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Interactive Kalman filtering 
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Abstract. Data assimilation via the extended Kalman filter can become problematic 
when the assimilating model is strongly nonlinear, primarily in connection with sharp, 
"switchlike" changes between different regimes of the system. The filter seems too 
inert to follow those switches quickly enough, a fact that can lead to a complete failure 
when the switches occur often enough. In this paper we replace the key feature of the 
filter, the use of local linearity for the error model update, with a principle that uses a 
more global approach through the utilization of a set of preselected regimes. The 
method uses all regime error models simultaneously. Being mutually incompatible, a 
compromise between the different error models is found through the use of a weighting 
function that reflects the 'closeness' of the error model to the correct model. To test 

the interactive Kalman filter a series of numerical experiments is performed using the 
double-well system and the well-known Lorenz system, and the results are compared 
to the extended Kalrnan filter. It turns out that, depending on the set of preselected 
regimes, the performance is worse than, comparable to, or better than that of the 
extended Kalman filter. 

1. Introduction 

The main feature of the Kalman filtering technique in data 

assimilation problems is the statistically optimal incorpora- 
tion of dynamical model information into the assimilation 

procedure. This is done via a weighting between observation 
and model information which reflects the error structure of 

both of them. If the error is large the weighting is small and 

vice versa. Since, by definition, the error itself is unknown, 

one can only rely on some of its statistical properties. An 

optimal description of the error structure and its evolution 

would require a dynamical model of the complete probability 

distribution of the error. But this is, theoretically and prac- 

tically, only treatable in very trivial cases. However, under 
certain circumstances the error structure becomes "relative- 

ly" simple, and it is possible to formulate a correct error 
model that is also feasible. 

The classical paper by Kalman [1960] deals with linear 
processes. In this case it is used to represent the error 

structure through the error covariance matrix. Since the 

evolution of the error is the same as that for the original 

process, this error matrix evolves along with the square of 

the system matrix. This, however, is computationally very 

expensive, especially for applications in oceanography or 
meteorology, where the model size is some orders of mag- 

nitude larger than the classical Kalman filter applications in 
engineering or ballistic fields. To reduce the computational 
complexity involved in the Kalman filter, a number of 

methods have been introduced, many of which are reviewed 

by Ghil and Malanotte-Rizzoli [ 1991]. The extended Kalman 

filter (EKF) applies to nonlinear systems, [see Bucy and 
Joseph, 1968; Gelb, 1974]. The error model still describes 

the evolution of a covariance, but now the linear model 

equations are updated each time step according to the 

current linearization of the original model. Depending on the 

Copyright 1994 by the American Geophysical Union. 

Paper number 94JC00148. 
0148-0227/94/94JC-00148505.00 

inherent time scale of the system the updating frequency can 

be reduced significantly in order to save computing time. For 

instance, for atmospheric models it is assumed that an 

update frequency of 12-24 h is sufficient, whereas for ocean 

models this period can be much longer. First applications of 

the EKF to nonlinear models look promising. Budgell [ 1986] 

in oceanography and Lacarra and Talagrand [1988] in 

meteorology have demonstrated that working with a variable 

error model can produce good results if certain conditions 

are satisfied. These conditions mainly imply that the system 

must not undergo •harp changes, a behavior which is typical 
for regimelike systems, where changes between regimes 

tend to occur in a switchlike manner. Among this kind are 

the well-studied systems of Duffing [1918], Lorenz [1963], 

and Charney and DeVore [1979]. For the Lorenz system and 

(a simplified version of) Duffing's [1918] system, we shall 

demonstrate in our paper that certain circumstances can lead 

to a complete failure of the EKF (see also Budgell [ 1986] and 
Miller et al. [1993]). 

By going from systems with smooth changes in the local 

structure to those with sharp changes one can make the 

following simple observation' A system that switches 
sharply from one local structure to another should remain 

relatively constant, with respect to the local structure, in the 

intermediate time when it occupies a regime. This leads to 

two complementary questions for the assimilation problem. 

First, is it possible for an assimilation to follow the abrupt 

changes of the regimes? Second, is it possible that the 

intermediate regime states are sufficiently described by a 

single linear model? To assimilate regimelike systems, we 

introduce what we call interactive Kalman filtering (IKF). 

The IKF makes explicit use of the regimes, in the sense that 

each regime has its own fixed error model. The interaction 

between the regimes, which governs the transitions, is 

achieved by a weighting function which reflects the "dis- 

tance" of the system from that regime. 

To demonstrate the IKF we perform Monte Carlo exper- 
iments with the double-well system and the. Lorenz system. 
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In a set of numerical simulations we assimilate these systems 

by using various groups of regimes and compare the results 

to the full EKF assimilation. As it turns out, if the regimes 

are chosen appropriately, the IKF shows a very good 
performance in all cases. This is not true for the EKF which 

in certain cases completely fails to trace the regime switches 

correctly. 

2. Extended Kalman Filtering 

One enters the realm of the extended Kalman filter [Bucy 

and Joseph, 1968; Jazwinski, 1970] when the error model 
changes with the current state of the system. In the general 

setting of Kalman filtering there is a physical variable x, 
which has to be estimated at some time t. Two sources of 

information are used for the procedure. One is the more or 

less steady influx of observational data, and the other is the 

evolution of a model. Normally, neither source is perfect; 

both are disturbed by some error noise. 
For convenience we assume that the model describes the 

whole physical space, and observations are available at all 

times and locations. Denoting the true value of x at t by x(t), 

the observation by .•(t), and the model function by f, the two 
available sources read (as vectors) 

•(t) = x(t) + r(t) (la) 

f(x(t- 1)) = x(t) + q(t) (lb) 

with observational noise r(t) and system noise q(t). The 

assimilated value œ(t) will be determined in two steps via 

.•(t) = f(œ(t - 1)) (2a) 

œ(t) = (I - W).•(t) + W.•(t) (2b) 

that is, a composition of observation and model output, 

weighted by the matrix W which still has to be determined (I 
denotes the unit matrix). The assimilation error, which is 
defined to be 

e(t) = g(t) - x(t) (3) 

is the crucial quantity in the assimilation procedure. If we 

expand f about x, 

of 

f (x + e) - f (x) = (x)e + n(e) (4) 

where n(t) comprises the nonlinear parts, we can combine 
(1)--(3) to find that the error evolution obeys the following 
law: 

•(t) = Lt_le(t- 1) + n(e(t- 1)) + q(t) (5a) 

e(t) = (1 - W)•(t) + Wr(t) (Sb) 

with Lt_ 1 -- Of/Ox [x(t - 1)]. Since, by definition, the exact 
error ,(t) is unknown one should, rather than deal with (5), 

consider the evolution of the probability distribution of e(t). 

If W were known for each time step, (5) could be reformu- 
lated into the Fokker-Planck equation for the error density 

function. The weights W should then be determined in such 
a way that 'the expected (squared) error (or whatever error 
measure one chooses) is minimized. 

As we already mentioned, this problem is theoretically as 

well as practically infeasible, especially in a context such as 
an atmospheric or ocean model where the number of degrees 
of freedom is so large. The main problem is, therefore, to 
find methods that reduce the number of degrees of freedom 

of the posed problem. 

