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Abstract

Recent advances in automatic machine learning (aML) allow solving problems without any human intervention. However,

sometimes a human-in-the-loop can be beneficial in solving computationally hard problems. In this paper we provide new

experimental insights on how we can improve computational intelligence by complementing it with human intelligence in

an interactive machine learning approach (iML). For this purpose, we used the Ant Colony Optimization (ACO) framework,

because this fosters multi-agent approaches with human agents in the loop. We propose unification between the human

intelligence and interaction skills and the computational power of an artificial system. The ACO framework is used on a case

study solving the Traveling Salesman Problem, because of its many practical implications, e.g. in the medical domain. We

used ACO due to the fact that it is one of the best algorithms used in many applied intelligence problems. For the evaluation

we used gamification, i.e. we implemented a snake-like game called Traveling Snakesman with the MAX–MIN Ant System

(MMAS) in the background. We extended the MMAS–Algorithm in a way, that the human can directly interact and influence

the ants. This is done by “traveling” with the snake across the graph. Each time the human travels over an ant, the current

pheromone value of the edge is multiplied by 5. This manipulation has an impact on the ant’s behavior (the probability that

this edge is taken by the ant increases). The results show that the humans performing one tour through the graphs have a sig-

nificant impact on the shortest path found by the MMAS. Consequently, our experiment demonstrates that in our case human

intelligence can positively influence machine intelligence. To the best of our knowledge this is the first study of this kind.

Keywords Interactive machine learning · Human-in-the-loop · Combinatorial optimization · Ant Colony Optimization

1 Introduction

1.1 Automatic machine learning

One of the fundamental objectives of Artificial Intelligence

(AI) in general and of Machine Learning (ML) in particular

is to find methods and develop algorithms and tools that

automatically learn from data, and based on them, provide

results without human interaction. Such algorithms can

be called automatic ML (aML) - where automatic means

autonomous in the sense of classical AI [1]. A close concept
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is automated ML (AutoML) [2], which focuses on end-

to-end automation of ML and helps, for example, to solve

the problem of automatically (without human interaction)

producing test set predictions for a new data set.

Automatic approaches are present in the daily practice

of human society, supporting and enhancing our quality of

life. A good example is the breakthrough achieved with deep

learning [3] on the task of phonetic classification for auto-

matic speech recognition. Actually, speech recognition was

the first commercially successful application of deep convo-

lutional neural networks [4]. Today, autonomous software

is able to conduct conversations with clients in call centers;

Siri, Alexa and Cortana make suggestions to smartphone

users. A further example is automatic game playing without

human intervention [5]. Mastering the game of Go has a

long tradition and is a good benchmark for progress in

automatic approaches, because Go is hard for computers [6].

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-018-1361-5&domain=pdf
http://orcid.org/0000-0002-6786-5194
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Even in the medical domain, automatic approaches

recently demonstrated impressive results: automatic image

classification algorithms are on par with human experts

or even outperforms them [7]; automatic detection of pul-

monary nodules in tomography scans detected the tumoral

formations missed by the same human experts who provided

the test data [8]; neural networks outperformed a traditional

segmentation methods [9], consequently, automatic deep

learning approaches became quickly a method of choice for

medical image analysis [10].

Undoubtedly, automatic approaches are well motivated

for theoretical, practical and commercial reasons. However,

in many real-world applications a human-in-the-loop can be

beneficial. This paper explores some catalytic and syner-

getic effects of the integration of human expertise not only

into the data processing pipeline as in standard supervised

learning, but directly into the algorithm [11].

1.2 Disadvantages of automatic approaches

Unfortunately, automatic approaches and particularly deep

learning approaches have also several disadvantages.

Automatic approaches are intensively resource-consuming,

require much engineering effort, need large amounts of

training data (“big data”), but most of all they are often

considered as black-box approaches. Although this is not

quite true, they are kind of opaque, meaning that they are

complex even if we understand the underlying mathematical

principles. For a recent discussion of black-box approaches

in AI refer to [12]. International concerns are raised on

ethical, legal and moral aspects of developments of AI in

the last years; one example of such international effort is the

Declaration of Montreal.1

Black-box approaches have - at least when applied to

a life-critical domain, such as medicine - one essential

disadvantage: they are lacking transparency, i.e. they often

do not expose the decisional process. This is due to the fact

that such models have no explicit declarative knowledge

representation, hence they have difficulty in generating the

required explanatory structures – which considerably limits

the achievement of their full potential [13].

To our experience this does not foster trust and accep-

tance among humans. A good example are medical pro-

fessionals, e.g. physicians, which are particularly reluctant

to human-machine interactions and prefer personal deduc-

tions based on human-to-human discussions and on per-

sonal expertise. Most of all, legal and privacy aspects make

black-box approaches difficult [14, 15].

