)
π(u1,u2) = 1. This function is also referred to as the

steady-state probability and can be calculated as the limit

π(u1,u2) = lim
k→∞

P kπ(1), (13)

where π(u1,u2) is the (B1 + 1)(B2 + 1) × 1 vector con-
taining the steady-state probabilities π(u1,u2) for all states
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(u1, u2) ∈ [0, B1] × [0, B2] and we recall that P is the
transition probability matrix. Vector π(1) accounts for the
initial state and is thus a vector of all zeros except for a
one in the entry corresponding to the initial state. We note
that the limit in (13) always exists for the model studied in
Sec. III (for all non-trivial transmission probabilities), and
is given by (7)-(8). The same is generally true here apart
from degenerate cases. However, the transition matrix (13)
is possibly reducible, and thus the calculation of the limit
generally requires the factorization of the matrix according to
the canonical form for reducible matrices. We refer to [26, ch.
8] for a detailed discussion on the existence and calculation
of the limit (13).

Proposition 4. Assuming that the limit (13) exists, the rate
pair (R1, R2) satisfying the inequalities

R1 ≤
∑

(u1,u2)∈
[0,B1]×[0,B2]

π(u1,u2)I(X1|(u1,u2);Y2)

and R2 ≤
∑

(u1,u2)∈
[0,B1]×[0,B2]

π(u1,u2)I(X2|(u1,u2);Y1) (14)

for some transmission probabilities pi|(u1,u2), for i = 1, 2 and
(u1, u2) ∈ [0, B1]× [0, B2] is achievable, where we have de-
noted as Xi|(u1,u2) as the Bernoulli variable Bern(pi|(u1,u2)).
We also have

I(X1|(u1,u2);Y2)=H
(
(1−p1|(u1,u2))P01+p1|(u1,u2)P11

)

−[p1|(u1,u2)H(P11)+(1− p1|(u1,u2))H(P01)
]

(15)

and similarly for I(X2|(u1,u2);Y1).

Remark 5. The achievability of the rates in (14) can be
proved by adopting the multiplexing strategy described above
and following the same main steps as in Appendix A. Here,
we also point out that the achievability of (14) under the
assumption that the limit (13) exists is a direct consequence
of [27, Lemma 12.3.1].

An outer bound can be also derived by generalizing Propo-
sition 2. In particular, following similar steps as in Appendix
B, one can prove that an outer bound is obtained by allowing
for joint probabilities, rather than product distributions as in
Proposition 1. Moreover, one can add the sum-rate constraint
that generalizes (11) as

R1+R2≤
∑

(u1,u2)∈
[0,B1]×[0,B2]

π(u1,u2)I(X1|(u1,u2), X2|(u1,u2);Y1, Y2),(16)

where X1|(u1,u2), X2|(u1,u2) are jointly distributed.

C. Local Energy Information

In the discussion above, we have assumed GEI, that is,
each node knows the full current energy state (U1,k, U2,k) (see
Remark 3). In this section, we consider instead the scenario
with LEI, in which Node 1 only knows its local energy level
U1 and Node 2 only knows U2.

We first observe that the energy U1,k can be considered
to be the state of the link 12 at channel use k, since it
affects the available input symbols via (1) (and similarly for

U2,k and link 21). Therefore, the model at hand falls in
the category of channels with states in which the state is
known only at the transmitter. For these channels, under the
assumption that the state sequence is i.i.d. and independent
of the transmitted signal, it is known that so called Shannon
strategies are optimal [19, Ch. 7]. In the model under study,
unlike the conventional setting, the state sequence Un

1 (and
Un
2 ) is neither i.i.d. nor independent of the transmitted signal

Xn
1 (and Xn

2 ). Therefore, Shannon strategies are generally not
optimal. We will see below that they can be nevertheless used
to lead to non-trivial achievable rates. A related approach was
proposed in [23] in the context of energy-harvesting systems
with no batteries.