It is often reasonable to assume that the probability 

density is Gaussian. In this case the error is condensed into 
a covariance structure that, although still huge, contains a 

considerably smaller number of parameters. Similarly, one 
can assume that the process in question is governed, at least 
locally, by linear dynamics. For the EKF one generally 
assumes the following: (1) The nonlinearities, n[e(t - 1)], 

can be neglected. (2) Observational error r(t) and system 

error q(t) are white noise processes with zero mean which 
are mutually uncorrelated. (3) Their respective covariances, 

R t and Qt, are known a priori. 
Under these circumstances the expression for the ex- 

pected value of the outer product of (5) with itself becomes 

•t = Lt-lPt-lLt-I q- Qt (6a) 

Pt = (1 - W)•t(l - W) T q- WRt wT (6b) 

If one knew W at each time, the evolution of the error, i.e. 

Pt, would be known. W is determined by requiring that the 
expected error, measured by the cost function 

J= {e(t)Te(t)) = tr(Pt) 

be minimal. The solution matrix Kt, i.e., the solution of 
OJ/OW (Kt) = 0, is called the Kalman gain matrix: 

Kt = Pt(Pt + Rt) -• (7) 

(6) and (8) together determine the error model of the ex- 

tended Kalman filter. It is a coupled recursive system in 

which K t and Pt are calculated in each time step. In the 
linear case, that is when f (x) = Lx for a matrix L indepen- 

dent of the system state x, the error model is much simpler 
(in that n(e) -= 0) and the EKF reduces to the original 

Kalman filter (KF). 

As a measure of the observational influence on gi at time 
t we use the function 

2 

si(t ) = (Kt)ij (8) 

(compare (2b)) with K instead of W, and call s i the sensitiv- 
ity function of œi. Its values range between 0 (no observa- 
tional impact) and 1 (no model impact). 

If all three conditions are met rigorously, the Kaitaart filter 

is both linear (as n(e) -= 0) and optimal; moreover, by the 
derivation above, in this case the error model is true. Neither 

optimal nor true can be said of the extended Kalman filter. 

Assumption 1 is only a first-order approximation, and in 

highly nonlinear systems it is neither guaranteed that the 

assimilation is optimal nor that the error model is true. On 

the other hand, the EKF performance is very good for 

weakly nonlinear systems, that is, if assumption 1 is not 

violated too harshly, [cf. Budgell, 1987]. The violation of 

assumption 1 is equivalent to the fact that along certain 

trajectories the system's behavior changes too sharply. In 
this case the error model is no longer true, and, as we will 

see below, this can lead to a complete failure of the EKF. 
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If one is to model the nonlinear second-order effects, one 

might, as a first step, widen assumption 1 to the following: 
(1') The nonlinearities, n[e(t - 1)], are uncorrelated with 

the error itself, e(t - 1), and with both the system error, 

q(t), and the observation error, r(t). 

The main advantage of assumption 1' is that it allows one 

to run the EKF with only one minor modification. Instead of 

using Qt in (6a), one uses the new matrix N t + Qt, where N t 
is the (second-order) covariance of the nonlinear terms 

n[e(t - 1)]. If the error model thus modified is correct, N t 
should be one order of magnitude less than Pt. Of course, 

the determination of N t is highly nontrivial and in many 
cases not possible at all. In our applications we will use a 

covariance which is essentially a correlation together with a 

scaling factor. 

Another way to remedy the problem of strong nonlinearity 
is to introduce higher-order moments for the statistical 

estimates or to introduce variational methods as those by 

Miller et al. [1993]. But as they already point out, this would 

increase the computational costs considerably and would be 

infeasible for higher dimensional systems. 

Although by our above assumptions one vastly reduces 

the complexity of the assimilation problem, the computa- 

tional burden for the determination of K t is still immense. 
The central operation in (6), the calculation of the forecast 

error covariance •}t = Lt-1 Pt- 1Lt r- 1, requires (even for the 
linear filter) as much as O(n 2) multiplications for a system of 
dimension n (considering the sparseness of the system 
matrix). This is tolerable for systems which have n < 1000, 

as in typical engineering problems. The dimensionality of an 

atmosphere or ocean model, however, is much larger, so 

that the filter is hardly feasible in these cases. To overcome 
this obstacle various techniques have been developed to 

replace the optimality of the filter with other, less expensive 
procedures [see Parrish and Cohn, 1985; Todling and Ghil, 
1990]. For smaller models, like the El Nifio/Southern Oscil- 

lation (ENSO) model of Zebiak and Cane [ 1987], the Kalman 

filter seems appropriate (M. A. Cane et al., unpublished 
manuscript, 1993). 

3. Regimes 

As we already pointed out, strongly nonlinear and unsta- 

ble systems tend to occupy regimes. To formally define the 

properties which make a system regimelike, let us assume 

that the system is given by the (discrete) equation 

x(t) = f (x(t - 1)) (9) 

Now we assume that there are N states o• i, i < N, in the 
neighborhood of which the system functionf behaves almost 

linearly. That means one x(t - 1) is close to o•i we can 
decompose x(t - 1) via 

x(t- 1)=•o i + •i(t- 1) (10) 

and expand f about •i, such that the linear system 

of 

x(t) =f(toi) + •x (ø•i)•i(t- 1)=f(toi) + Li•i(t- 1) 
(11) 

is a good approximation off at time t. The linear system (o• i, 
Li) is called a regime off. Now, whatever the quality of the 

approximation, we may consider the linear system (•oi, Li) 

1 , , 

-1 o 1 

Figure 1. The double-well system. A typical realization of 
a dynamical system with three equilibrium points, where one 
unstable equilibrium, the origin, is surrounded by two (qua- 
si)stable equilibria (the wells). 

to be acting on the whole state space, including the states 

where f and (o•i, Li) behave very differently. A decomposi- 
tion off into regimes would be achieved and the system itself 

be regimelike, if for each state (of the attractor) there is at 

least one regime which resembles f at that instant. 

Very often one chooses equilibrium states, i.e., those 

states x for whichf (x) = x, as basic states for a linearization 

like (11). From our present standpoint, however, every other 

state might equally well serve as a regime. One example 
would be the mean state of a solution. As is the second case 

below, the mean state need not be an equilibrium, especially 

in systems which are predominantly nonlinear. 

4. Two ExamPles 
Stochastic Noise: The Double Well System 

Probably the simplest example of a nonlinear system 

which can exhibit two different regimes is the following 

one-dimensional equation 

•c = x - x 3 + n(t) (12) 

where the external forcing term n(t) shall represent a white 

noise process. The system is a simpler form of the one by 

Duffing [1918]. Without this forcing, (12) has three different 

equilibria x = 0 __+ 1 (compare Figure 1). The two outer 

points are stable, whereas the origin is unstable. That means, 

starting from some initial point which is not the origin itself, 

any solution will approach one of the two stable points and 

stay there forever. The stochastic forcing now makes the 

system switch randomly from one basin to the other; the 

frequency of the switching depends directly on the amplitude 
of the forcing. 

