
Multimed Tools Appl (2018) 77:6471–6502

DOI 10.1007/s11042-017-4556-6

Interactive live-streaming technologies and approaches

for web-based applications

Luis Rodriguez-Gil1,2
· Pablo Orduña1,2

·

Javier Garcı́a-Zubia1,2
· Diego López-de-Ipiña1,2

Received: 25 August 2016 / Revised: 9 January 2017 / Accepted: 27 February 2017 /

Published online: 11 March 2017

© The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract Interactive live streaming is a key feature of applications and platforms in which

the actions of the viewers affect the content of the stream. In those, a minimal capture-

display delay is critical. Though recent technological advances have certainly made it

possible to provide web-based interactive live-streaming, little research is available that

compares the real-world performance of the different web-based schemes. In this paper we

use educational remote laboratories as a case study. We analyze the restrictions that web-

based interactive live-streaming applications have, such as a low delay. We also consider

additional characteristics that are often sought in production systems, such as universal-

ity and deployability behind institutional firewalls. The paper describes and experimentally

compares the most relevant approaches for the study. With the provided descriptions and

real-world experimental results, researchers, designers and developers can: a) select among

the interactive live-streaming approaches which are available for their real-world systems,

b) decide which one is most appropriate for their purpose, and c) know what performance

and results they can expect.

Keywords Webcam · Live streaming · Remote laboratories · Online learning tools · Rich

interactive applications

� Luis Rodriguez-Gil

luis.rodriguezgil@deusto.es

Pablo Orduña

pablo.orduna@deusto.es

Javier Garcı́a-Zubia

zubia@deusto.es

Diego López-de-Ipiña

dipina@deusto.es

1 Faculty of Engineering, University of Deusto, Avda. Universidades, 24, 48007, Bilbao, Spain

2 DeustoTech - Deusto Foundation, Avda. Universidades, 24, 48007, Bilbao, Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-017-4556-6&domain=pdf
http://orcid.org/0000-0003-3611-1418
mailto:luis.rodriguezgil@deusto.es
mailto:pablo.orduna@deusto.es
mailto:zubia@deusto.es
mailto:dipina@deusto.es

6472 Multimed Tools Appl (2018) 77:6471–6502

1 Introduction

The latest social trends and technological advances have led to the emergence of various

popular web-based live streaming platforms, such as YouTube Live,1 TwitchTV,2 Instagram

Livestream3 and Facebook Live.4 These platforms are designed to maximize scalability

and, though they are indeed live, they still allow a relatively high delay (several seconds

or more). This enables them to use a larger buffer, heavier compression and more effec-

tive transcoding techniques than they otherwise could. The work in [48] provides further

detail on these issues and outlines the TwitchTV architecture, which is a good example.

Specifically, the measured broadcast delay of that platform varies between 12 to 21 sec-

onds. The negative impact on user experience is not too high, because for non-interactive

live-streaming applications —such as live sports—, such a delay is acceptable.

However, there are also many applications of live streaming which need to be interactive.

In interactive live streaming systems, the viewers affect the content of the stream. A com-

mon example is a videoconference application, in which viewers interact with each other.

Other example are remote laboratories, which will be used in this work as the main case

study. These labs allow remote students to view specific hardware through a webcam and

interact with it remotely in close to real time. Figure 1 characterizes the different types of

streaming and some of its applications.

Interactive live-streaming systems share some challenges with standard live-streaming

platforms. One of those is the importance of being web-based. Throughout the last years

there has been a powerful trend towards shifting applications to the Web. However, certain

features, such as multimedia, have traditionally had more limited support [31, 41]. Applica-

tions that depended on them had to find workarounds: many chose to rely on non-standard

plugins [9], such as Java Applets5 or Adobe Flash.6 Others accepted a significant decrease

in their quality or performance, or could not be migrated at all. Today, with HTML5 [16]

and with other related Web standards such as WebGL [44], this is starting to change. One

of the features for which applications have traditionally had to rely on external plug-ins was

video streaming. Now, as an example, large websites such as Youtube or Netflix7 rely by

default on HTML5 [47].

Applications that require interactive live-streaming, however, have additional require-

ments, expectations, and limitations. VOD (Video-On-Demand) streaming applications,

such as Youtube or Netflix, are the most common platforms. Because videos exist far in

advance before the users view them, they can be preprocessed at will. They can use heavy

compression and prepare the video for different qualities and transmission rates. Also, they

can be streamed through adaptive streaming with relative ease. Also, they rely on buffering

to provide a greater quality despite network issues, and to be able to use a larger compression

frame. Live applications, however, have limitations at those respects. As previously men-

tioned, those that are not interactive (e.g., broadcasting a live sports event), can withstand

1https://www.youtube.com/live

2https://twitch.tv

3https://instagram.com/livestream

4https://live.fb.com

5http://java.com

6http://www.adobe.com/es/products/flashplayer.html

7https://www.netflix.com

https://www.youtube.com/live
https://twitch.tv
https://instagram.com/livestream
https://live.fb.com
http://java.com
http://www.adobe.com/es/products/flashplayer.html
https://www.netflix.com

Multimed Tools Appl (2018) 77:6471–6502 6473

Fig. 1 Characterization of the different types of streaming and some of its applications

several seconds delay without issues. For those that are interactive (e.g., remote laboratories,

collaborative tools, video conferencing applications) more than a second delay is already

high: according to some HCI analysis, beyond a 0.1 seconds delay the user can notice a

system is not reacting instantaneously, and beyond 1 second the user’s flow of thought is

interrupted [27].

In this context, researchers and system designers and developers that want to implement

interactive live-streaming systems face certain difficulties. Major live-streaming platforms

are closed and proprietary. It is difficult to use them for learning and research purposes

[48], and they are not suitable for interactive live-streaming or as middleware for other

applications. Moreover, the schemes that are available for implementing interactive live-

streaming are complex. For a real-world usage, the adequacy of a scheme may depend on

the video format, on the communication scheme, on the compatibility of different browsers,

on the resources and bandwidth available, etc. Most of those aspects, individually, are exam-

ined in the literature. However, the real-world performance and limitations of the different

real-world schemes cannot be readily predicted from it. There is little real-world exper-

imental data that researchers and developers may use to take a truly informed decision

on the approaches they choose. The main goal of this work is to provide them with that

information.

In this paper, in Section 2, we describe the goals and contributions of this work and the

particular requirements of web-based interactive applications that rely on live-streaming that

we will consider. To illustrate the case practically, we put special focus on remote laborato-

ries and educational applications. We propose some criteria through which the effectiveness

of each approach can be compared. Then, in Section 3, we examine and describe several

approaches that Web-based interactive applications may use for providing live-streaming

capabilities. The five of them that seem potentially more relevant according to the previ-

ously defined criteria are described in more detail, and selected for further experimental

comparison. In Section 4 we describe the experiments that have been conducted to measure

the effectiveness and real-world performance of those five approaches. In Section 5, we

compare the results of the different experiments. In Section 6 we examine the results and

comparison and we offer an interpretation and some guidelines for potential application.

6474 Multimed Tools Appl (2018) 77:6471–6502

Finally, in Section 7 we draw a number of conclusions and we outline some possible future

lines of work.

2 Motivation

2.1 Challenge and purpose

In a live streaming system the content is typically produced while it is being broadcast.

That is, essentially, what differentiates it from non-live systems. However, there is still a

very significant delay between the moment a frame is captured and the moment it is dis-

played in the target device [1, 15]. This delay is not only the result of network or hardware

latency. It is built into the design to achieve a higher scalability [43]. In non-interactive

live streams, a delay of seconds does not typically harm the QoE (Quality of Experience),

and it makes it possible to leverage techniques such as buffering, video segmentation and

high-compression motion codecs. An example of this is the case of the Twitch8 platform. It

relies on different techniques depending on the target device, but it tends to have a higher

than 10 seconds delay [48]. Other example is the YouTube9 live streaming platform, which

lets users choose between better quality or lower latency. Even in the lower latency mode

a capture-display delay higher than 20-30 seconds is, reportedly, not unexpected.10 This is

appropriate for several types of applications, such as broadcasting a sports event. However,

for certain interactive applications, delays higher than a second, as previously established,

can already be considered high.

An interactive live streaming application differs from a non-interactive one. Users are not

simply passive spectators to the content. Instead, they are able to interact with it or through

it, affecting the stream [48]. This imposes a strong constraint on the maximum acceptable

capture-display delay that is not present in other types of live streaming. It could thus also

be considered as near-real-time streaming. Some of the potential applications for interactive

live streaming (see also Fig. 1) are the following:

– Videoconferencing software, such as Skype,11 Google Hangouts,12 or Apple Face-

time,13 in which users view, listen and react to each other in near-real-time.

– Surveillance systems, in which the viewer should be able to see what is happening in

almost real-time.

– Remote rendering systems, in which the server handles the rendering and sends the

video to the client in real time. An example is cloud-based gaming [36]: rendering a

videogame in the server-side and forwarding the input from the client. Other example

is free-viewpoint rendering [40]: in such a system, with many video inputs, the server

has a huge amount of video data. To reduce bandwidth requirements, only the relevant

portions are served to the client in real time.

8http://www.twitch.tv

9http://www.youtube.com

10Though no official figures are provided by YouTube, several observations and informal tests are avail-

able, such as those found at http://blog.ptzoptics.com/youtube-live/low-latency-streaming/ or at the Google

product forum (https://productforums.google.com/forum/).

11https://www.skype.com

12https://hangouts.google.com

13https://apple.com/facetime

http://www.twitch.tv
http://www.youtube.com
http://blog.ptzoptics.com/youtube-live/low-latency-streaming/
https://productforums.google.com/forum/
https://www.skype.com
https://hangouts.google.com
https://apple.com/facetime

Multimed Tools Appl (2018) 77:6471–6502 6475

– Interactive remote laboratories, in which users interact with real physical equipment

located somewhere else with a webcam stream as their main input.