Following Shannon strategies, we draw auxiliary codebooks
made of independent and i.i.d. codewords V n

1 and V n
2 using

pmfs p(v1) and p(v2), respectively. Each symbol Vj,k for Node
j and time instant k is a vector consisting of Bj bits. The main
idea is that, at each time k, Node j transmits the bit in Vj,k

corresponding to the current state Uj,k. Note that the latter
can take Bj possible values at which the transmitted signal is
non-trivial (for Uj,k = 0, we necessarily have Xj,k = 0).

At the receiver side, the decoder at Node 2 uses joint
typicality decoding with respect to the distribution p(v1, y2),
which is given as

p(v1, y2) = p(v1)
∑
u1

π(u1)p(y2|f1(v1, u1)) (17)

where π(u1) is the marginal distribution of the steady-state
probability of the Markov chain induced by the random
coding strategy and the evolution of the system, as discussed
above (see also Appendix C). Following standard information
theoretic considerations, we obtain that the rate pair (R1, R2)
satisfying

R1 ≤ I(V1;Y2), (18a)

and R2 ≤ I(V2;Y1), (18b)

for some pmfs p(v1), p(v2) is achievable, where p(v1, y2) is
as in (17) and similarly for p(v2, y1). Regarding the details of
the proof, being based on conventional tools (see [19, Ch. 3]),
here we simply point out that it is based on the ergodicity of
the Markov chain, which allows to conclude that the error
event in which the correct codeword is not jointly typical
takes place with negligible probability; and the packing lemma
in [19, Lemma 3.1], which entails that the error events due
to mistaking other codewords for the correct one have also
negligible probability5.

Remark 6. In the strategy proposed above, each node adapts
the choice of the current transmitted symbol only to the current
local energy state. A potentially better approach would be to
perform adaptation based on a local state that includes also
a number of past energy states of the node, along with the
current one, and/or current and past received signals. This
aspect is not further explored in this paper.

5The packing lemma does not assume that the received signal be i.i.d. and
thus applies to our scenario (see [19, Lemma 3.1]).
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Fig. 6. Sum-rate Rsum and steady-state probability π(1,1) versus the
probability pr,c of replenishment on the channel (see Fig. 4).

D. Numerical Results

In this section, we present some numerical examples in
order to assess the impact of replenishment and loss processes.
Unless stated otherwise, we will assume that each node has
the ability to store only one unit of energy i.e., B1 = B2 = 1.
We consider a symmetric system with p

(r)
12 = p

(r)
21 = pr,c,

p
(r)
11 = p

(r)
22 = pr,n, p(l)12 = p

(l)
21 = pl,c and p

(l)
11 = p

(l)
21 = pl,n,

where the subscripts “c” and “n” stand for “channel” and
“node”, so that, e.g., pr,n is the probability of replenishment
locally at a node. We first assume GEI.

Fig. 6 shows the sum-rate obtained by summing the right-
hand sides of (14), optimized over the probabilities p1|(u1,u2)

and p2|(u1,u2) for all states (u1, u2) ∈ [0, B1]× [0, B2] versus
the replenishment probability on the channel pr,c (see Fig. 4)
for two cases, namely pr,n = 0, pl,n, pl,c = 0.1 and pr,n =
0, pl,n, pl,c = 0.3. We also show in the same figure the steady-
state probability π(1,1) of state (u1, u2) = (1, 1) corresponding
to the optimal values of p1|(u1,u2) and p2|(u1,u2). It is seen that
increasing the probability pr,c increases the chance of being
in state (u1, u2) = (1, 1), due to the increased availability
of energy. However, increasing pr,c has also the deleterious
effect of flipping bits on the channel from “0”s to “1”s with
larger probability. It is seen that, in the regime in which pr,c is
sufficiently small, and the system is energy-limited, increasing
pr,c is beneficial, while for pr,c large enough the second effect
dominates and the achievable sum-rate decreases.