Deterministic Chaos: The Lorenz System 

The equations 

5c = cr(y - x) 

• = px - y - xz (13) 

•: = -13z + xy 
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describe the nonlinear interaction of the three dominant 

modes of the Oberbeck-Boussinesq equations for fluid con- 
vection in a two-dimensional layer heated from below. The 
system has been introduced by Lorenz [1963] and is the first 
example of a system which can exhibit what since then has 

been called deterministic chaos. Depending on its three 
parameters, •r (the Prandtl number), p (the Rayleigh number) 
and • (an aspect ratio), the system bifurcates through a large 
variety of substantially different behavior, from simple 
steady states to limit cycles and finally to chaos. In our study 
we analyze the system with the most commonly used param- 
eter values of o, -- 10, p = 28, and/3 -- 8/3. In this case (13) 

has three different fixed points, co o = (0, 0, 0) and co_+ = 
(+- 8.5, +_ 8.5, 27), all of which are unstable saddle points. 
The first fixed point describes a pure conductive heat trans- 
fer. Attached to this point are two stable and one unstable 
manifold, where one of the stabilities as well as the instabil- 

ity is very strong (large negative and positive eigenvalues, 
respectively). Their interplay seems crucial for the results 
which are described below. The other two equilibria are 

almost symmetric to each other. They are quasi-stable in the 
sense that a stable, one-dimensional manifold is accompa- 

nied by a two-dimensional weakly unstable manifold. 
This constellation leads to the system's characteristic 

chaotic behavior: to switch irregularly between the two 

regimes of co_ and co +. Once close to one of the quasi-stable 
equilibria, the system has the tendency to slowly spiral away 
from it. The switching occurs when the system enters the 
attracting region of the origin' The strong stability there 
highly accelerates the system so that it can "escape" from 

its current regime. The strong instability in turn provides the 
impetus for driving the system away to the other regime, and 
the same process starts all over again. It is the combination 
of these strong positive and negative feedback processes 
which is responsible for the fast error growth and the 
unpredictability of the Lorenz system. However, contrary to 
the double-well system the evolution itself is completely 
deterministic since there is no stochastic forcing involved at 

all. For details concerning the Lorenz system we refer to the 

work by Guckenheimer and Holmes [1983]. 

5. Interactive Kalman Filtering 

As an alternative to the EKF we propose an assimilation 

procedure which makes use of the fact that the system that 

is to be assimilated decomposes into regimes (col, Li), 
i -• N, for some number N. Roughly speaking, the EKF's 
updating of the error model via the current local linearization 
is replaced by a procedure that uses only the linear regime 

models. Being mutually incompatible, the regime error mod- 

els advance the error covariance differently. Among all these 

'suggestions' a compromise is made by the use of a weight- 

ing. The weighting reflects, for a single regime and arbitrary 

state of the system, the 'closeness' of the state to that regime 

relative to all other regimes. Because in each single assimi- 

lation step all regimes (coi, L i) are thus involved, the IKF is 
more globally inspired than the EKF. In detail the error 
model is determined in the following way. 

Suppose we already assimilated data up to the time t - 1. 
We therefore have calculated an assimilation value •(t - 1) 

and the error covariance Pt-1; furthermore, we are able to 
determine the forecast value •(t) = f[ •(t - 1)]. Now we 

calculate N (temporary) guesses of the forecast error cova- 

riance Pt, by using (6a) with the respective regime models 
Li. 

•(i) = LiPt_iL/T + Qt (14) 

Once we have assigned weights ]•i(t) to each single regime, 
we can define the forecast error covariance by 

= (t)f ( 
i_< N 

The weight/t•(t) should reflect the "distance" of the regime 
(•o•, Li) to the perfect model at the state œ(t - 1). If we 
expand according to (10), 

œ(t- 1)= coi + •:i( t - 1) (16) 

this distance can be defined by 

$i(t)-- ]]f(coi) + Li•i(t- 1)- (t)ll (17) 

where II II denotes the Euclidean norm in the phase space. 
There is a lot of freedom now to choose the actual weighting. 
We decided to take the value 

13i(t)-- • 1/Sf(t ) (18) 
j<-N 

This completes the definition of the interactive Kalman 
filtering (IKF). Note that in (14) we could have chosen an 
individual system noise for each single regime. The weight- 

ing in (18) relative to 1 only expresses the fact or, better, the 
assumption that P is changing only close to the regimes, but 

this, of course, depends on the choice of the regimes. 
The number of regimes N that participate in the IKF 

crucially affects the computational costs of the filter. The 

expensive covariance updating (14) has to be calculated N 
times for each time step. On the other hand, one does not 
have to determine the local error model each time step. 

Hence depending on N, the IKF can be less or more 
expensive than the EKF, although an exact estimate of the 

respective costs is hard to give. 

6. Testing the EKF and IKF 

We test the various assimilation methods through a series 
of simulations with the two nonlinear models introduced 

above, the double-well system and the Lorenz system. (This 

choice coincides with that of Miller et al. [1993].) To 

initialize the error model (6) and (8) we always started with 
the final value P of some former assimilation run. 

Both systems have three different equilibria; the unstable 

origin and two accompanying stable or quasi-stable equilib- 

ria. For the double-well system the mean state is the origin 

and hence is an equilibrium. This is not the case for the 

Lorenz system, and we chose the mean state as a regime of 

its own. We dealt with three different choices of regimes for 
the IKF. They are IKFI, the mean state as the only regime; 

IKF2, the two (quasi)stable equilibria; and IKF3, all three 
equilibria. 

The first method corresponds to a normal linear Kalman 

filter approach. Note that for the Lorenz system the first 

choice deals with a regime that is not an equilibrium. 

Since in our study the model output plays the role that 
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Figure 2. (a) A small section of a typical realization of the double-well system together with the three 
regimes (b) + 1, (c) - 1, and (d) 0 of the IKF3 assimilation (for noise levels see text). The regime weights 
closely follow the true values, with sharp changes during the transitions. The short delays are caused by 
the delays in the assimilation. Note the larger spikes of the 0 regime weight during the switching. 

reality normally plays, and the system noise should therefore 
be zero, we impose certain perturbations on the model 
through an additional white noise forcing term (which exists 
for the double-well system anyway) with prescribed covari- 
ance Q constant with time. We assume that Q is exactly 
known for the assimilation and has the form Q = /zI. A 
perfectly known system noise is, theoretically, the best case 
possible for the EKF assimilation. However, since the 
systems under consideration are strongly nonlinear, a better 
approach is to guess the system noise via some enlarged 
covariance Q + N, where. N should comprise all nonlinear 
contributions to the error. 

Since we do not know of a straightforward way to model 
N, we use the following approach. Starting from a fixed 
correlation matrix C, the form of which is given in the 
appendix, we perform a series of assimilations that use N = 

vC, with v varying in a certain range. We not only vary the 
system noise but also the true forcing Q. That is, for a series 
of forcing covariances, /zI, /z varying, we are assimilating 
with system noise covariances /zI + vC, v varying. As a 
performance index for a single assimilation, identified by the 
pair (/z, v), we take the scalar 

tr(P) 
A(p,, v) = • (19) 

tr(R) 

which is the percentage of the measured (not modeled) 
analysis error variance (P) relative to the imposed observa- 
tional noise variance (R). 