The contributions of this work are intended to be useful for any web-based interactive live

streaming application. However, due to the experience and background of the authors, the

examples of this work will mainly relate to this fourth type of application: remote laborato-

ries. Nowadays, remote laboratories often rely on relatively old technologies and approaches

to provide interactive live streaming. Examples of such an approach is refreshing an image

from JavaScript, or relying on the M-JPEG codification scheme. It is currently not clear,

however, which of these relatively old approaches are more effective. Also, it is not clear

whether newer approaches are not being used due to:

– Inertia and developer preference.

– More advanced technologies (such as adaptive streaming, video segmentation, or high-

compression codecs) not being effective for near-real-time streaming.

– Newer approaches having significant real-world issues, such as portability issues, low

reliability or difficulties to deploy behind institutional proxies.

– No literature available on the approaches available, their effectiveness, and the expected

real-world outcome.

This work thus aims to shed more light in that area. The goal is that the remote laboratory

community in particular and other interactive live streaming applications in general have

the information to make better decisions on which streaming approaches to implement.

And, moreover, so that they can know what effectiveness and performance they can expect

by doing so. It also aims, specifically, to describe the currently used approaches and their

architecture, and to propose some novel ones.

2.2 Contributions

The contributions of this work are thus the following:

– A brief analysis of which characteristics are important for interactive live streaming

applications.

– Description and architecture of the most common interactive live streaming approaches

that are currently used by remote laboratories (JavaScript-based image refreshing, and

native M-JPEG).

– Description and architecture of some more advanced approaches, which, to our knowl-

edge, have not been used in real-world remote laboratories but which could be

superior. (JavaScript-based M-JPEG, JavaScript-based MPEG-1 and JavaScript-based

H.264/AVC, all three relying on Web Sockets as a transport).

– Experimental analysis of the support for these approaches across all major desktop and

mobile browsers.

– Experimental performance comparison of those described approaches that are most

relevant.

– Scientific knowledge for existing developers of systems that rely on interactive

live-streaming, that enables them to make educated decisions on the feasibility and con-

venience of incorporating alternative technical approaches into their implementations.

– Conclusions, based on the results of the experiments, on which approaches would be

more appropriate depending on the type of remote laboratory required.

Of all of those contributions, the main one is the experimental performance comparison

among the most relevant web-based approaches.

6476 Multimed Tools Appl (2018) 77:6471–6502

2.3 Remote laboratories

A remote laboratory is a software and hardware tool. It allows students to remotely access

real equipment located somewhere else [9, 13, 24]. They can thus learn to use that equip-

ment and experiment with it without having it physically available. Research suggests that

learning through a remote laboratory, if it is properly designed and implemented, can be as

effective as learning through a hands-on session [5]. Additionally, they can offer advantages

such as reducing costs [26] and promoting sharing of equipment among different organiza-

tions [29]. Many remote laboratories feature one or several webcams. Through them, users

can view the remote equipment. Simultaneously, they can interact with the physical devices

using means such as virtual controls that are physically mapped to them. (e.g., [14, 20, 42,

46]). Some remote laboratories are even designed to allow access from mobile devices [8].

An example of remote laboratory is depicted in Fig. 2. In this particular case,14 the students

experiment with the Archimedes’ principle. They can interact with 6 different instances of

equipment, for which 6 simultaneous webcam streams are needed.

2.4 Technical goals and criteria

We propose a set of technical goals and criteria to compare and evaluate the different

interactive live streaming approaches that will be examined.

The key technical goals that will be considered are the following:

– Near-real-time: The delay between the actual real-life event and the time the user

perceives it —the latency— should be minimum for the interaction to be smooth.

– Universality: The applications should be deployable under as many platforms, systems

and networks and as easily as possible.

– Security: The applications should be secure.

Though less critical, the following traits significantly affect the Quality of Experience

and will be taken into account when evaluating the different possible approaches:

– Frame rate: The higher the better.

– Quality: The higher the better.

– Network bandwidth usage: The lower the better.

– Client-side resources: CPU and RAM usage. The lower the better.

Server-side processing is also an important consideration, especially for production sys-

tems. Though it will be considered and discussed evaluating it quantitatively is beyond the

scope of this work — which focuses mainly on the client-side. Therefore, the experiments

themselves include no server-side measurements.

A last consideration is the implementation complexity of each approach. Beyond the

previously mentioned criteria, in practise, the knowledge, cost and effort required for imple-

menting a specific interactive live-streaming approach is also, in many cases, a determining

factor. Evaluating this complexity quantitatively is beyond the scope of this work.

In the following subsections we briefly describe a simplified streaming platform model.

Additionally, we provide further detail and rationale about the aforementioned technical

goals and criteria.

14The Archimedes’ principle remote laboratory is usually publicly available at: https://weblab.deusto.es/

weblab/labs/Aquatic%20experiments/archimedes/

https://weblab.deusto.es/weblab/labs/Aquatic%20experiments/archimedes/
https://weblab.deusto.es/weblab/labs/Aquatic%20experiments/archimedes/

Multimed Tools Appl (2018) 77:6471–6502 6477

Fig. 2 Archimedes principle remote laboratory at the University of Deusto

2.4.1 Simplified live-streaming platform model

Different live-streaming platform models may exist. A simplified one is shown in Fig. 3.

It is also the general model that is considered in this work. A set of IP cameras provide

their input to the streaming platform through a camera output format. The particular format

will vary, because different camera models support different formats. Common ones are,

for instance, JPG snapshots, M-JPEG streams, and, in newer models, the H.264 format.

The streaming platform receives the input and transcodes it into the target format. Often,

the platform will also briefly act as a cache server for the input, so that it can scale for

Fig. 3 Simplified live-streaming platform model

6478 Multimed Tools Appl (2018) 77:6471–6502

an arbitrary number of users without increasing the load on the webcams. The transcoded

output is served through the server-client channel protocol (e.g., standard HTTP, AJAX,

Web Sockets) to the client’s browser. Depending on the approach, the browser will render it

natively or through other means.

2.4.2 Near-real-time

In a live-streaming context end-to-end latency (sometimes also known just as latency), is

generally considered to be the time that elapses between the instant a frame is captured by

the source device and the time it is displayed on the target device. For most types of live

streaming applications a relatively high (some seconds) latency can be tolerated without

significantly harming the user’s experience [6, 32]. Latency is introduced in each stage of

the process. Noteworthy delays are the latency introduced by the camera, the latency intro-

duced by the server-side encoding, the latency introduced by the network and the latency

introduced by the client (decoding and displaying). These sources of latency are analyzed

and discussed in detail in the white paper by Axis Communications [22]. Tolerating a rela-

tively high delay is a significant advantage. Especially in a bandwidth-constrained network,

codecs that provide large compression but which require heavy pre-processing can be used.

Issues such as jitter can be solved with a longer buffer. Most HTTP streaming methods rely

on buffering to provide adaptation for bandwidth fluctuation, and often separate the stream

into multiple media segments. This adds an unavoidable capture-display delay [23].

Interactive live-streaming applications are much less tolerant to latency. The actions of

the users depend directly on what they are currently seeing on the stream. A few seconds

delay is enough to severely harm their Quality of Experience. Exactly how much latency

can be tolerated and how much it affects user experience varies depending on the applica-

tion. For example, some works report that in conversational applications (e.g., IP telephony,

videoconferencing) 150 ms is a good latency, while 300-400 ms is not acceptable [32]. For

cloud-based games some studies suggest that approximately for each additional 100 ms

latency there is a 25% decrease in player performance [3]. For many other types of com-

mon interactive live streaming applications, such as remote laboratories, there is, to our

knowledge, little specific research available on how much increased latency affects user

experience. However, the interaction style and pace of many of them, such as remote labora-

tories themselves, is generally similar to that of a standard application or interactive website.

Thus, it is reasonable to assume that generalist interaction conclusions are appropriate. In

this line, according to works such as [27], beyond a 0.1 seconds delay the user can notice

that a system is not reacting instantaneously, and beyond 1 second the user’s flow of thought

is interrupted.

Due to all this, supporting near-real-time (which for the purpose of this work, we will

consider as being able to provide a relatively low end-to-end latency) is a particularly

important requirement for an effective interactive live streaming approach, and the set of

techniques that can be applied are significantly different than those that are applied for

standard live-streaming or for VoD (Video on Demand). Modern techniques which are very

popular and effective for standard streaming are sometimes not an option anymore, or are

severely limited:

– Buffering: Would add a delay of at least the buffer length, so it can’t be used or needs

to have a minimal length.

– Segmented streams: Would add a delay of at least the segment length.

– Pre-transcoding: Not really an option if a small delay is required.

Multimed Tools Appl (2018) 77:6471–6502 6479

2.4.3 Universality

The meaning and usage of universality varies between contexts, but in this paper we will

use it to refer to the degree to which an application is technically available to those who

may want to use it. Aspects which increase universality are, among others, the following:

– Being cross-platform

– Being web-based

– Being available across many types of devices (PCs, mobile phones, tablets)

– Having less technical requirements to run properly

– Requiring less user privileges to run

– Being deployable behind more strict institutional firewalls and proxies

Universality is generally positive, but it is important to note that, in practise, it often

implies important trade-offs. Depending on the particular context, needs and requirements

of an application, the actual importance of universality will vary. In the case of remote

laboratories, research suggests that it is one of the most important characteristics [9], but in

other cases this might differ. It is noteworthy that this work aims to contribute to web-based

interactive applications, which, for being web-based, already tend to provide relatively high

universality.

2.4.4 Security

Being secure can be considered a goal of any application. However, the importance will

vary depending on the context. Some technologies tend to provide greater security than

others. For example, remote laboratories and other educational applications are often hosted

by universities. Their IT teams are often hesitant to offer intrusive technologies to students

to avoid exposing them to security risks, for which the university could be liable [9]. All

things equal, non-intrusive technologies are thus preferred.