We now turn to assessing the effect of local replenishment at
the node and the effect of the size of the energy buffers. Fig. 7
shows the optimized sum-rate versus pr,n. Both nodes have
identical buffer of size B, where B = 1 or B = 2. Increasing
pr,n improves the sum-rate, since it enhances the probability
of being in the state of full batteries, without any side effect
on the channel quality. Moreover, having a larger buffer size
increases the rates especially for small-to-intermediate values
of pr,n, since, as discussed in Sec. IV , a larger buffer enables
a better management of the replenished energy. In particular,
when the replenishment probability pr,n is large enough, the
batteries tend to be full all the time, as seen in the lower
part of Fig. 7, and thus there is no need for a more complex
energy management, leading to reducing gains from having
large batteries.
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buffer of size B.
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Fig. 8 and Fig. 9 show the effect of loss events on the
channel and at the nodes, respectively. We show both the
sum-rate and the optimal transmission probability p1|(1,0),
which equals the optimal probability p2|(0,1) by symmetry.
The latter is also compared with the transmission probability
that maximizes the mutual information I(X1|(0,1);Y2) in (14)
and that is thus capacity achieving. It is noted that this is the
probability that maximizes the information rate when there
are no energy limitations. As it can be seen, by comparing
Fig. 8 and Fig. 9, increasing the loss probability both on the
channel and at the node decreases the sum-rate, although the
rate of this decrease is larger for the latter, since, similar to the
discussion above, a loss at the node does not affect the channel.
Moreover, for small pl,c and pl,n, the transmission probability
p1|(1,0) is close to the capacity-achieving probability, while for
larger loss probabilities pl,c and pl,n, it becomes smaller than
the capacity-achieving probability.

We now consider the effect of LEI. Fig. 10 compares the
sum-rate achieved with GEI and LEI versus the replenishment
probability pr,c on the channel. As it can be seen, LEI entails a
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significant performance loss with respect to GEI. To gain some
insight as to the reasons of this loss, the figure also shows the
optimal transmission probabilities p1|(1,0), p1|(1,1) with GEI
and the probability p(v1) = p1|1, that is the probability of
transmitting "1" if the local battery contains energy, for LEI
(V1 is a Bernoulli variable since B1 = B2 = 1). With GEI, the
nodes can adapt the transmission strategy to the energy state
of both nodes and thus choose different probabilities p1|(1,0)
and p1|(1,1), while with LEI the nodes are forced to choose a
single probability p1|1 irrespective of the state of the battery
at the other node.

VI. CONCLUSIONS

Energy and information content are two contrasting criteria
in the design of a communication signal. In a number of
emerging and envisaged communication networks, the partici-
pating nodes are able to reuse part of the energy in the received
signal for future communication tasks. Therefore, it becomes
critical to develop models and theoretical insights into the
involved trade-offs between energy and information exchange
at a system level. In this work, we have taken a first step

in this direction, by considering a two-way channel under a
simple binary “on-off” signaling model. The derived inner and
outer bounds shed light into promising transmission strategies
that adapt to the current energy state. It is emphasized that
conventional strategies based solely on the maximization of
the information flow entail substantial losses.

The results presented in this paper call for further studies
on different fronts. One is the development of better models
which strike a good balance between adherence to reality and
analytical tractability. As an example, more complex models
could account for non-orthogonal communication links in
which the resoures used in the two directions can interact, as
for particles possibly colliding. Also, larger input and output
alphabets, along with a larger state space for the state of the
batteries, could be considered in order to better model aspects
such as path loss. Finally, as pointed out in [24], constraints
on the receiver design favor structures in which the receiver
operates either as an information decoder or as an energy
harvester – this aspect could also be included in a more refined
analysis. A second front of investigation is the development
of better communication strategies for the practical scenario
in which the energy state of the network is not fully known
at the nodes.