In most experiments the observations were inserted each 

time step. We assumed that the observational error was 

white with a covariance structure of the form ½I, with a 
scalar ½ that reflects the overall variability of the process as 
described below. 

Double-Well System 

To solve system (12) we used the International Mathemat- 

ics and Statistics Libraries routine DGEAR with a step size 
of 0.9. The single runs were over 100,000 time steps. This 
large number is necessary in order to stabilize the statistics, 
especially when the forcing noise is very small. The forcing 
noise parameter /• was chosen from the series 0.01, 
0.02, ..., 0.1, and the v values were 0, 0.01, 0.02, ..., 0.1; 
the observational noise variance was held constant at a value 

of½= 1. 

In Figure 2 we see a section of a typical realization 
together with the three regime weights of the IKF3 assimi- 

lation, using (/•, v) = (0.1, 0). The switching between 
regimes -1 and + 1 can clearly be seen in the x values 
themselves, but the weights fl also reflect these switches 
convincingly, especially r_ and fl+. Note the asymmetry in 
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Figure 3a. The same as Figure 2 except now with assimilations. (bottom) The EKF assimilation; the 
delay in regime switching (lower curve) is too long so that the short double switch cannot be traced. Inside 
the regimes, if they are correct, the observational noise impact is small. Both phenomena are mainly due 
to the character of the sensitivity function (upper curve). The sensitivity function has rather low values 
and only small variability, with maximum spikes not reaching beyond 0.5. Note that each transition is 
accompanied by a spike event. (top) The IKF3 assimilation; we see a very good reproduction of the 
original data, with all regime switches simultaneously traced (lower curve). The observational noise 
impact during the regimes is slightly larger than for the EKF. There seems to be a lower bound in 
sensitivity (upper curve) of about 0.25, which is much larger than any lower bound of the EKF sensitivity. 

the weighting: A weight of 1 is much noisier than a weight of 
0. The spike-like behavior of fl0 reflects the instability of the 
origin. These spike events become significant during transi- 
tions (namely, the first and fourth transition) when they have 
a much longer duration than normal. We will return to this 
point later. 

Figures 3a and 3b depict, in the same time section, the true 
and assimilated values of x for the EKF and IKF3; we show 

the case (/•, v) = (0.1, 0.05). The main observation is the 
complementary behavior of the filters during the regime time 
and the transitions. Once a regime is established, the EKF 
seems to be less disturbed by observational noise and closer 
to the true values than the IKF3. However, it is just because 

of this that it needs a longer time to react when a (true) 

regime transition occurs. The double transition + 1 • - 1 --• 
+ 1 near time step 18,600 is not traced at all by the EKF. 
This general feature is reflected in the sensitivity function for 
x, as defined by (8): It shows much larger values, and a much 
larger variability, for the IKF3. Small peaks during an EKF 
switch contrast with large and broad episodes during IKF3 
switches. Moreover, there seems to be a threshold in the 
IKF3 sensitivity function below which its values never fall, 
and if there is such a threshold for the EKF, it is certainly 
lower. We have A = 32% for the EKF and A = 16% for the 

IKF3. The complete A matrices for both filters are given in 
Tables 1 and 2. We see that the overall error is much smaller 

for the IKF3. Note that the introduction of second-order 

errors (i.e., v > 0) for the nonlinearities only worsens the 
performance for both filters. 

What has been said about the relatiori between the EKF 

and IKF3 can also be said for the IKF2 and IKF1 (compare 

Figure 3b), The IKF2's behavior inside regimes can be 
compared to the EKF; it is more undisturbed by noise and 
closer to the true values. However, the transitions are traced 

more reliably by the IKF1. Note that unlike the EKF, the 
IKF2 performs the double regime switch near step 18,600. 
The different behavior is again reflected in the sensitivity 

function, with very small, constant values for the IKF2 and 

large (and constant) valu. es for the IKF1. The constancy of 
the IKF2 sensitivity is caused by the symmetry of the single 
localizations at -1 and + 1; both have the same linear error 

model. For the case of Figure 3b (that is, for the pair (/z, v) 

= (0.1, 0.05)) we have A = 11% and A = 58% for the IKF2 
and IKF1, respectively. So the IKF2 performs even better 
than the IKF3. Table 2 shows that this is not the case for 

many values of (/z, v). 
From Table 3 we see that there is an instability of the IKF2 

for various noise levels. Especially for the pair (/z, •) = 



BORGER AND CANE: INTERACTIVE KALMAN FILTERING 8021 

0.8 

0.6 

0.4• 

0.2 

0.0 

18300 18400 18500 18600 18700 

TIME 

0.8 

0.6 

0.4• 

0.2 

0.0 

18300 18400 18500 18600 18700 

TIME 

Figure 3b. The same as Figure 3a, only for the IKF2 and IKF1 assimilations. (bottom) The IKF2 case. 
The regime jumps can still be traced but their delay is increased compared to the IKF3. This is mainly due 
to the fact that the sensitivity function is now constant at a value of about 0.2. Note that this value is larger 
than the limit of the EKF sensitivity. (top) The IKF1 assimilation follows the jumps simultaneously, which 
is caused by the high level of observational noise influence (s • 0.7). This is paid for by an increased 
perturbation of the assimilation by observational noise during the regimes. 

(0.06, 0), the IKF2 shows an error of A = 104%. That means 

the filter is actually worsening•the assimilation, compared to 

pure observation. But through an increase of the nonlinear 

noise terms the filter can be improved considerably, lower- 
ing errors to 5-6%. The IKF1 error (see Table 4) seems to be 

rather independent from the various noise levels, thus re- 

flecting the fact that as long as the sensitivity to observations 

is large enough, the simple linear filter cuts the observational 

noise roughly in half. 

How a change in the observation frequency affects the 

assimilation is exemplified by the following: using the pa- 

rameters (p-, •,) = (0.1, 0), we performed five EKF and 

IKF3 experiments, with observations taken every 1st, 2nd, 

3rd, 4th, and 5th time step. A typical section of the various 

Table 1. The A Matrix of the EKF for the Double-Well System, Using an 

Observational Noise Scale of $ = 1 

p, 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

0.01 4 5 5 6 6 7 7 8 8 9 9 

0.02 10 11 11 12 12 13 13 13 14 14 14 

0.03 15 15 16 16 16 16 17 17 17 18 18 

0.04 18 19 19 19 19 19 20 20 20 21 21 

0.05 21 21 22 22 22 22 22 23 23 23 24 

0.06 22 23 23 23 23 24 24 24 24 25 25 

0.07 25 26 26 26 26 27 27 27 27 28 28 

0.08 27 27 28 28 28 28 29 29 29 30 30 

0.09 29 29 30 30 30 30 31 31 31 32 32 

0.1 31 31 32 32 32 32 33 33 33 33 34 

Rows represent various white noise forcing scales through different p-'s; columns 
represent different v's, i.e., nonlinear contributions to the system noise. The increase of v 
does not diminish the error. 
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Table 2. The A Matrix of the IKF3 for the Double-Well System Using an 
Observational Noise Scale of q, = 1 

/x 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

0.01 0 0 I I 2 3 4 5 7 8 9 

0.02 0 I I 2 3 4 5 7 8 9 10 

0.03 I I 2 3 4 5 7 8 9 10 11 

0.04 I 2 3 4 5 7 8 9 10 12 13 

0.05 2 3 4 6 7 8 9 10 12 13 14 

0.06 3 5 6 7 8 10 11 12 13 14 15 

0.07 5 6 8 9 10 11 12 13 14 15 16 

0.08 7 8 9 11 12 13 14 15 16 17 17 

0.09 9 10 11 12 13 14 15 16 17 18 19 

0.1 11 12 13 14 15 16 17 18 19 19 20 

Rows and columns are the same as Table 1. The errors throughout are smaller than for 
the EKF and increase slightly with larger v. 