2.4.5 Frame rate

The frame rate is measured through the frames-per-second (FPS) metric. In some contexts,

50-60 FPS is considered to be a satisfactory visual quality at which increases can hardly be

noticed. However, in practise, in many cases, significantly lower frame rates are used [32].

This is often in fact the case for many interactive live streaming applications.

2.4.6 Quality

Quality is hard to measure because it is actually a qualitative perception that is affected

by many (qualitative and quantitative) variables. Sometimes (e.g., in Youtube) it is used

as a synonym for resolution or pixel density. For simplification, in the comparison of the

different approaches, we will rely the most on the resolution. The particular video codec

that is used also has great influence in the final quality of the stream.

2.4.7 Network bandwidth usage

Live-streaming applications consume significant amounts of network bandwidth. This is

because video content tends to consume significant bandwidth itself, and because often

it has to be provided to many users [38]. Bandwidth usage can thus be a significant cost

6480 Multimed Tools Appl (2018) 77:6471–6502

and limitation, and all things equal approaches that preserve network bandwidth are pre-

ferred. Unfortunately, there tends to be an inverse correlation between network bandwidth

usage and required server-side and client-side processing. That is, the codecs that require

the less bandwidth tend to also be the ones that require the more processing power to code

(server-side) and to decode (client-side). Sometimes specialized hardware is relied upon to

provide more efficient decoding. Adding to the difficulty, some network setups, particu-

larly mobile ones, are inherently unstable and their bandwidth capacity cannot be predicted

reliably [23, 39].

2.4.8 Client-side resources

Different approaches and implementations require different amounts of CPU power and

RAM. The codecs used, particularly, have a very significant influence at that respect. Client-

side processing effort tends to be higher for the codecs that require the less bandwidth. To

compensate for this, however, many devices also provide hardware-level support for par-

ticular codecs. Relying on hardware-level support is most of the time significantly more

efficient, in terms of processing and energy usage. At the same time, because support tends

to vary between different devices, it can sometimes make portability harder. In this work,

the client-side processing effort will be measured in terms of CPU and RAM usage, though

additional variables could be taken into account, such as energy cost, I/O usage or discrete

graphic card usage. It is noteworthy that some applications have different client-side pro-

cessing restrictions than others. All things equal, lower resources usage is better: A Video on

Demand (VoD) application, for instance, could admit a relatively high usage in exchange of

low bandwidth and high quality. There is a single active stream and the user is not expected

to be multi-tasking. However, a remote laboratory or an IP surveillance application which

requires being able to observe many cameras at once would often have stricter limits. See

for instance the remote laboratory in Fig. 2. The students have access to 6 different simulta-

neous streams. Through them, they must be able to interact with the equipment in real-time.

Thus, the resource usage of an individual stream must be significantly conservative.

2.4.9 Server-side processing

Server-side processing can be very high due to the pre-processing, compression and encod-

ing that is sometimes used. Large media servers and systems, and especially those that

aim to scale to many concurrent users per stream, such as Wowza,15 YouTube and Net-

flix, encode a given source video into many separate formats and qualities. Thus, they can

dynamically adapt the stream to the bandwidth and technical restrictions of each user. A

higher or lower quality stream can be served depending on the bandwidth that the user

has available. Also, one format or another can be served depending on whether the user’s

device or browser supports that format or not, and depending even on whether the user’s

device supports hardware acceleration for that format. For interactive applications the possi-

ble choice of codecs and formats is more limited, because the latency cannot exceed certain

values. Also, it is noteworthy that for applications which do not aim to scale to many con-

current users per stream, but which instead aim to serve a relatively high number of different

streams (such as many remote laboratories) it is sometimes convenient to accept a higher

bandwidth usage in exchange of a lower processing effort.

15http://www.wowza.com

http://www.wowza.com

Multimed Tools Appl (2018) 77:6471–6502 6481

Though server-side processing could thus be an important consideration, this paper

focuses on the client-side and therefore, though server-side considerations will be briefly

described, experiments will focus on the client-side.

2.4.10 Implementation complexity

In practise, in production systems, the main factor for choosing an interactive live-streaming

approach will often not be the technical characteristics or performance, but its imple-

mentation complexity. Technically superior approaches may be overlooked in favour of

approaches that require less knowledge and effort and have a lower cost to implement.

The quantitative evaluation of the implementation complexities of each of the different

approaches is beyond the scope of this work. It would be hard to do and very diffi-

cult to reach meaningful results, due to its often developer-specific and subjective nature.

Nonetheless, the architecture used for each experiment will be described and thus the

implementation complexity may be partially inferred from it.

3 Interactive live-streaming approaches

In this section we will describe and analyze some of the different approaches that are

available for web-based interactive live streaming. The first of them (image-refreshing

and native M-JPEG based approaches) are often used by the architectures, use-cases and

implementations of live streaming applications that can be found in the literature. Addition-

ally, we include some novel approaches which are more rarely used, some of which have

only recently become available due to their reliance on new or under-development Web

standards.

The diagram in Fig 4 shows the generalized (and simplified) process that the interactive

live streaming platforms follow from the time a frame is captured to the time it is displayed.

The flow starts when the IP webcam captures a frame. Many different IP webcam models

exist, and different models support different output formats. Some of the most common

are JPG (discrete images), M-JPEG and H.264 streams. Through those formats, the output

Fig. 4 Interactive live-streaming platform process

6482 Multimed Tools Appl (2018) 77:6471–6502

from the cameras is forwarded to the streaming platform. Depending on the source and

target formats, it might or might not be necessary to transcode it into a different format.

Transcoding can take a significant amount of processing power and adds some latency. The

cameras server will briefly store these images, and will be responsible of serving them to the

browser. Different server-client channel protocols are available. Once delivered, the browser

will render the provided data to the user. Depending on the particular scheme, it will rely on

a native component (such as for native M-JPEG videos or for image refreshing) or it will

process, decode and render the data through JavaScript.

In the following subsections we will describe in more detail the different schemes. We

will describe more thoroughly those schemes which best seem to meet the criteria described

in Section 2, and which we will select for the experimental comparison. For most schemes,

we will describe separately the server-side and client-side.

3.1 JavaScript-based image refreshing

This is a mature technique which is technically very simplistic, both in the client and the

server-side. The server simply provides individual access to the current frame and the client

repeatedly asks for a new frame using JavaScript. Despite its technical shortcomings it is

used by many applications in the literature, sometimes as a fallback. Particularly, it is used

by many remote laboratories for which a high FPS isn’t absolutely necessary, including

most of the remote laboratories of WebLab-Deusto,16 LabsLand17 and RemLabNet18 [34].

3.1.1 Client-side

In the client-side only a browser with JavaScript support is required. The HTML contains

an tag which points at the webcam image. Then, from JavaScript, the image tag’s

src attribute is constantly modified. Under all modern browsers —and most legacy ones—

when the src tag is changed the new image is loaded. To prevent some technical issues,

generally some additional low-level considerations are taken:

– To modify the webcam image’s URL in some way (such as by adding a random number

to the GET query parameters) so that no cache issues occur.

– To query for a new image only after the load event has fired, sometimes after a small

delay, so that requests don’t accumulate on slow networks.

3.1.2 Server-side

Server-side this particular approach is also relatively simple. Most IP webcams provide an

image URL that serves one frame, so that URL just needs to be made available either directly

or through a standard web server. Some applications require several concurrent users and

the hardware of webcams is sometimes not particularly powerful, so a cache server can be

used. In that case, a cache server in the same network would continuously request frames

to the camera. Then, whenever the web server asks for a frame, the last cached frame is

served.

16https://weblab.deusto.es

17http://labsland.com

18http://remlabnet.eu

https://weblab.deusto.es
http://labsland.com
http://remlabnet.eu

Multimed Tools Appl (2018) 77:6471–6502 6483

3.2 Motion JPEG

Motion JPEG, often known as just M-JPEG, is a video format with intraframe-only com-

pression: each frame is essentially a separately compressed JPEG image. Because of this,

its compression rate tends to be significantly lower than that of most modern interframe for-

mats [4] (e.g., H.264/MPEG-4 AVC [19], H.265 [18], VP8 [2], VP9 [11]). However, it does

have some significant advantages [21]: it is simple to implement, it requires little mem-

ory and processing power, it responds better than other formats to packet loss, fast image

changes [4], and network jitter [28]. Many IP webcams provide native support for M-JPEG

streaming, and M-JPEG is supported by most modern browsers, including the desktop and

mobile versions of Google Chrome, Mozilla Firefox, Apple Safari and Microsoft Edge. It

is not natively supported, however, by Microsoft Internet Explorer, and there have been sig-

nificant issues with the implementations of most of these browsers. Examples of interactive

live streaming applications that currently rely on M-JPEG are the RexLab.19 Other example

are laboratories based on the iSES20 SDK [33], which support both browser-native M-JPEG

and a JavaScript-based M-JPEG decoder which receives the frame from the server through

WebSockets.

Natively, browsers and HTTP servers implement M-JPEG by sending the videos through

special mimetypes such as multipart/x-mixed-replace and using the Chunked

Based Coding feature of HTTP 1.1 (RFC2616 [7]), which is a data transfer mechanism that

allows the transmission of dynamically generated content. When the request is started the

total length does not need to be known. Instead, an undetermined number of chunks can be

sent, and the request can be completed any time by a final zero-length chunk. In the case of

a M-JPEG stream, servers keep a long-running request, sending the separate JPEG images

that compose the video as separate chunks.

3.2.1 Limitations of browser-native M-JPEG implementations

Although the M-JPEG video format itself is relatively effective for live streaming [10, 21]

and it is indeed a popular format for applications such as webcams, digital cameras or

remote laboratories, there are in practise some technical and reliability issues with the native

M-JPEG implementations of current browers.