APPENDIX A
PROOF OF PROPOSITION 1

1) Code construction: We generate U codebooks for each
Node j = 1, 2, namely Cj|u, with u ∈ [1,U]. The code-
book Cj|u for u > 0 has Kj,u codewords, each consisting
of nj,u symbols x̃j,u,l ∈ {0, 1}, which are randomly and
independently generated as Bern(pj|u) variables, with l =
1, 2, ..., nj,u and nj,u = nδj,u, for some 0 ≤ δj,u < 1. We
denote the codewords as x̃

nj,u

j,u (mj,u) with mj,u ∈ [1,Kj,u].
Note that the parameter δj,u does not depend on n, and hence,
if n → ∞, then we have nj,u → ∞ for all j, u. We set
2nRj =

∏U
u=1 Kj,u, while the relations among the remaining

parameters (Kj,u,δj,u,pj|u) will be specified below.
2) Encoding: Each node performs rate splitting. Namely,

given a message Mj ∈ [1, 2nRj ], Node j finds a U−tuple
[mj,1, ...,mj,U] with mj,u ∈ [1,Kj,u] that uniquely repre-
sents Mj . This is always possible since we have 2nRj =∏U

u=1 Kj,u. Then, the selected codewords x̃
nj,u

j,u (mj,u) for
u ∈ [1,U] are transmitted via multiplexing based on the
current available energy. Specifically, each Node j initializes
U pointers lj,1 = lj,2 = · · · = lj,U = 1 that keep track of the
number of symbols already sent from codewords x̃nj,1

j,1 (mj,1),

x̃
nj,2

j,2 (mj,2), ..., x̃
n
j,U

j,U (mj,U), respectively. At channel use i,
if the state is U1,i = u, then the nodes operate as follows.

• Node 1: If u = 0, then x1,i = 0. Else, if l1,u ≤ n1,u,
Node 1 transmits x1,i = x̃1,u,l1,u(m1,u) and increments
the pointer l1,u by 1. Finally, if l1,u = n1,u+1 the pointer
v1,u is not incremented, and the transmitter uses random
padding, i.e., it sends x1,i = 1 with probability p1,u and
x1,i = 0 otherwise.

• Node 2: If u = U (i.e., no energy is available at Node 2),
then x2,i = 0. Else, if l2,U−u ≤ n2,U−u, Node 2 transmits
x2,i = x̃2,U−u,2,l

2,U−u
(m2,U−u) and increments the

pointer l2,U−u by 1. Finally, if l2,U−u = n2,U−u + 1,
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the pointer l2,U−u is not incremented, and Node 2 sends
x2,i = 1 with probability p2,U−u and x2,i = 0 otherwise.

The random padding method used above is done for technical
reasons that will be clarified below.

3) Decoding: We first describe the decoding strategy for
Node 2. By construction, the nodes are aware of the state
sequence Un

1 , and thus can determine the ordered set

Nu = {i|U1,i = u}, (19)

of channel use indices in which the state is u with u ∈ [0,U].
For all u ∈ [1,U], if |Nu| ≥ n1,u, then Node 2 takes the
first n1,u indices iu,1 < iu,2 < · · · < iu,n1,u from the set
Nu and obtains the list of messages m1,u ∈ [1,K1,u] that
satisfy x̃1,u,k(m1,u) = x1,iu,k

for all k ∈ [1, n1,u]. Note that
the list cannot be empty due to the fact that the channel is
noiseless. However, it contains more than one message, or if
|Nu| < n1,u, then Node 2 puts out the estimate m̂1,u = 1.
Instead, if the list contains only one message m1,u, then Node
2 sets m̂1,u = m1,u. Finally, the message estimate is obtained
as m̂1 = [m̂1,1, ..., m̂1,U].

Node 1 operates in the same way, with the only caveat that
the uth codebook C2|u of Node 2 is observed at channel uses
in the set NU−u for u ∈ [1,U].

4) Analysis: We evaluate the probability of error on average
over the messages and the generation of the codebooks,
following the random coding principle. From the definition of
the decoders given above, the event that any of the decoders is
in error is included in the set E =

⋃
j=1,2

⋃U
u=1(E(1)

j,u ∪ E(2)
j,u ),

where: (i) E(1)
j,u is the event that |Nu| < n1,u for j = 1 and

that |NU−u| < n2,u for j = 2, that is, that the number of
channel uses in which the system resides in the state in which
the codeword x̃

nj,u

j,u (mj,u) from the codebook Cj,u is sent is

not sufficient to transmit the codeword in full; (ii) E(2)
j,u is

the event that two different messages m′
j,u,m

′′
j,u ∈ [1,Kj,u]

are represented by the same codewords, i.e., x̃n1,u

j,u (m′
j,u) =

x̃
n,1u

1,u (m′′
1,u).