Table 3. The A Matrix of the IKF2 for the Double-Well System Using an 

Observational Noise Scale of q, = 1 

/x 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

0.01 0 0 I I 12 11 2 2 3 3 4 

0.02 0 I 1 12 11 2 2 3 3 4 4 

0.03 I 1 12 11 2 2 3 3 4 4 5 

0.04 1 12 11 2 2 3 3 4 4 5 5 

0.05 59 60 6 3 3 4 4 4 5 5 6 

0.06 104 26 7 5 5 5 5 5 6 6 6 

0.07 44 11 8 6 6 6 6 6 7 7 7 

0.08 25 15 10 8 7 7 7 8 8 8 9 

0.09 20 14 10 9 9 9 9 9 9 10 10 

0.1 19 15 13 12 11 11 11 11 11 11 12 

Rows and columns are the same as Table 1. With the exception of the band of very large 
errors, the performance is better than all other methods. A value of A = 104% indicates a 
persistent failure of regime tracing. 

Table 4. The A Matrix for the IKF1 for the Double-Well System Using an 

Observational Noise Scale of q, = 1 

/x 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

0.01 55 55 55 56 56 56 56 56 56 56 56 

0.02 55 55 56 56 56 56 56 56 56 56 57 

0.03 55 56 56 56 56 56 56 56 56 57 57 

0.04 56 56 56 56 56 56 56 57 57 57 57 

0.05 56 56 56 56 56 57 57 57 57 57 57 

0.06 56 56 57 57 57 57 57 57 57 57 58 

0.07 57 57 57 57 57 57 57 57 58 58 58 

0.08 57 57 57 57 57 57 58 58 58 58 58 

0.09 57 57 57 57 57 58 58 58 58 58 58 

0.1 57 57 57 58 58 58 58 58 58 58 58 

Rows and columns are the same as Table 1. There is no sensitivity of the IKF1 for the 

noise parameters. Roughly, the observational error is cut in half. 
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Figure 4a. (top) A section of the double-well system undergoing a switch and for EKF assimilations with 
decreasing observation frequency. Generally, fewer observations cause a delay in the switching of the 
assimilation. The exception for the SKIP-I case is caused by a number of bad observations at the time. 
(bottom) The various sensitivity functions of the assimilations. The spikes occur when the assimilation 
switches. 

EKF assimilations is shown in Figure 4a (compare Figure 2). 
The true signal performs a regime switch + 1 --• -1. The 
SKIP-0 (i.e., the original) assimilation traces this switch with 

a delay of about six time steps. If we take observations only 
at every second time step, the assimilation cannot trace the 
switch anymore, at least not during the time interval consid- 
ered. Because there was a good observation in time, the 
SKIP-2 assimilation was able to trace the switch, unlike the 
SKIP-4 assimilation which missed it. There are a number of 
bad observations, and this can be seen in the SKIP-1 
assimilation which is worse than the SKIP-2. The behavior 

of the IKF3 assimilation is different, as we see in Figure 4b. 
The switch is recognized almost immediately when observa- 
tions were available at all times. With data insertions every 
other time step, the tracing of the switch is delayed by about 

eight time steps. As in the EKF assimilation, the perfor- 
mance improves when we take observations only every third 
time step, now switching the regime three steps later. In the 
SKIP-3 case the switching still occurs, with a delay of some 
15 time steps. 

All these results are in accordance with the investigations 
of Miller et al. [1993], who studied the EKF's sensitivity to 
missing observations in greater detail. 

Lorenz System 

To numerically realize system (13) we again used 
DGEAR, with a step size of 0.025. This gives an average 
oscillation period around the unstable convective equilibria 
of--•40 time steps. Because the Lorenz system will undergo 
regime switches without any additional noise, the total 
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Figure 4b. The same as Figure 4a, now with the IKF3 assimilation. Note that the delay time is much 
shorter now. ,Even the SKIP-3 assimilation traces the switch after about 20 time steps. A main difference 
from. the EKF is the width of the sensitivity spikes; they are much wider for the IKF3. 

integration time can be much smaller than that for the 
d0uble-well s. ystem. Hoveever, to achieve stability in the 
statistics we integrated (13) over 20,000 time steps. Figure 5 
indicates that the mean dbration time in a single regime is 

fibout four cycles, Such that there are about 20,000/(4 x 40) 
• i00 regime chanl•es. If we write (13) in the form ñ(t) = 
•[ •(t)], then the system we actually deal with is 5•(t) = 
•[ x(t)] + n(t). Here n(t) is a random process with a 
prescribed covariance of the form /xI, with /x being taken 
from a specific set as described below. As we already 
mentioned, we dse a system noise ½ovariance of the form 

/xI + vC. Because now there is "internal" noise in the 
process which comes from its chaotic properties we let/x and 
v vary in a much broader range; we used the range 10 -7, 
10 -6, ß ß ß , 101 . As in the former example, the observational 
noise covariance was taken to be •, with q• assuming 
various values, as described below. 

We see the x coordiriate of the process, calculated for a 

noise level of (/z, •,) = (10 -5 , 10 -5) (in a iypical section in 
Figure 5) together with the three IKF3 regime weights. The 
observational noise scale was q• = 49 which is about the 
average .variability of the system confined to one of the 
quasi-stable regimes. Again, as in the double-well system, 
the regimes are traced very well, with sharp changes during 
the transitions. Moreover, the spikelike behavior of the •o0 

regime is unchanged, although not every spike leads to a 
transition. We conclude that the weighting /3 gives a very 

natural definition of "regime". 