Though most major browsers nominally support M-JPEG natively, it fails to work under

certain versions of Google Chrome, Mobile Safari and Firefox. Also, when the stream is

interrupted or fails, browsers do not recover. Under some circumstances, such as receiving

at a higher FPS than the bandwidth allows, Chrome and Firefox often stop displaying the

image but keep internally receiving them.

Motion-JPEG has no particular bandwidth-control or timing provisions. Browsers tend

to render the frames just as they are received. This works as expected when the bandwidth

is high enough for the FPS. The latency is even particularly low when compared to mod-

ern formats such as H.264 because there is no interframe compression or buffering delay.

However, when the server is sending frames at a higher rate than the client can receive

and display, the frames tend to accumulate and thus a significant and growing latency is

19Brazillian consortium headed by the Federal University Santa Catarina (UFSC) remote laboratories. On

21th April 2016 at least 8 different remote laboratories are available at http://relle.ufsc.br, all of which rely

on browser-native M-JPEG.

20http://www.ises.info

http://relle.ufsc.br
http://www.ises.info

6484 Multimed Tools Appl (2018) 77:6471–6502

introduced. Avoiding this is non-trivial and is not always possible, and the implementations

observed in this work do not make any particular provision at this respect.

3.2.2 Client-side

The client-side is, at least in principle, straightforward for those browsers that natively

support M-JPEG, because including an tag is all that is needed. In practise, some

implementations will provide a fallback mechanism (e.g., in [25]) for browsers that do not

support it or that encounter issues, which is not uncommon.

As described in the previous section, reliability and bandwidth control is often an issue.

Browsers provide no particular Motion-JPEG-related functionality or semantics through

JavaScript, so detecting and recovering from failures is non-trivial. Under the tested

browsers (Google Chrome, Mozzilla Firefox) no load or error events are raised on the

 element that hosts the M-JPEG image when the stream is interrupted. In principle,

the binary data of the image could be repeatedly accessed in JavaScript through the HTML5

APIs and explicitly compared to verify whether it has changed or not. In practise, however,

this is very costly in terms of performance and is by default disallowed for externally hosted

images due to CORS restrictions. Furthermore, browsers seem to have issues handling high

FPS, with Chrome, for instance, soon using 100% CPU on that tab and showing a blank

image.

Most observed implementations simply choose to stream at a fixed and relatively low

FPS to partially avoid these issues, or let the user or administrator configure the FPS.

An alternative is to avoid relying on the native M-JPEG capability of the browsers (which

tends to be flawed) and to receive and render the stream through JavaScript instead.

3.2.3 Server-side

Many IP webcam models support M-JPEG natively, so some implementations simply redi-

rect that stream to the end-users. However, if the system should support several concurrent

users, a caching server is required to achieve an acceptable Quality of Service. The server

can try to adapt to available bandwidth by avoiding to queue frames and instead sending

always the latest captured frame. Thus, theoretically, if the client received and displayed the

latest frame just when it is received, the capture-display delay would be minimized and the

server and client would be mostly synchronized. In practise, however, intermediate systems

(including the browsers themselves) often buffer the TCP stream, so this scheme does not

always work as well as expected.

To avoid relying on the (often flawed) native M-JPEG browser support, and to rely on

JavaScript instead, the server will have to send the stream through an alternative means,

such as Web Sockets, WebRTC or AJAX. This way, the previously mentioned glitches can

be bypassed, and it becomes feasible to adapt to the available bandwidth. This comes at the

cost of a higher client-side processing.

3.3 High-compression formats

Image-refreshing and M-JPEG, as discussed, provide relatively poor compression, but they

are nonetheless often used for certain types of real-time interactive applications. That seems

to be, mostly, because:

– They require little client-side and server-side processing power.

Multimed Tools Appl (2018) 77:6471–6502 6485

– They are simple to implement and maintain.

– Encoding and decoding takes very little time so very little capture-display latency is

added.

– They can be used in almost any platform and browser.

In other contexts, however, such as non-interactive live streaming, or such as VoD,

those formats are generally not used and would often be regarded as suboptimal formats.

Instead, those contexts often favour formats and approaches that take higher process-

ing time, require a more complex architecture, and add some latency; but that require

lower bandwidth and provide higher quality. Example formats are, for instance: MPEG-

1 [17], H.264/MPEG-4 AVC [19], H.265 [18], VP8 [2], or VP9 [11]. Today, some of

those are natively supported by some browsers and systems —though not necessarily for

live-streaming—, and some formats can be decoded, at a potentially high processing cost,

through JavaScript. Therefore, in the current state of things, approaches that rely on this

kind of codecs could today be an effective alternative for near-real-time live video stream-

ing. Especially, since they offer a particularly high compression-rate and a relatively high

quality [12].

3.3.1 Client-side

Client-side there are, again, two possibilities. First, in the most ideal case, the browser and

hardware will support the format natively through the HTML <video> tag, and the sup-

port will also provide enough facilities for near-real-time live streaming of that format.

Unfortunately, this is not always a valid approach due to the following:

– The HTML5 standard provides the <video> tag but it does not include live-streaming

support. Though that is likely to change in the future through the MediaExtensions API.

– Each browser supports a different set of codecs, so the server needs to generate different

streams to be truly cross-platform.

As an alternative, or as a fallback, it is possible to use JavaScript-based decoders for

some of the formats. Such a system receives the stream data through Web Sockets, AJAX,

or similar; decodes it through JavaScript, which depending on the format can require sig-

nificant resources; and then renders it into an HTML5 canvas. Though more costly in terms

of processing power, it is truly cross-platform and compatible with any modern browser.

3.3.2 Server-side

Server-side this approach tends to be significantly more costly in terms of resources, espe-

cially if several streams need to be provided. If a single stream is provided, it is also more

costly than in the case of image-refreshing or M-JPEG due to the compression and intra-

frame nature of these formats. A significant difference is also that for an user to be able to

join an ongoing stream, initialization steps are required. That sometimes involves sending

initialization packets through a secondary data channel, and/or waiting for specific periodic

frames before being able to join.

3.4 Non-standard plugins

Traditionally, multimedia features in the browser have been limited. This has led many

media-dependant applications to rely on non-standard plugins such as Adobe Flash or Java

6486 Multimed Tools Appl (2018) 77:6471–6502

Applets. The remote laboratory described in [37], for instance, displays a webcam through

the YawCam21 Java Applet.

Adobe Flash, Java Applets and similar plug-ins have access to native TCP and UDP

sockets, which makes it possible to use non-web streaming protocols such as RTSP [35].

Although this makes this approach particularly powerful, it also implies that it is less uni-

versal. The plugins themselves need to be previously installed, which requires administrator

privileges that are not always available. Also, Java Applets, for instance, are not supported

in mobile devices, and Flash support is very limited. Support in desktop browsers is better,

but still, Chrome has dropped support for Java Applets, and Firefox is expected to drop it

soon. Other browsers are likely to follow similar paths. These issues are also discussed in

[30]. Furthermore, the plugins themselves and the usage of non-HTTP protocols have secu-

rity implications. As a result, applications that rely on those would be unable to be deployed

under many institutional firewalls and proxies without significant configuration and policy

changes [9].

3.5 WebRTC

WebRTC (Web Real-Time Communication) is an API standard that is currently under

development by the W3C. It is oriented for peer-to-peer multimedia communication. This

technology can be very useful for certain applications, such as videoconferencing ones,

which can benefit from being decentralized and peer-to-peer. However, it has certain

constraints:

– It still requires a server to handle the connection process and signalling; and to route

all data for those cases where the NATs or firewalls of the clients prevent them from

directly connecting to each other.

– It is oriented towards peer-to-peer connections, so its usefulness is limited when the

source of the content is a traditional centralized server.

– It is not yet an accepted standard, and it is not yet supported by every major browser.

For these reasons, WebRTC-based approaches will not be considered for the purposes of

this work, though it may be useful to also compare them in the future.

3.6 HLS and MPEG-DASH

HLS (HTTP Live Streaming) is a protocol created by Apple which is intended to answer

some of the challenges described in this work. However, it is, at least for now, not natively

supported by all browsers, and it is not standard, so universality is limited.

MPEG-DASH (Dynamic Adaptive Streaming over HTTP) is an adaptive bitrate stream-

ing standard that is currently in draft form. Support is growing and in the future it is likely

to be a very effective alternative.

3.7 Limitations

Though several approaches were described in the previous section, there are many more

potential ones which could be feasible, and more are likely to appear in the future. Thus, it

is noteworthy that the previous list or this comparison is not meant to be exhaustive.

21http://www.yawcam.com/

http://www.yawcam.com/

Multimed Tools Appl (2018) 77:6471–6502 6487

4 Experimental work

In this section, we experimentally evaluate the performance of the five most relevant

schemes (described in the previous section). First, we detail the experimental setup and

methodology. Next, for each scheme, we:

– Implement the scheme.

– Conduct qualitative experiments to verify whether the scheme does indeed run under

different systems and devices.

– Conduct quantitative experiments to evaluate its performance.

4.1 Experimental setup

At this stage we have selected 5 approaches to be compared quantitatively (which we will

refer to as image-refreshing, native M-JPEG, JS M-JPEG, MPEG-1, H.264/AVC). We are

interested in measuring the performance under real-world conditions. Thus, beyond the

specific scheme being analyzed, there are several other variables which may affect the

measurements. Some of these are the following:

– FPS: Target Frames Per Second.

– Client device: Computer or mobile device to render and take measurements in.

– Network: Latency, available bandwidth, etc.

– Browser: Browser and specific version.

Conducting experiments for every combination would be impractical, and not particu-

larly meaningful. Certain restrictions have been applied for each of these variables, and will

be described next.