The probability of error can thus be upper bounded as

Pr[E ] ≤
2∑

j=1

U∑
u=1

(
Pr[E(1)

j,u ] + Pr[E(2)
j,u ]

)
. (20)

In the following, we evaluate upper bounds on this terms.
It immediately follows from the packing lemma of [19] that

Pr[E(2)
j,u ] → 0 as nj,u → ∞ as long as

log2 Kj,u

nj,u
< H(pj|u)− δ(ε) (21)

with δ(ε) → 0 as ε → 0. For analysis of the probabilities
Pr[E(1)

j,u ], we observe that, under the probability measure
induced by the described random codes, the evolution of the
state U1,i across the channel uses i ∈ [1, n] is a Markov
chain with U+1 states. Specifically, the chain is a birth-death
process, since, if the state is U1,i = u in channel use i, the next
state U1,i+1 can only be either u−1 or u+1. More precisely,
let qu|w = Pr(U1,i+1 = u|U1,i = w) be the transition
probability. Note that, due to the use of random padding,
the transition probability qu|w remains constant during all n
channel uses, so that the Markov chain is time-invariant.

We now elaborate on the Markov chain U1,i. To this end,
we first define as φx1,x2|u, where x1, x2 ∈ {0, 1} be the joint
probability that Node 1 transmits X1,i = x1 and Node 2
transmits X2,i = x2 during the ith channel use in which the
state is U1,i = u. We can now write the non-zero values of
the transition probability qu|w as follows:

qu,u−1 = φ1,0|u qu,u+1 = φ0,1|u
qu,u = 1− qu,u−1 − qu,u+1 (22)

With a slight abuse of the notation and noting that φ1,0|0 =
φ1,1|0 = 0 and φ0,1|U = φ1,1|U = 0 the expressions above also
represent the transitions for the two extremal states u = 0 and
u = U, as they imply q0|−1 = 0 and qU|U+1 = 0.

If p1,0 = p2,0 = 0 and 0 < p1,u, p2,u < 1 for all u > 0,
then it can be seen that the Markov chain is aperiodic and
irreducible, and thus there exist a unique set of stationary
probabilities π0, π1, · · · , πU, which are given by solving the
linear system, defined by taking U equations of type (7) for
u = 0 . . .U− 1 and adding the condition

∑U
u=0 πu = 1.

We are now interested in the statistical properties of the set
|Nu| of channel uses in which the state satisfies U1 = u. Using
the ergodic theorem and the strong law of large numbers [25,
Theorem 1.10.2], it can be shown that limn→∞

Vu(n)
n = πu

with probability 1. Therefore, if we choose:

l1,u = l2,U−u = n(πu − ε) (23)

then Pr[E(2)
1,u] = Pr[E(2)

2,U−u
] can be made arbitrarily close to

0 as n → ∞. This concludes the proof.

APPENDIX B
PROOF OF PROPOSITION 2

Consider any (n,R1, R2,U) code with zero probability of
error, as per our definition of achievability in Sec. II. We have
the following inequalities:

nR1 = H(M1) = H(M1|M2, U1,1 = u1,1)

(a)
= H(M1, X

n
1 , U

n
1 |M2, U1,1 = u1,1)

(b)
= H(Xn

1 , U
n
1 |M2, U1,1 = u1,1)

=

n∑
i=1

H(X1,i, U1,i|X i−1
1 , U i−1

1 ,M2, U1,1 = u1,1)

=

n∑
i=1

H(U1,i|X i−1
1 , U i−1

1 ,M2, U1,1 = u1,1)

+H(X1,i|X i−1
1 , U i

1,M2, U1,1 = u1,1)

(c)
=

n∑
i=1

H(X1,i|X i−1
1 , U i

1,M2, U1,1 = u1,1)

(d)

≤
n∑

i=1

H(X1,i|U1,i, X2,i)

(e)
= H(X1|U1, X2, Q)

≤ H(X1|U1, X2), (24)

where (a) follows since Xn
1 , U

n
1 are functions of M1,M2 and

u1,1; (b) follows since H(M1|Xn
1 , U

n
1 , M2, U1,1 = u1,1) = 0

holds due to the constraint of zero probability of error;
(c) follows since U1,i is a function of X i−1

1 ,M2 and u1,1;
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(d) follows by conditioning reduces entropy; (e) follows by
defining a variable Q uniformly distributed in the set [1, n]
and independent of all other variables, along with X1 = X1Q,
X2 = X2Q and U1 = U1Q.