Figure 6a shows the EKF assimilation (x values) in a 
smaller section, this time using an observational noise level 

of q• = 100. From the assimilated curve we clearly see that 
the regimes are not traced confidently (the shaded areas). 
The assimilation tends to lose contact with the true process, 

although once this contact is established the assimilation is 
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Figure 5. (a) A typical realization of. the Lorenz system (the x coordinate). One clearly sees the two 
quasi-stable regimes (negative and positive x values). The three lower panels show the regimes as detected 
thro_ugh the IKF3 assimilation weights (b) •o+, (c) •o-, and (d) •o 0 (noise parameters are (/•, •,) = (10 -3 , 
10 -3) and p = 100). As in the double-well system, there is a sharp change in the weights during the 
transitions; these appear as spikes in the •o 0 weight. 

actually quite good. The general pattern described by the 

sensitivity function is, starting from almost zero values after 

a transition, a gradual increase to maximum values of about 

0.07 when the regime is dying. After this, in a time span of 

about five steps, there is a sharp drop to zero values and a 

return to the old values. This is probably caused by the 

successive transition of •o 0 through the strongly stable and 
unstable manifolds. During this period, observational noise 

has practically no chance to enter the assimilation. The 

regimes are traced confidently by the IKF3, see Figure 6b, 

with only minor delays during the transitions. The filtered 

values show larger high-frequency disturbances by observa- 

tional noise than by the EKF. This is reflected in the 

sensitivity function, which never approaches zero at any 

time or changes as sharply between extreme values; its 

values never fall below 0.02. This is probably one of the main 
reasons for the different behavior of the EKF and IKF3. This 

is especially clear at time steps 5500-5650. Whereas the 

IKF3 sensitivity assumes lower values only after ---5660, that 

is, when the process is stable in •o_, the EKF shows zero 

values at --•5620 and ends up in the wrong regime. We are not 

in a position to explain the different behavior of the sensi- 

tivity functions. 

The IKF2 assimilation (Figure 6c) occupies an intermedi- 

ate position between EKF and IKF3. This applies to the 

small-scale observational noise seen in the assimilated val- 

ues (which is smaller under the EKF and larger under the 

IKF3) as well as the delays needed to follow the transitions 

(larger under EKF and smaller under IKF3). Compared to 

the other filters, the IKF2 sensitivity function completely 

lacks any greater variability, departing only slightly from the 

mean value that marks the minimum sensitivity of the IKF3. 

Similar to the double-well system, this is easily explained by 

the similarity of the two quasi-stable regimes. Their higher 

stability lets the sensitivity settle at a value too low for 
observational noise to become effective. A constant value of 

about 0.05 seems large enough to let the IKF1 assimilation 

always stay in the correct regime (Figure 6d). The enlarged 

IKF1 sensitivity can also be seen during the period in the •o_ 

regime where the errors are larger compared to the other 
assimilations. 

This can be verified by looking at the A values. We have 

A = 32% for the EKF, and A = 8%, 35%, and 22% for the 

IKF3, IKF2, and IKF1 assimilations, respectively. Tables 

5-8 give a thorough overview of what happens for the case of 

the smaller observational noise with q• = 49. 

For the EKF (Table 5) we see that there are large errors 

when the system noise is small. Only when the nonlinear 

contributions •, go beyond 10 -3 does the EKF trace the 
process confidently. This is in accordance with Miller et al. 
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Figure 6a. (top) The EKF assimilation for the same situation as in Figure 5. There are periods when the 
EKF is in the wrong regime (shaded areas). Note •hat once the assimilation is in the correct regime, its 
errors are quite low. (bottom) The x sensitivity function on the assimilation of x. Note the sharp increase 
of the functions during the regime switches. Note also that at certain times the sensitivity is almost zero. 
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Figure 6b. Like Figure 6a except now for the IKF3. (top) Unlike the EKF, the IKF3 assimilation is able 
to trace all regime switches. This is accompanied by slightly enlarged perturbations caused by observa- 
tional noise, as, for example, at time step 5560. The sensitivity function, (bottom) which is responsible for 
this shows larger average values than the EKF sensitivity. Moreover, the number of sensitivity spikes is 
significantly larger than in the EKF. Note that there are IKF spikes during those cycles when the EKF 
fails to trace the transition. 
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Figure 6c. The IKF2 assimilation. (top) The assimilation itseft is very similar to the EKF case, although 
(bottom) the sensitivity shows much less variability compared to the EKF sensitivity. It varies slightly 
around a mean value of 0.025, a value that is too low for fast transitions to be captured. The low variability 
comes from the lack of an instability which would let the model error grow. 
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Figure 6d. (top) The IKF1 assimilation (which is equivalent to the linear Kalman filtering). All regime 
switches (in the specified section) are traced correctly. Compared to the IKF3, there is more observational 
noise visible in the assimilated values; this is reflected in the larger overall error (A - 22% compared to 
A - 8% for the IKF3). (bottom) The sensitivity function is constant at about 0.05. This value, slightly 
larger than the one for the IKF2, lies just at the threshold of tracing all regime switches confidently. 
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Table 5. The A Matrix of the EKF for the Lorenz 

System With an Observational Noise Scale of 

•= 49 

Table 7. The A Matrix of the IKF2 for the Lorenz 

System With an Observational Noise Scale of 

•= 49 

/z -7 -6 -5 -4 -3 -2 -1 0 1 

-7 34 37 35 33 21 7 6 8 19 

-6 32 36 32 37 18 9 6 8 19 

-5 48 42 42 37 20 8 6 8 19 

-4 27 30 27 24 25 9 6 8 19 

-3 16 17 15 15 11 7 6 8 19 

-2 10 10 10 10 9 8 6 8 19 

-1 7 7 7 7 7 7 7 8 19 

0 11 11 11 11 11 11 12 12 21 

1 30 3(} 30 30 30 30 30 30 34 

/z -7 -6 -5 -4 -3 -2 -1 0 1 

-7 41 41 41 40 40 40 25 10 19 

-6 50 50 50 50 51 46 30 10 19 

-5 52 52 52 52 52 49 31 10 19 

-4 46 46 46 46 46 45 29 1(} 19 

-3 40 40 40 40 39 37 25 9 19 

-2 45 45 45 45 45 44 30 1(} 19 

-1 30 30 30 30 30 29 22 10 19 

(} 14 14 14 14 14 14 13 13 21 

1 31 31 31 31 31 31 31 31 34 

Values of/x and v are given by their decimal exponents. 
Note the area of large errors for small noise scales. The 
performance improves markedly with growing nonlinear 
contributions v. 

Values of/z and v are given by their decimal exponents. 
Note the very large errors for all noise levels, only slightly 
decreasing with larger v's. 

[1993], who find an improvement of the assimilation by 

increasing the system noise appropriately. The large errors 

are certainly induced by the EKF's inability to trace regime 

switches as we have already seen in the example with higher 
observational noise. 

The overall IKF3 performance (Table 6) is much better, 

completely lacking the window of large errors for small 

system noise levels; there the errors are constantly about 
7%. This is the error level that the EKF reaches when the 

system noise is increased. The values at very large system 
noise levels coincide with those for the EKF. 

The picture for the IKF2 (Table 7) has changed consider- 

ably compared to its behavior in the double-well system. For 

practically all system noise levels there is now an error of 

about 40-50% of the observational error. Increasing the 

nonlinear part of the system noise has no effect at all, 

probably because there is no mechanism for internal error 

growth without any instability. Here we see a principal 

difference from the nonchaotic double-well system. 