4.1.1 FPS

Though some systems rely on a variable FPS, in this case we will set a target FPS. This

makes it possible to obtain comparable results for RAM, CPU and bandwidth, and is con-

sistent with real-world usage. When applicable,22 we will conduct the experiments against

three different FPS values: 5, 10 and 25. For some schemes, we will also measure the

maximum average FPS they can achieve.

4.1.2 Client device

All the quantitative experiments have been conducted under Device A. In addition to the

quantitative experiments, several qualitative ones were conducted to verify whether the spe-

cific schemes are indeed cross-platform. For those, two additional devices were used. The

specification of the three devices are the following:

– Device A Mac Book Pro 13’ Mid 2014: 2.6 GHz Intel Core i5, 8 GB RAM, 256 GB

SSD, Intel Iris 1536 MB Graphics Card. Running OS X 10.11.5).

– Device B Desktop PC. Intel Core i7, 8 GB RAM. Running Windows 10.

– Device C Samsung Galaxy S7 Edge (SM-G935F).

22As described in more detail in later subsections, MPEG-1 will only be measured with 25 FPS, because its

standard does not allow 5 or 10 FPS.

6488 Multimed Tools Appl (2018) 77:6471–6502

4.1.3 Network

There are mainly two network parameters which could be considered: bandwidth and

latency. The experiments were conducted in a local network, with around 100 Mbps of

bandwidth and around 20 ms of latency. Though both parameters are important, preliminary

experiments suggest that they do not significantly affect the comparison.

In those preliminary experiments, the bandwidth did not affect the measurements, except

when the measured bandwidth usage started getting close to the maximum network band-

width. In these cases, either the target FPS could not be met (image-refreshing scheme) or

the capture-render delay started growing beyond what could be reasonable for an interactive

live-streaming system (the other schemes). Differences in latency seemingly have no effect

in RAM, CPU or bandwidth. As expected, however, an increased network latency results

in an increased capture-render delay. The relationship seems to be, as expected, mostly lin-

ear. So, though the measurements would vary on a slower network, the comparison and the

conclusions should not.

4.2 Methodology and measurements

The implementations have been deployed in a server in the local network. The video feed

is obtained from a local IP webcam. The metrics that will be measured are the RAM usage,

CPU usage, downstream bandwidth and capture-render latency. They all will be measured

in relation to a target FPS. We have kept them as separate metrics because, depending on the

specific application, the most significant ones might vary. For instance, in certain mobile

networks minimizing the bandwidth usage could be the most important criteria [39]. In other

cases, such as in networks with more bandwidth, minimizing RAM or CPU usage could be

more appropriate.

Bandwidth measurements are incoming-only, and have been obtained either through the

Chrome Task Manager or the Mac OS activity monitor (because web socket bandwidth

usage is not shown in Chrome). RAM and CPU were measured through the Chrome Task

Manager. 5 measurements were taken in each case. The highest and lowest measurement

were discarded. The 3 remaining measurements were used to compute the average and the

standard deviation, which are listed in tables for each scheme.

For measuring the latency, an IP webcam was pointed towards a desktop computer display-

ing a clock on the screen. Then, the test laptop (Device A) was placed next to it, rendering

the webcam image through the experimental streaming system, using the particular settings

of each experiment. The latency is thus equal to the difference between the live clock (in the

desktop) and its image rendered in the test laptop. For each experimental combination (FPS

and streaming approach) 5 pictures were taken of both screens, and the difference measured.

For these 5 measurements, the average and standard deviation was computed. Figure 5

shows a picture of this setup. The screen (in the middle) shows a clock. An IP webcam (in

the lower left) is pointing to it and forwarding the stream to our interactive live-streaming

platform. Then, the stream is being rendered in the laptop (to the right), using one of the

schemes and configurations. When a picture is taken of both screens, the capture-render

delay, at that moment, will thus be the difference between the clock and its render.

4.3 JavaScript-based image refreshing

The setup for this set of experiments can be observed in Fig. 6. The live images are retrieved

from the IP camera and stored into a Redis cache server. A Python-Flask-based server serves

Multimed Tools Appl (2018) 77:6471–6502 6489

Fig. 5 Picture measuring the capture-render delay

those images to the browser, which simply applies the image refreshing technique from

JavaScript to obtain the images through standard HTTP and then displays them at a given

frame rate.

The implementation was run on device A (with Chrome, Firefox, Safari), device B (with

Chrome, Firefox, Internet Explorer and Edge) and device C (with mobile Chrome and

mobile Firefox). Works as expected and without noticeable issues in all of them.

The performance of the experimental implementation (conducted under device A and

Chrome) is summarized in Table 1. It is noteworthy that RAM usage is particularly high. It

increases steadily since the first image is loaded, and, after a while, it stabilises at around 600

MB. It is hypothesised that this is because of the Chrome caching and memory optimization

schemes, which retains copies of the previously loaded images up until a certain point. The

latency (capture-display delay) is relatively low. For all the tested frame rates, it is within

the 223ms to 316ms range. The latency is lowest for 25 FPS. Although not covered in the

table, it is noteworthy that at 10 FPS but with a constrained, simulated Good 2G connection,

the delay is stable at around 1726 ms.

Fig. 6 Architecture and deployment setup for the different experiments

6490 Multimed Tools Appl (2018) 77:6471–6502

Table 1 JavaScript-based image

refreshing performance Mean S.D.

5 FPS RAM 618.0 MB 2.646

CPU 16.57% 0.115

Bandwidth 233.0 KB/s 4.359

Latency 316 ms 104.083

10 FPS RAM 634.7 MB 0.577

CPU 31.8% 0.100

Bandwidth 461.3 KB/s 0.577

Latency 246 ms 104.083

25 FPS RAM 649.67 MB 17.098

CPU 85.5% 0.709

Bandwidth 1130.3 KB/s 1.528

Latency 223 ms 107.480

Max Achieved FPS 41 FPS

RAM 671 MB

CPU 116.9%

Bandwidth 2100 KB/s

4.4 Native M-JPEG

The setup for these experiments is similar to the previous ones, and also depicted in Fig. 6.

The live images are retrieved from the IP camera and stored into a Redis cache server. A

Python-Flask-based server provides a M-JPEG stream from them to the client at a fixed

target frame rate. The client displays the M-JPEG stream natively by simply using an ¡img¿

element to the stream. No particular JavaScript is needed. Thus, no particular ‘Native M-

JPEG’ widget is present in the figure.

The implementation was tried on device A (with Chrome, Firefox, Safari), device B

(with Chrome, Firefox, Internet Explorer and Edge) and device C (with mobile Chrome and

mobile Firefox). Runs in all browsers except on Internet Explorer.

The performance of the experiment (conducted under device A and Chrome) is sum-

marized in Table 2. Similarly to the previous experiment, the RAM raises steadily since

the first image is rendered, and increases steadily until it reaches around 600 MBs. When

not bandwidth-constrained, the capture-display delay is in the 218-515 ms range, being

lowest for 25 FPS. When bandwidth-constrained, the delay steadily increases and can be

higher than 60 seconds. No data for a maximum FPS is provided, because at higher FPS

the stream fails sooner. This is likely due to the native M-JPEG limitations described in

Subsection 3.2.1. Particularly, it seems that once a single image fails, the browser stops

updating the image. And because there is no JavaScript API and no JavaScript error event

raised, recovery is non-trivial.

4.5 JavaScript-based M-JPEG

The setup for this set of experiments is also depicted in Fig. 6. The live images are retrieved

from the IP camera and stored into a Redis cache server. A Python-Flask-based server

provides a M-JPEG stream from them to the client at a fixed target frame rate through

Multimed Tools Appl (2018) 77:6471–6502 6491

Table 2 Native M-JPEG
Mean S.D.

5 FPS RAM 605.3 MB 1.155

CPU 12.40% 0.265

Bandwidth 235.3 KB/s 4.726

Latency 515 ms 149.921

10 FPS RAM 617.3 MB 6.658

CPU 24.5% 0.866

Bandwidth 445.7 KB/s 32.624

Latency 356 ms 51.394

25 FPS RAM 625.3 MB 1.155

CPU 60.13% 0.503

Bandwidth 1126.7 KB/s 12.014

Latency 218 ms 55.426

Web Sockets and the socket.io library. The client renders each frame to an HTML5 Canvas

through JavaScript.

The implementation was tried on device A (with Chrome, Firefox, Safari), device B

(with Chrome, Firefox, Internet Explorer and Edge) and device C (with mobile Chrome

and mobile Firefox). Runs in all browsers. No particular issues were observed in any of

them.

The performance of the experiment (conducted under device A and Chrome) is summa-

rized in Table 3. The RAM usage seems to increase slowly but it lowers periodically, and

does not increase proportionally to the FPS. When not bandwidth-constrained the latency is

Table 3 JavaScript-based

M-JPEG Mean S.D.

5 FPS RAM 166.0 MB 11.136

CPU 6.867% 0.058

Bandwidth 315.7 KB/s 3.215

Latency 289 ms 71.924

10 FPS RAM 430.0 MB 18.330

CPU 12.5% 0.100

Bandwidth 528.0 KB/s 34.511

Latency 216 ms 57.735

25 FPS RAM 306.3 MB 47.480

CPU 28.433% 0.231

Bandwidth 1494.3 KB/s 92.376

Latency 284 ms 54.262

Max Achieved FPS 115-127 FPS

RAM 263 MB

CPU 20.8%

Bandwidth 8434.3 KB/s

6492 Multimed Tools Appl (2018) 77:6471–6502

relatively low and quite stable. It is within the 284-289 range, and it is lowest for 10 FPS,

though given the small difference, it might be due to random fluctuations.

Higher than 115 FPS could be reached, and, strangely, in that case the CPU usage was

actually lower than at 25 FPS.