Similar for nR2 we obtain the bound nR1 ≤
H(X1|U1, X2). Moreover, for the sum-rate, similar steps lead
to

n(R1 +R2) = H(M1,M2) = H(M1,M2|U1,1 = u1,1)

= H(M1M2, X
n
1 , X

n
2 , U

n
1 |U1,1 = u1,1)

= H(Xn
1 , X

n
2 , U

n
1 |U1,1 = u1,1)

=

n∑
i=1

H(U1,i|X i−1
1 , X i−1

2 , U i−1
1 ,M2, U1,1=u1,1)

+H(X1,i, X2,i|X i−1
1 , X i−1

2 , U i
1,M2, U1,1=u1,1)

≥
n∑

i=1

H(X1,i, X2,i|U1,i)

= H(X1, X2|U1). (25)

Let us now define πu = Pr[U1 = u] and φx1,x2|u =
Pr[X1 = x1, X2 = x2|U1 = u] for i, j ∈ {0, 1} and for
all u1 ∈ {0, 1, ...,U}. Probability conservation implies that
the relationship (7) be satisfied. This concludes the proof.

APPENDIX C
TRANSITION PROBABILITIES FOR THE MODEL IN SEC. V

Here we discuss the transition probability matrix P used in
Sec. V. To this end, define as Q(ab)

ij (i, j = 1, 2) the probability
that Hj = a ∈ {0, 1} energy units are added to the battery
at Node j conditioned on Node i sending symbol Xj = b ∈
{0, 1}, for i �= j, namely

Q
(00)
ij = P

(00)
ij P

(00)
jj + P

(01)
ij P

(10)
jj , (26a)

Q
(01)
ij = P

(00)
ij P

(01)
jj + P

(01)
ij P

(11)
jj , (26b)

Q
(10)
ij = P

(10)
ij P

(00)
jj + P

(11)
ij P

(10)
jj , (26c)

and Q
(11)
ij = P

(10)
ij P

(01)
jj + P

(11)
ij P

(11)
jj . (26d)

Note that these transition probabilities correspond to the
cascade of the channels in Fig 4 and Fig 5. Based on these
probabilities, we can now evaluate all the possible transition
probabilities from state (u1, u2) to any other state (u′

1, u
′
2). We

start with u1 ∈ [1, B1−1] and u2 ∈ [1, B2−1] for B1, B2 > 1
whose outgoing transition probabilities are illustrated in Fig.
11. The “boundary” states with uj = 0 or uj = Bj for some
j = 1, 2 are discussed later.

By the stated assumptions, the state (u1, u2) can only transit
to state (u1 + i1, u2 + i2) with i1, i2 ∈ {−1, 0, 1}, so that the
energy in the battery is increased or decreased by at most one
energy unit. Therefore, for the “non-boundary” states (u1, u2)
with u1 ∈ [1, B1 − 1] and u2 ∈ [1, B2 − 1], the probabilities
in Fig. 11 can be easily obtained as

P0,0(u1, u2)=p1|(u1,u2)p2|(u1,u2)(Q
(11)
21 Q

(11)
12 )

+p1|(u1,u2)p̄2|(u1,u2)(Q
(01)
21 Q

(10)
12 )

+p̄1|(u1,u2)p2|(u1,u2)(Q
(10)
21 Q

(01)
12 )

+p̄1|(u1,u2)p̄2|(u1,u2)(Q
(00)
21 Q

(00)
12 ), (27)

1 2,u u

,P− −

1 21,u u− 1 2, 1u u −

1

2

1,

1

u

u

−
−

1 21,u u+
1 2, 1u u +

1

2

1,

1

u

u

+
+

0,P −

,0P−

,0P+
0,P +

,P+ +

0,0P,P− +

,P+ −

1

2

1,

1

u

u

−
+

1

2

1,

1

u

u

+
−

Fig. 11. The outgoing transition probabilities from a state (u1, u2).