This is supported by the results of the IKF1 assimilation 

Table 6. The A Matrix of the IKF3 for the Lorenz 

System With an Observational Noise Scale of 

•= 49 

/x -7 -6 -5 -4 -3 -2 -1 0 1 

-7 7 7 7 7 7 7 7 9 19 

-6 7 7 7 7 7 7 7 9 19 

-5 7 7 7 7 7 7 7 9 19 

-4 7 7 7 7 7 7 7 9 19 

-3 7 7 7 7 7 7 7 9 19 

-2 7 7 7 7 7 7 7 9 20 

-1 8 8 8 8 8 8 8 9 20 

0 12 12 12 12 12 12 12 13 21 

1 31 31 31 31 31 31 31 31 34 

Values of/z and v are given by their decimal exponents. 
For all noise levels the performance is very good, compara- 
ble to the best EKF case with increased v. 

(Table 8) which uses, as the only regime, the point to m = 
(0.9, 0.9, 23.7) (which is the estimated mean value of the 

process). This point has, similar to the origin, one unstable 

and two stable manifolds, the instability being smaller than 

that of the origin. The errors are significantly smaller than 

those of the IKF2. For smaller system noise there is a 

difference of up to 15%, and the performance improves 

further with larger v. 

To support the view that instabilities are crucial for the 

error model, we modified the IKF1 in the following way: 

Instead of using the local linearization as the error model, we 

fitted a linear (Markov) model to the anomalies relative to 

tom, using the method of least squares [cf. yon Storch et al., 
1993]. The model thus determined must lack instabilities. 

The assimilation with this model was entirely useless since 

the sensitivity was practically zero at all times. This be- 
comes understandable when we consider the vast difference 

in magnitude between observational and system error. From 

the definition of the Kalman matrix K, compare (7), we see 

Table 8. The A Matrix of the IKF1 for the Lorenz 

System With an Observational Noise Scale of 

•= 49 

/z -7 -6 -5 -4 -3 -2 -1 0 1 

-7 31 31 31 30 30 28 17 9 18 

-6 39 39 39 39 38 33 20 10 18 

-5 36 36 36 36 36 31 19 10 18 

-4 35 35 35 35 36 31 20 10 18 

-3 28 28 28 28 28 26 17 9 18 

-2 37 37 37 37 37 35 21 10 18 

-1 20 20 20 20 20 19 15 10 19 

0 14 14 14 14 14 14 14 13 20 

1 31 31 31 31 31 31 31 31 34 

Values of/x and v are given by their decimal exponents. As 
in the double-well system, there is not much sensitivity to 
the noise parameters. Note that the errors are about one 
third of the observational noise, compared to one half for the 
double-well system. 
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Table 9. The A Matrix of the EKF for the Lorenz 

System With an Observational Noise Scale of 

q•= 0.01 

Table 11. The A Matrix of the IKF2 for the Lorenz 

System With an Observational Noise Scale of 

0 = O.Ol 

/x -7 -6 -5 -4 -3 -2 -1 0 1 

-7 3 3 4 6 14 41 84 99 100 

-6 4 4 4 7 14 41 84 98 100 

-5 5 5 5 7 14 41 84 99 100 

-4 9 9 9 10 15 42 84 98 100 

-3 22 22 22 22 24 44 84 99 100 

-2 57 57 57 57 58 63 86 99 100 

- 1 91 91 91 19 91 91 93 99 100 

0 100 100 100 100 100 100 100 100 100 

I 101 101 101 101 101 101 101 101 101 

/x -7 -6 -5 -4 -3 -2 -1 0 1 

-7 107 101 65 13 14 41 84 99 100 

-6 990 844 328 13 14 41 84 99 100 

-5 412 407 198 14 14 41 84 99 100 

-4 28 27 25 14 15 42 84 98 100 

-3 24 24 24 23 25 44 84 99 100 

-2 58 58 58 58 58 63 86 99 100 

-1 91 91 91 91 91 91 93 99 100 

0 100 100 100 100 100 100 100 100 100 

1 101 101 101 101 101 101 101 101 101 

Values of g and v are given by their decimal exponents. 
The results have improved markedly with the smaller obser- 
vational error. All regime transitions are traced confidently. 

that if the observations are poor enough (large R), either the 

system noise Q or the error growth through L (compare (6a)) 

has to be large in order to prevent K from becoming small. 

The occasional bad performance of the EKF as well as the 

IKF2 for the Lorenz system is due to a lack of growth in the 

assimilation error model which could compete with the error 

growth caused by the chaotic dynamics. The differences 

between the assimilation methods disappear, and EKF and 

IKF2 improve, with stronger true white noise forcing. 

Choosing the noise scale/x from the range 1, 2, ß ß ß, 10, with 
constant v = 0 and $ = 49, the sensitivity of all assimilations 

is increased significantly, and the filters are much more 

governed by the observational input. Moreover, the pro- 

cesses are much less governed by chaotic dynamics than 

before. It turned out that EKF and IKF3 perform almost 
identically, with slightly smaller errors of about 1-2% for the 

EKF, and errors which are about 5% larger for the other 

methods. All regime transitions are traced almost instantly. 

If we keep the variance of the forcing noise small and only 
reduce the observational error, the chaotic nature of the 

process is preserved but the observational impact is in- 

The values of g and v are given by their decimal expo- 
nents. Note that extremely large errors occur for small 
system noise. An error of A = 1000%, which is about 10 
(=1000 x 0.01) in the dimensionless units of the Lorenz 
system, indicates that there is no correct regime tracing at 
all. With larger v values the errors decrease considerably. 

creased. With this setting we made a series of experiments 

all of which point in the same direction. The EKF and IKF3 

still perform well, but IKF2 and IKF1 are much worse now. 

Using an observational error of $ = 0.01 the EKF and IKF3 
results are given in Table 9 and 10. The two are quite 

comparable; only for very small noise levels does the EKF 

perform up to 3% better. For increasing noise, both methods 

approach an assimilation error of 100%, that is, the quality of 

pure observations. 

Extremely large errors of up to 990% occur for the IKF2, 

compare Table 11, when the system noise is small. This is 

certainly due to a persistent failure in tracing the regimes 

correctly, which now weighs much stronger with the re- 
duced observational noise (which is the scale for the A 

measures). The situation is better for the IKF1, Table 12, but 

still there are many false regimes involved for small system 
noise. 

We finally performed assimilations with missing observa- 

Table 10. The A Matrix of the IKF3 for the Lorenz 

System With an Observational Noise Scale of 

0 = O.Ol 

/x -7 -6 -5 -4 -3 -2 -1 0 1 

-7 6 6 6 8 14 41 84 99 100 

-6 6 6 6 8 14 41 84 98 100 

-5 6 6 7 8 14 41 84 99 100 

-4 10 10 10 10 16 42 84 98 100 

-3 23 23 23 23 25 45 84 99 100 

-2 57 57 57 57 58 63 86 99 100 

-1 91 91 91 91 91 91 93 99 100 

0 100 100 100 100 100 100 100 100 100 

1 101 101 101 101 101 101 101 101 101 

Values of/x and v are given by their decimal exponents. 
There is almost no difference from the EKF errors; only for 
small system noise the errors are slightly larger. 