4.6 JavaScript-based MPEG-1

MPEG-1 [17] is a very mature format and in many traditional streaming contexts it could be

considered legacy. More modern formats such as H.264 —which will also be tested in later

sections,— provide better quality and compression [45]. However, potentially, its simplicity

also implies a lower processing cost and a lower latency. Considering this and that currently

many applications (such as most remote laboratories) still rely on apparently less efficient

approaches such as image-refreshing or M-JPEG; MPEG-1 could still be an effective option

in some current contexts.

The setup for this set of experiments is also depicted in Fig. 6. It is slightly more com-

plex than the previous ones because a transcoding component (from M-JPEG to MPEG) is

necessary. Thus, in the server, a ffmpeg instance retrieves the live stream from the IP web-

cam (through M-JPEG), transcodes it into MPEG-1 and sends it to a feeder server. The

feeder forwards the stream to the web server through Redis channels. The client receives the

stream from that server through Web Sockets and socket.io. The stream is decoded using a

JavaScript decoder and rendered into an HTML5 canvas. The MPEG-1 standard supports a

limited number of FPS options, so in this case, the experiment was conducted only with 25

FPS (5 FPS and 10 FPS are not really allowed by the standard). The codec was configured

to use an 800 Kbps constant bitrate.

Specifically, the system relies on the following ffmpeg command to transcode the stream:

ffmpeg -r 30 -f mjpeg -i <webcam mjpeg url> -f mpeg1video

-b 800k -r 25 pipe:1

Client-side, a pure JavaScript decoder has been used. The decoder is Open Source and

was originally created by Phoboslab.23 It has been modified to add support for the socket.io

library, which is a wrapper around Web Sockets but falls back to a long-polling system if

the specific deployment does not support the former. The modified decoder is available at

Github.24

The setup was tried on device A (with Chrome, Firefox, Safari), device B (with Chrome,

Firefox, Internet Explorer and Edge) and device C (with mobile Chrome and mobile

Firefox). Runs in all browsers. No particular issues were observed in any of them. It is note-

worthy, though, that MPEG-1 quality was lower than the previous approches (which was to

be expected due to the higher compression).

The performance of the experiment (conducted under device A and Chrome) is summa-

rized in Table 4. The RAM usage is very steady. The latency is on average 610 ms when

not bandwidth-constrained. Though not included in the table summary, it is noteworthy

that when simulating a Good 2G connection under Chrome, the latency is similar, proba-

bly because due to its low bandwidth requirements, the restricted bandwidth is not really

constrained either.

23http://phoboslab.org

24https://github.com/zstars/jsmpeg

http://phoboslab.org
https://github.com/zstars/jsmpeg

Multimed Tools Appl (2018) 77:6471–6502 6493

Table 4 JavaScript-based

MPEG-1 Mean S.D.

25 FPS RAM 104.0 MB 0.000

CPU 6.9% 0.351

Bandwidth 39.57 KB/s 3.066

Latency 610 ms 325.087

4.7 JavaScript-based H.264/MPEG-4 AVC

H.264/MPEG-4 AVC [19] is currently a popular high-compression format, which is partic-

ularly appropriate for streaming, and is commonly supported as an output format for many

modern IP webcams. The performance of a system relying on H.264 will vary significantly

depending on the specific codec implementation, on the specific parameters for the codec,

and on other factors. Thus, these experiments are not intended to evaluate the performance

of the H.264 format itself, but, instead, the potential performance of a real-life interactive

live streaming system that relies on it.

The setup for these experiments is depicted in Fig. 6. Its architecture is similar to the

one that was used for the MPEG-1 experiment, and it also relies on a transcoding com-

ponent (from M-JPEG to H.264). Thus, in the server, a ffmpeg instance retrieves the live

stream from the IP webcam (through M-JPEG), transcodes it into H.264 and sends it to a

feeder server. The feeder forwards the stream to the web server through Redis channels. The

client receives the stream from that server through Web Sockets and socket.io. The stream

is decoded using a JavaScript decoder and rendered into an HTML5 canvas.

The ffmpeg instance was configured to use the libx264 codec, with the baseline pro-

file, constant bitrate mode (set to 1500Kbps) and with several low latency flags enabled.

Specifically, the ffmpeg commandline that was used is:

ffmpeg -r 30 -f mjpeg -i <webcam mjpeg url> -flags +low delay

-probesize 32 -c:v libx264 -tune zerolatency -preset:v ultrafast

-r <target fps> -f h264 1500k pipe:1

The client renders the stream through a modified Broadway.js decoder. Broadway.js is

a heavily optimized, Open Source, H.264 JavaScript decoder, which has been compiled

through Emscripten and is futher optimized to use WebGL. To it, we have added socket.io

support, so that it can gracefully fall back to AJAX under systems and deployments where

Web Sockets are not functional. The modified decoder is Open Source and is hosted at

GitHub.25

The setup was tried on device A (with Chrome, Firefox, Safari), device B (with Chrome,

Firefox, Internet Explorer and Edge) and device C (with mobile Chrome and mobile

Firefox). Runs in all browsers. No particular issues were observed in any of them.

The performance of the experiment (conducted under device A and Chrome) is summa-

rized in Table 5. RAM usage is steady despite the FPS. CPU usage increases with the FPS.

Latency is highest at 5 FPS (under which it averages 1083 ms) and lowest at 25 FPS (under

which it averages 417 ms). This difference is quite significant, and, in part, is probably due

to internal buffers in the codec being filled faster at higher framerates.

25https://github.com/zstars/h264-live-player

https://github.com/zstars/h264-live-player

6494 Multimed Tools Appl (2018) 77:6471–6502

Table 5 JavaScript-based

H.264/AVC Mean S.D.

5 FPS RAM 177.3 MB 1.528

CPU 11.67% 1.155

Bandwidth 90.9 KB/s 22.848

Latency 1083 ms 29.445

10 FPS RAM 178.3 MB 5.859

CPU 15.67% 1.155

Bandwidth 96.2 KB/s 1.258

Latency 734 ms 27.731

25 FPS RAM 176.0 MB 1.000

CPU 27.0% 2.646

Bandwidth 100.3 KB/s 8.314

Latency 417 ms 160.728

5 Comparison

Table 6 summarizes the browser support for each chosen approach and implementation. For

the most part, it is very wide. This is to be expected because they were chosen, precisely,

for providing relatively high universality.

Figure 7 compares the client-side RAM usage observed during the experiments. In the

case of image refreshing and native M-JPEG it is, apparently, very high. However, it is note-

worthy that when the page loads it starts small, and progressively grows until it stabilizes

at the figures that are displayed. That is likely due to Chrome’s caching and RAM man-

agement scheme. In the case of JavaScript-rendered M-JPEG RAM usage is significantly

smaller, and it is rather volatile —which probably explains why for 25 FPS the measured

RAM usage is smaller. The MPEG-1 and H.264 implementations consume, by far, the least

RAM.

Figure 8 compares CPU usage. As one would normally expect, it seems to increase

almost linearly with the FPS. Interestingly, however, native M-JPEG and image-refreshing

consume the most CPU, while JavaScript-based M-JPEG and the high-compression-based

methods —MPEG-1 and H.264— consume the least. This could be considered counter-

intuitive, because MPEG-1 and H.264 have a significantly more powerful and complex,

interframe compression. Although explaining these results would require further analysis

Table 6 Browser support for each approach and implementation

Chrome Safari IE Edge Firefox Chrome Samsung Firefox

Mobile Mobile Mobile

Image Ref. 3 3 3 3 3 3 3 3

Native M-JPEG 3 3 7 3 3 3 3 3

JS M-JPEG 3 3 3 3 3 3 3 3

JS MPEG-2 3 3 3 3 3 3 3 3

JS H.264 3 3 3 3 3 3 3 3

Multimed Tools Appl (2018) 77:6471–6502 6495

Fig. 7 Client-side RAM usage comparison

and is not within the scope or target of this work, some of the factors involved could

potentially be:

– Higher bandwidth-requirements of the lower-compression formats increase the CPU

usage as compared to the higher-compression but lower-bandwidth ones, especially in

a browser environment where probably the buffers involved are copied several times.

– Image-refreshing is not what the browsers’ image component and system was designed

for, and modifying an image repeatedly is not necessarily meant to be efficient: it

involves cache and DOM operations which are appropriate for single images but not so

much for videos.

Fig. 8 Client-side CPU usage comparison

6496 Multimed Tools Appl (2018) 77:6471–6502

– The native M-JPEG implementation of Chrome might be significantly suboptimal,

while the JavaScript engine is very heavily optimized, which would explain the

difference between the JavaScript-based M-JPEG and the native M-JPEG experiments.

– The H.264 decoder has the advantage of being heavily optimized (compiled into

JavaScript through Emscripten, and even using WebGL for some specific tasks such

as color conversion) while the MPEG-1 decoder has the advantage of being relatively

simple.

Figure 9 compares downstream bandwidth usage. Comparatively, MPEG-1 and H.264

consume a very small amount of bandwidth. Image-refreshing, native M-JPEG and

JavaScript-based M-JPEG, which do not rely on interframe compression, consume several

times more bandwidth and it increases proportionally to the FPS. JavaScript-based M-JPEG

seems to consume slightly more than native, specially at higher framerates, possibly due to

socket.io or WebSocket overheads.

Figure 10 compares the latency of the different approaches. For the low framerates

image-refreshing and JavaScript-based M-JPEG are the fastest. H.264 is the slowest. How-

ever, for the higher framerates, the difference among the difference approaches decreases.

The change is most apparent for H.264, which goes from an around 1100 ms delay at 5 FPS

to a quite low around 500 ms delay at 25 FPS. This non-linear change is probably due to the

codec’s implementation details. Particularly, internal buffers are probably being filled faster

at the higher framerates.