P+,0(u1, u2)= p̄1|(u1,u2)p2|(u1,u2)(Q
(11)
21 Q

(01)
12 )

+p̄1|(u1,u2)p̄2|(u1,u2)(Q
(01)
21 Q

(00)
12 ), (28)

P0,+(u1, u2)=p1|(u1,u2)p̄2|(u1,u2)(Q
(01)
21 Q

(11)
12 )

+p̄1|(u1,u2)p̄2|(u1,u2)(Q
(00)
21 Q

(01)
12 ), (29)

P+,+(u1, u2)= p̄1|(u1,u2)p̄2|(u1,u2)(Q
(01)
21 Q

(01)
12 ), (30)

P+,−(u1, u2)= p̄1|(u1,u2)p2|(u1,u2)(Q
(11)
21 Q

(00)
12 ), (31)

P−,+(u1, u2)=p1|(u1,u2)p̄2|(u1,u2)(Q
(00)
21 Q

(11)
12 ), (32)

P0,−(u1, u2)=p1|(u1,u2)p2|(u1,u2)(Q
(11)
21 Q

(10)
12 )

+p̄1|(u1,u2)p2|(u1,u2)(Q
(10)
21 Q

(00)
12 ), (33)

P−,0(u1, u2)=p1|(u1,u2)p2|(u1,u2)(Q
(10)
21 Q

(11)
12 )

+p1|(u1,u2)p̄2|(u1,u2)(Q
(00)
21 Q

(10)
12 ), (34)

and

P−,−(u1, u2)=p1|(u1,u2)p2|(u1,u2)(Q
(10)
21 Q

(10)
12 ), (35)

where we recall that pi|(u1,u2) is the probability of sending a
“1” symbol by Node i given the state (u1, u2) and p̄i|(u1,u2) =
1− pi|(u1,u2).

For the "boundary" states (u1, u2) with u1 and/or u2 equal
to 0 the outgoing transitions in Fig. 11 and probabilities in
(27)-(35) still hold since the transitions to states with energy
less than zero are disabled by the conditions pi|(u1,u2) = 0 for
uj = 0, j = 1, 2. Instead, if u1 = B1 and u2 ∈ [0, B2 − 1]
then the probabilities in (33)-(35) remain the same, but we
have P+,− = P+,0 = P+,+ = 0 and P0,0 equals the sum of
the right-hand sides of (27) and (28), while P0,+ equals the
sum of the right-hand sides of (29) and (30), and P0,− equals
the sum of the right-hand sides of (33) and (31) . The transition
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probabilities from the states with u1 ∈ [0, B1−1] and u2 = B2

follow in a symmetric fashion. Finally if u1 = B1 and u2 =
B2, then we have P−,+ = P+,− = P+,0 = P0,+ = P+,+ = 0
and P0,0 is the sum of (27), (30), (28), and (29), while P0,−
is the sum of (33) and (31) and P−,0 is the sum of (34) and
(32).

By using the transition probabilities defined above, one can
easily construct the transition matrix P of the corresponding
Markov chain. For instance, for the case B = 1, we can write
the transition matrix as

P =

⎡
⎢⎢⎣
P0,0(0, 0) P0,−(0, 1) P−,0(1, 0) P−,−(1, 1)
P0,+(0, 0) P0,0(0, 1) P−,+(1, 0) P−,0(1, 1)
P+,0(0, 0) P+,−(0, 1) P0,0(1, 0) P0,−(1, 1)
P+,+(0, 0) P+,0(0, 1) P0,+(1, 0) P0,0(1, 1)

⎤
⎥⎥⎦ ,(36)

where the column index represents the the initial state and the
row index the final state.
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