Table 12. The A Matrix of the IKF1 for the Lorenz 

System With an Observational Noise Scale of 

0 = O.Ol 

p. -7 -6 -5 -4 -3 -2 -1 0 1 

-7 99 88 45 11 13 41 84 99 100 

-6 136 122 53 11 13 41 84 98 100 

-5 148 139 61 12 13 41 84 98 100 

-4 21 21 20 14 15 41 84 98 100 

-3 24 24 24 24 25 44 84 99 100 

-2 58 58 58 58 58 63 86 99 100 

-1 91 91 91 91 91 91 93 99 100 

0 100 100 100 100 100 100 100 100 100 

1 101 101 101 101 101 101 101 101 101 

Values of g and v are given by their decimal exponents. As 
in the IKF2 case, there are larger errors for small system 
noise, and they decrease with growing v. 
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Figure 7. Comparison of EKF and IKF3 with respect to missing observations. (top) The EKF shows a 
faithful assimilation only for the cases SKIP-0 and SKIP-1. For the other two cases the filter shows a 
complete failure to trace the systems' evolution. (bottom) The IKF3 performance. Only the case SKIP-3 
shows sporadic failures in the tracing of the system. In all other cases the filter stays rather close to the 
true evolution. 

tion. The parameters are those of Figures 6a-6d except that 
we chose the nonlinear contribution to be v = 0.1. Figure 7 

shows the results for the EKF and IKF3, with observations 

being withheld for 0, 1, 2, and 3 time steps. Both filters trace 
the transitions correctly when there is nothing withheld. 
With observation insertions every second time step, the 

EKF shows one wrong cycle at time steps 4400-4500, and 
the IKF3 is without any failure. By further reducing the 
observation frequency the transition failures become so 
frequent that the EKF is practically worthless. (This is 
worse with reduced v.) The situation is different for the 
IKF3. The assimilations show a rather close contact with the 

true values in all but the last experiment where three 
insertions are withheld. 

7. Conclusions 

One of the conditions that has to be satisfied for an 

application of the extended Kalman filter is the smoothness 
of the assimilating model along possible trajectories. Once 
this condition is violated the filter quality is degraded dras- 

tically. This applies to highly nonlinear systems whose 
trajectories undergo sharp changes in a relatively short time. 
These "switches" are characteristic of systems which show 

regime-like behavior, and the main task for the assimilation 
is, first, to trace the switches simultaneously and, second, to 
assimilate correctly inside a regime. As an alternative 

method we presented the interactive Kalman filter (IKF). 
The filter makes explicit use of the regimes. By utilizing only 

the local structure of the regimes the error model of the filter 

is defined through a procedure that handles the regimes 
interactively. 

To test the IKF andto compare it with the EKF we used 

two well-known regime-like systems, the double-well system 
and the Lorenz system, superimposed by a white noise 

forcing. The EKF failed in tracing regime switches correctly, 
especially at low noise levels. The incorporation of second- 
order nonlinear effects into the error model (similar to that of 

Miller et al., [1993]) could only partly improve the filter 
results. The assimilation results for the IKF heavily depend 

on the choice of the participating regimes. When we used all 
three equilibria as regimes, the IKF performance was much 
more stable than the EKF. Removing the unstable origin 

from the set of interacting regimes led, however, to a 

significant loss in the quality of the assimilation. On the other 
hand, when using the mean value, which is not an equilib- 
rium in the Lorenz model, as a regime the performance was 

better than for the IKF2 which used two regimes. We see 

that choosing which regimes will participate in the IKF is not 
a trivial task. Moreover, if one was to use more and more 

regimes, the filter would become as unstable as, and finally 
equivalent to, the EKF. For the case of equilibrium regimes, 
however, it seems obvious that the performance w•il im- 

prove with the number of equilibria used. 
The lack of crucial equilibria can be fatal, as we have seen 

for the IKF2. For systems which show very fast error 

growth, namely chaotic systems, there must be a compara- 
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ble mechanism of error growth in the corresponding error 
model of the assimilation. Since there are no unstable 

equilibria involved, the IKF2 error model's failure is obvi- 

ous. For the EKF, however, it is not at all easy to sort out 

the very point where the error model becomes wrong. It 
appears that the EKF error model reacts too sensitively to 
the various states during the assimilation, so that the filter 

finally becomes unstable. Since the IKF3 performs so well in 
those cases, and since the IKF3 uses "global" information 
via the equilibria, we argue that it is the local character of the 
EKF which causes it to fail. 

The profit gained by using equilibria (or, more generally, 
appropriate regimes) has to be paid for by the difficulties that 
arise in finding them or, to be realistic, finding as many as 
possible. For simpler systems like the ones we dealt with or, 
for example, systems that are encountered in the engineering 
sciences one can often easily write down analytical solu- 
tions. However, as soon as the systems become larger and 
more complex such as those in the geosciences, the equilib- 
ria, especially the highly unstable ones, are perfectly hidden 
in the systems' mathematical formulation as well as in the 
frizzy output data. 

Most likely, one would find equilibria by considering the 
physics involved in the process. One might even be success- 
ful by implementing mathematical methods like, for in- 

stance, a conjugate gradient method with the help of a good 
first guess. This method certainly cannot work without an 

appropriate prefiltering of the process in order to decrease 
the number of degrees of freedom. The regime itself, i.e., the 

local linear model, could then be estimated by the use of 
Monte Carlo methods. 

This method actually worked for the ENSO model of 

Zebiak and Cane [1987]. We found a group of equilibria 
which look promising in their physical structure as well as in 

their stability properties. Certainly, the equilibria of that 
model are of physical interest in their own right. We will use 
them in a forthcoming study as another test case for the IKF. 

Appendix: Nonlinear System Noise 
In order to estimate the nonlinear contribution to the 

assimilation error, we performed Monte Carlo experiments 
using one long run of 20,000 time steps with no extra forcing. 

We then created a series of white noise processes w(t) with 

covariance C = q•I, where q• was one of 10 -4, 10 -3, 10 -2, 
10 -• , and superimposed each of these noise processes onto 
the original process. Given one p we determined, from both 
the undisturbed and the disturbed processes, one-step fore- 
casts for both the full model and its local linearization and 

calculated their differences; formally this is 

of 

n(t) = f[ x(t) + w(t)] - f[ x(t)] - •xx [ x(t)]w(t) 

The nonlinear error covariance, N = {n(t)n T(t)), is certainly 
dependent on the different scales of the noise w(t), and 

modeling of these dependencies is not feasible for our 
purposes. 

As a simplification we applied the following approach. 

Starting from the assumption that the correlation structure of 

the nonlinear error is constant only if the error is not too 

large, we estimated this correlation for each of the processes 

above. We found that, in fact, the correlation converged to 

the following matrix: 

C __ 

1.0 0.2 0.0 

0.2 1.0 -0.3 

0.0 -0.3 1.0 

Here "converged" is used in an informal sense. It means 

that with w(t) approaching zero, the correlation matrices 

approached C. The size of the noise is accounted for by a 
scaling factor •,: N = •C. The best •, has to be found a 

posteriori. 
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