6 Discussion

We have examined and compared some techniques and implementations for web-based

near-real-time interactive live streaming. Of cross-platform web-based techniques, image

refreshing and native M-JPEG are currently among the most commonly used ones for

applications such as remote laboratories. We have also examined and compared some

approaches (Java-Script based M-JPEG rendering, JavaScript-based MPEG-1 rendering,

Fig. 9 Client-side downstream bandwidth usage comparison

Multimed Tools Appl (2018) 77:6471–6502 6497

Fig. 10 Latency comparison

and JavaScript-based H.264/AVC rendering) which as far as we know, have not been used

for remote laboratories (and possibly not for similar purposes such as IP camera servers).

The formats that some of those approaches rely on (particularly, M-JPEG and MPEG-1) are

far from new. However, M-JPEG is still very popular for interactive live streaming because

of its simplicity and because of the low capture-display latency that it provides. MPEG-1,

similarly, is very mature. Before the appearance of newer formats, it used to be popular for

web streaming. Some of those newer formats are H.264 AVC [19], H.265 [18], VP8 [2]

and VP9 [11]. They provide a significantly better quality and compression rate, but they are

more complex. They generally have a higher processing cost. Of those newer formats, we

have considered an approach relying on JavaScript and H.264.

The results of the experiments show that no single approach is necessarily the best for

all cases. They show, however, that some approaches can probably be significantly more

advantageous than others for certain purposes.

One of the first conclusions that we learn from the experiments is that relying on the

native M-JPEG scheme does not seem to be convenient in any case. This is remarkable

because, currently, many remote laboratories and other applications, such as IP camera

servers, rely on it. However, the only advantage seems to be a slightly lower bandwidth

usage than JavaScript-based M-JPEG. In exchange:

– A major browser lacks support (Internet Explorer)

– Other browsers have several reported bugs and a relatively poor track-record at

supporting it

– It consumes significantly more RAM

– It consumes significantly more CPU power

Additionally, other significant observation is that the performance of the most simplistic

approach —image refreshing— is as good as that of native M-JPEG in RAM and bandwidth

usage, and is not far in CPU power. Considering the aforementioned issues that come with

native M-JPEG, and the significant advantages of image refreshing such as simplicity and

trivial error-recovery and bandwidth-adaptation capabilities, we conclude again that in most

cases, there would be no advantage in relying on native M-JPEG.

6498 Multimed Tools Appl (2018) 77:6471–6502

Other significant observation is that JavaScript-based MPEG-1 and JavaScript-based

H.264 seem to be significantly advantageous in many of the evaluated variables. This is

remarkable because, as far as we know, they have not been used in the context of remote

laboratories. They require much less RAM, extremely lower amounts of bandwidth than

the other approaches, and also less CPU power —especially in the case of MPEG-1—. The

lower bandwidth requirement is expected due to their interframe compression, and the fact

that a fixed bitrate was used. However, it is still noteworthy that it can be achieved while

maintaining a (subjectively) good image quality. The lower CPU requirement is less obvi-

ous (some possible explanations are suggested in Section 5). These results suggest that, for

some remote laboratories, particularly those that require a high FPS and which are particu-

larly bandwidth-constrained (for example, because they are intended to be used on mobile

devices, or because they feature many simultaneous webcams) relying on MPEG-1 and

H.264 could be a very effective choice.

These formats, however, do have some disadvantages. First, the image quality —with

the constant-bitrate, low-latency configuration that was chosen— is not bad, but is worse

than for the other approaches. Second, they do indeed raise the latency. Nonetheless, by

choosing the appropriate low-latency configuration, most measurements remain lower than

1 second. This is still acceptable for many interactive live streaming applications. How-

ever, it is certainly higher than with other more traditional approaches such as image

refreshing or M-JPEG. Thus, despite the mostly superior results, they are not necessarily

the best choice for all applications. It is also noteworthy that they have some additional

disadvantages:

– The implementation and deployment is more complex. It requires a transcoding server,

and a specific JavaScript-based player in the client.

– Deployment is more complex due to the transcoding server that is required. Server-side,

more processing resources are required.

– Error recovery and bandwidth adaptation is harder than with other approaches such as

image-refreshing (for which it is trivial).

7 Conclusions and future work

In this work we have described two of the most common approaches that are nowa-

days used for web-based near-real-time interactive live streaming (image refreshing and

native-M-JPEG). Additionally, we have proposed and compared three additional approaches

(JavaScript-based M-JPEG, JavaScript-based MPEG-1 and JavaScript-based H.264). Those

last, to our knowledge, are not currently used in this context.

The results suggest that, in many cases, avoiding the native M-JPEG scheme in favour

of one of the other four would be advisable. It seems to provide very little benefit over

the alternatives. They also suggest that the three JavaScript-based alternative approaches

(JavaScript-based M-JPEG, JavaScript-based MPEG-1 and JavaScript-based H.264/AVC)

provide comparatively good performance.

The schemes based on MPEG-1 and H.264/AVC could be the most appropriate for

certain types of interactive applications. Particularly, for those, such as certain remote labo-

ratories, which can withstand a relatively high latency (around 1 second) but which require

a low bandwidth usage at a high FPS. Nonetheless, the image-refreshing scheme, despite

its simplicity, could still be the most appropriate scheme for those interactive applications

which require a very low latency, especially at lower FPS rates.

Multimed Tools Appl (2018) 77:6471–6502 6499

In the future, it would be interesting to compare new approaches. MPEG-DASH is a

promising HTML5-related standard which will likely provide near-real-time live-streaming.

Once the support for it is wider, it would be useful to evaluate whether a low capture-display

delay can be achieved, and how its performance compares against the alternatives.

Additionally, it would be interesting to evaluate more modern interframe compression

formats, and with more configurations. Although the most modern formats (such as VP-9)

are expected to require a much higher amount of resources, especially if decoding through

JavaScript, a format such as VP-8 could still give interesting results. Especially, if the

implementation was heavily optimized and relied on asm.js or a similar scheme.

Acknowledgments This work has received financial support by the Department of Education, Language po-

licy and Culture of the Basque Government through a Predoctoral Scholarship granted to Luis Rodriguez-Gil.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-

national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Akhshabi S, Begen AC, Dovrolis C (2011) An experimental evaluation of rate-adaptation algorithms in

adaptive streaming over HTTP. In: Proceedings of the second annual ACM conference on multimedia

systems. ACM, pp 157–168

2. Bankoski J, Wilkins P, Xu Y (2011) Vp8 data format and decoding guide. Tech. rep., available: http://

tools.ietf.org/html/rfc6386 (accessed: 2016-07-07)

3. Claypool M, Finkel D (2014) The effects of latency on player performance in cloud-based games. In:

2014 13th annual workshop on Network and systems support for games (netgames). IEEE, pp 1–6

4. Cozzolino A, Flammini F, Galli V, Lamberti M, Poggi G, Pragliola C (2012) Evaluating the effects

of mjpeg compression on motion tracking in metro railway surveillance. In: Advanced concepts for

intelligent vision systems. Springer, pp 142–154

5. De Jong T, Linn MC, Zacharia ZC (2013) Physical and virtual laboratories in science and engineering

education. Science 340(6130):305–308

6. Deshpande H, Bawa M, Garcia-Molina H (2001) Streaming live media over a peer-to-peer network.

Tech. rep

7. Fielding R, Gettys J, Mogul J, Frystyk H, Masinter L, Leach P, Berners-Lee T (2006) Hypertext transfer

protocol–HTTP/1.1, 1999. RFC2616

8. Garcia-Zubia J, López-de-Ipiña D, Orduña P (2008) Mobile devices and remote labs in engineering

education. In: 2008 eighth IEEE international conference on advanced learning technologies. IEEE,

pp 620–622

9. Garcı́a-Zubia J, Orduña P, López-de-Ipiña D, Alves GR (2009) Addressing software impact in the design

of remote laboratories. IEEE Trans Ind Electron 56(12):4757–4767

10. Golparvar-Fard M, Bohn J, Teizer J, Savarese S, Peña-Mora F (2011) Evaluation of image-based mod-

eling and laser scanning accuracy for emerging automated performance monitoring techniques. Autom

Constr 20(8):1143–1155

11. Grange A, Rivaz P, Hunt J (2016) Draft vp9 bitstream and decoding process specification. Tech. rep.,

available: http://www.webmproject.org/vp9/ (accessed: 2016-07-07)

12. Grois D, Marpe D, Mulayoff A, Itzhaky B, Hadar O (2013) Performance comparison of H.265/mpeg-

hevc, vp9, and H.265/MPEG-AVC encoders. In: Picture coding symposium (PCS), 2013. IEEE, pp 394–

397

13. Harward VJ, Del Alamo JA, Lerman SR, Bailey PH, Carpenter J, DeLong K, Felknor C, Hardison J,

Harrison B, Jabbour I et al (2008) The ilab shared architecture: a web services infrastructure to build

communities of internet accessible laboratories. Proc IEEE 96(6):931–950

14. Hashemian R, Riddley J (2007) Fpga E-lab, a technique to remote access a laboratory to design and

test. In: Microelectronic systems education, 2007. IEEE International Conference on MSE’07. IEEE, pp

139–140

http://creativecommons.org/licenses/by/4.0/
http://tools.ietf.org/html/rfc6386
http://tools.ietf.org/html/rfc6386
http://www.webmproject.org/vp9/

6500 Multimed Tools Appl (2018) 77:6471–6502

15. Hei X, Liang C, Liang J, Liu Y, Ross KW (2007) A measurement study of a large-scale P2P IPTV

system. IEEE Trans Multimed 9(8):1672–1687

16. Html5 specification (2016) Tech. rep., W3, available: https://www.w3.org/TR/html5

17. ISO/IEC (2015) Iso/iec 11172:1993. coding of moving pictures and associated audio for digital stor-

age media at up to about 1.5 mbit/s. Tech. rep., available: http://www.iso.org/iso/catalogue detail?

csnumber=19180 (Accessed: 2016-07-07)

18. ITU-T (2015) High efficiency video coding. Tech. rep., available: https://www.itu.int/rec/t-REC-h.

265-201504-i/en (accessed: 2016-07-07)

19. ITU-T (2016) Advanced video coding for generic audiovisual services. Tech. rep., available: http://www.

itu.int/rec/T-REC-H.264-201602-I/en (Accessed: 2016-07-07)

20. Jara CA, Candelas FA, Torres F (2008) Virtual and remote laboratory for robotics e-learning. Comput

Aided Chem Eng 25:1193–1198

21. Kaspar M, Parsad NM, Silverstein JC (2010) Cowebviz: interactive collaborative sharing of 3D

stereoscopic visualization among browsers with no added software. In: Proceedings of the 1st ACM

international health informatics symposium. ACM, pp 809–816

22. Latency in live network video surveillance (2015) Tech. rep., axis communications, available: http://bit.

ly/2izYVOb (accessed: 2016-07-07)

23. Kim K, Cho BY, Ro WW (2016) Server side, play buffer based quality control for adaptive media

streaming. Multimed Tools Appl 1–19

24. Ma J, Nickerson JV (2006) Hands-on, simulated, and remote laboratories: a comparative literature

review. ACM Comput Surv (CSUR) 38(3):7

25. Martinez G, Angulo I, Garcia-Zubia J (2016) Weblabmicroscope: A remote laboratory for experiment-

ing with digital microscope. In: 2016 13th international conference on remote engineering and virtual

instrumentation (REV). IEEE, pp 159–162

26. Nedic Z, Machotka J, Nafalski A (2003) Remote laboratories versus virtual and real laboratories. In: FIE

2003 33rd annual, vol 1. IEEE

27. Nielsen J (1994) Usability engineering. Elsevier

28. Nishantha D, Hayashida Y, Hayashi T (2004) Application level rate adaptive Motion-JPEG transmis-

sion for medical collaboration systems. In: Proceedings of 24th international conference on distributed

computing systems workshops, 2004. IEEE, pp 64–69

29. Orduña P, Bailey PH, DeLong K, López-de-Ipiña D, Garcı́a-zubia J (2014) Towards federated interop-

erable bridges for sharing educational remote laboratories. Comput Hum Behav 30:389–395

30. Quax P, Liesenborgs J, Barzan A, Croonen M, Lamotte W, Vankeirsbilck B, Dhoedt B, Kimpe T,

Pattyn K, McLin M (2016) Remote rendering solutions using web technologies. Multimed Tools Appl

75(8):4383–4410

31. Rodriguez-Gil L, Orduña P, Garcı́a-Zubia J, Angulo I, López-de-Ipiña D (2014) Graphic technologies for

virtual, remote and hybrid laboratories: Weblab-fpga hybrid lab. In: 2014 11th international conference

on remote engineering and virtual instrumentation (REV). IEEE, pp 163–166

32. Salkintzis A, Passas N (2005) Emerging wireless multimedia: services and technologies. Wiley

33. Schauer F, Lustig F, Ožvoldová M (2009) Ises-internet school experimental system for computer-based

laboratories in physics. Innovations 109–118

34. Schauer F, Krbecek M, Beno P, Gerza M, Palka L, Spilaková P (2014) Remlabnet-open remote

laboratory management system for e-experiments. In: 2014 11th international conference on remote

engineering and virtual instrumentation (REV). IEEE, pp 268–273

35. Schulzrinne H, Rao A, Lanphier R (1998) Rtsp: real time streaming protocol. IETF RFC2326, april

36. Shea R, Liu J, Ngai ECH, Cui Y (2013) Cloud gaming: architecture and performance. IEEE Netw

27(4):16–21

37. Soares J, Lobo J (2011) A remote fpga laboratory for digital design students. In: 7th portuguese meeting

on reconfigurable systems (REC 2011). pp 95–98

38. Sripanidkulchai K, Ganjam A, Maggs B, Zhang H (2004) The feasibility of supporting large-scale

live streaming applications with dynamic application end-points. In: ACM SIGCOMM computer

communication review, vol. 34. ACM, pp 107–120

39. Tan WL, Lam F, Lau WC (2008) An empirical study on the capacity and performance of 3g networks.

IEEE Trans Mob Comput 7(6):737–750

40. Ueberheide M, Klose F, Varisetty T, Fidler M, Magnor M (2015) Web-based interactive free-viewpoint

streaming: a framework for high quality interactive free viewpoint navigation. In: Proceedings of the

23rd ACM international conference on multimedia. ACM, pp 1031–1034

41. Van Lancker W, Van Deursen D, Mannens E, Van de Walle R (2012) Implementation strategies for

efficient media fragment retrieval. Multimed Tools and Appl 57(2):243–267

https://www.w3.org/TR/html5
http://www.iso.org/iso/catalogue_detail?csnumber=19180
http://www.iso.org/iso/catalogue_detail?csnumber=19180
https://www.itu.int/rec/t-REC-h.265-201504-i/en
https://www.itu.int/rec/t-REC-h.265-201504-i/en
http://www.itu.int/rec/T-REC-H.264-201602-I/en
http://www.itu.int/rec/T-REC-H.264-201602-I/en
http://bit.ly/2izYVOb
http://bit.ly/2izYVOb

Multimed Tools Appl (2018) 77:6471–6502 6501

42. Vargas H, Farias G, Sanchez J, Dormido S, Esquembre F (2013) Using augmented reality in remote

laboratories. Int J Comput Commun Control 8(4):622–634

43. Wang B, Zhang X, Wang G, Zheng H, Zhao BY (2016) Anatomy of a personalized livestreaming system.

In: Proceedings of the 2016 ACM on internet measurement conference. ACM, pp 485–498

44. Webgl specification (2014) Tech. rep., khronos webGL working group, available: https://www.khronos.

org/registry/webgl/specs/1.0/

45. Wiegand T, Sullivan GJ, Bjontegaard G, Luthra A (2003) Overview of the h. 264/avc video coding

standard. IEEE Trans Circuits Syst Video Technol 13(7):560–576

46. Yazidi A, Henao H, Capolino GA, Betin F, Filippetti F (2011) A web-based remote laboratory for

monitoring and diagnosis of ac electrical machines. IEEE Trans Ind Electron 58(10):4950–4959

47. Youtube now defaults to HTML5 video (2016) https://youtubeeng.googleblog.com/2015/01/youtube-now

-defaults-to-html5 27.html (accessed: 2016-07-07)

48. Zhang C, Liu J (2015) On crowdsourced interactive live streaming: a Twitch.TV-based measurement

study. In: Proceedings of the 25th ACM workshop on network and operating systems support for digital

audio and video. ACM, pp 55–60

Luis Rodriguez-Gil is a PhD student at DeustoTech Internet group. He finished his studies of a double degree

in Computer Eng. and Industrial Org. Eng. in 2013, and he completed a MSc in Information Security in 2014.

Since 2009, he has been involved in the WebLab-Deusto Research Group, collaborating in the development

of the WebLab-Deusto RLMS. He has published several peer-reviewed publications and contributed to some

Open Source projects.

Pablo Orduña is a full time researcher and project manager at the MORElab Research Group at DeustoTech

Internet. He finished Computer Engineering in 2007 and his PhD in 2013 in the University of Deusto. During

his PhD he was a visiting researcher twice for 6 weeks each, in the MIT CECI in 2011 and UNED DIEEC in

2012. Since 2004, he has also been involved in the WebLabDeusto Research Group, leading the design and

development of WebLab-Deusto.

https://www.khronos.org/registry/webgl/specs/1.0/
https://www.khronos.org/registry/webgl/specs/1.0/
https://youtubeeng.googleblog.com/2015/01/youtube-now-defaults-to-html5_27.html
https://youtubeeng.googleblog.com/2015/01/youtube-now-defaults-to-html5_27.html

6502 Multimed Tools Appl (2018) 77:6471–6502

Javier Garcı́a-Zubia holds a PhD in Computer Sciences by the University of Deusto. He is a full professor

in the Faculty of Engineering of the University of Deusto, Spain. His research interest is focused on remote

laboratory design, implementation and evaluation. He is the leader of the WebLab-Deusto research group.

Diego López-De-Ipiña is an associate prof. and P.R. of MORElab group and director of DeustoTech Internet

unit, and of the PhD program within the Faculty of Eng. of the University of Deusto. He received his PhD

from the University of Cambridge in 2002. Responsible for several modules in the BSc and MSc in Comp.

Eng. degrees, he is interested in pervasive computing, IoT, semantic service middleware, open linked data

and social data mining. He is taking and has taken part in several big consortium-based research european

(IES CITIES, MUGGES, SONOPA, CBDP, GO-LAB, LifeWear) and Spanish projects, and has more than

70 publications in relevant int. conf. and journals, including more than 25 JCR-indexed articles.

	Interactive live-streaming technologies and approaches for web-based applications
	Abstract
	Introduction
	Motivation
	Challenge and purpose
	Contributions
	Remote laboratories
	Technical goals and criteria
	Simplified live-streaming platform model
	Near-real-time
	Universality
	Security
	Frame rate
	Quality
	Network bandwidth usage
	Client-side resources
	Server-side processing
	Implementation complexity

	Interactive live-streaming approaches
	JavaScript-based image refreshing
	Client-side
	Server-side

	Motion JPEG
	Limitations of browser-native M-JPEG implementations
	Client-side
	Server-side

	High-compression formats
	Client-side
	Server-side

	Non-standard plugins
	WebRTC
	HLS and MPEG-DASH
	Limitations

	Experimental work
	Experimental setup
	FPS
	Client device
	Network

	Methodology and measurements
	JavaScript-based image refreshing
	Native M-JPEG
	JavaScript-based M-JPEG
	JavaScript-based MPEG-1
	JavaScript-based H.264/MPEG-4 AVC

	Comparison
	Discussion
	Conclusions and future work
	Acknowledgments
	Open Access
	References