Implementing these new legal regulations requires sup-

plementary costs for software companies targeting the

1https://www.montrealdeclaration-responsibleai.com

European market, especially start-ups and small companies.

Consequently, two big issues come up: firstly, to enable -

on demand - to re-trace how a machine decision has been

reached; secondly, to control the impact of data removal

on the effectiveness of automatic approaches. The software

producers will need to consider privacy-aware data com-

munications methods and also secured models for open data

sets [16], which require new approaches on the effectiveness

of ML implementations previously neglected [17].

Data representation is a key factor in the effectiveness

of ML implementations. Contemporary approaches do not

(automatically) extract the discriminative knowledge from

bulk data. Bengio et al. [18] claims that only really intelli-

gent algorithms that understand the context, and which have

the ability to retain significant features may achieve (in the

future) the discriminative characteristics. Genuinely human

questions including interest and relevance are inherently dif-

ficult for AI/ML, as long as by now the true intelligence is

not automatically achieved. Of course, this is the grand goal

of AI research, as outlined in the first paragraph; however,

it is assumed that reaching these goals still need quite some

time [19].

1.3 Motivation for a human-in-the-loop

Current ML algorithms work asynchronously in connection

with a human expert who is expected to help in data

preprocessing and data interpretation - either before or after

the learning algorithm. The human expert is supposed to

be aware of the problem’s context and to correctly evaluate

specific datasets. This approach inherently connects ML to

cognitive sciences, AI to human intelligence [20].

Interactive Machine Learning (iML) often refers to any

form of user-facing machine learning approaches [21].

Several authors consider that a human intervention is

compulsory, but in our opinion these type of interventions

are just forms of classical supervised ML approaches [22],

and an entirely distinct approach to ML is to insert the

human into physical feedback loops [23].

By putting the human in-the-loop (a human kernel,

as defined in [20]), iML looks for “algorithms which

interact with agents and can optimize their learning

behaviour through this interaction – where the agents

can be humans [24]”. This perspective basically integrates

the human into the algorithmic loop. The goal is to

opportunistically and repeatedly use human knowledge

and skills in order to improve the quality of automatic

approaches. The iML-approaches can therefore be effective

on problems with scarce and/or complex data sets, when

aML methods become inefficient. Moreover, iML enables

features as re-traceability and explainable-AI, important

characteristics in the medical domain [25].

https://www.montrealdeclaration-responsibleai.com
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In this paper, we are further developing previous iML

research. In the empiric previous works [26, 27], we

provided practical examples of iML approaches to the

Traveling Salesman Problem (TSP).

This difficult optimization problem models many real-

world situations in the medical domain, e.g. in protein

folding processes described as a free energy minimization

problem [28].

As TSP is proven to be NP–complete [29], its high–

dimension instances are unlikely to be solved with exact

methods. Consequently, many heuristic and approximate

TSP solvers have been described for finding close-enough

solutions [30] and inspired psychological research, which

found (a) the complexity of solutions to visually presented

TSPs depends on the number of points on the convex hull;

and (b) the perception of optimal structure is an innate

tendency of the visual system [31].

Widely used meta-heuristic algorithms include: Tabu

Search, genetic algorithms, simulated annealing and Ant

Colony Optimization, etc. (a brief overview is presented

in [32]).

Several features that enable the success of the human-in-

the-loop in the medical domain are presented in [11]. More

general, this paradigm can be broadly rewarding in multiple

situations of different domains, where human creativity,

mental representations and skills are able to heuristically

focus on promising solution space regions.

To our knowledge, the efficiency and the effectiveness

of the iML approaches have not been studied in-depth so

far. The underlying mechanism of how the human–computer

system may improve ML approaches has to be described

by cognitive science [33]. For example, physicians can give

correct diagnoses, but they can not explain their deduction

steps. In such cases, iML may include such “instinctive”

knowledge and learning skills [34].

1.4 Learning from very few examples

This work was motivated by the observation that humans

are sometimes surprisingly good in learning from very

few examples. Josh Tenenbaum from MIT asked “How do

humans get so much from so little (data)” and even a two

year old child can discriminate a cat from a dog without

learning millions of training examples. Scientific examples

include the aML approaches based on Gaussian processes

(e.g., kernel machines [35]), which are weak on function

extrapolation problems, although these problems are quite

simple for humans [36].

The paper is organized as follows: In Section 2 we

provide some background and related work, in Section 3

we give some background on Ant Colony Optimization,

in Section 4 we introduce the new concepts based on

human interactions with artificial ants, and we conclude

with several observations and an outlook to future work.

2 Background and related work

2.1 Human vs. computer in problem solving

Extrapolation problems, as mentioned before, are generally

considered challenging for ML approaches [37]. This is

mostly due to the fact that rarely one has exact function

values without any errors or noise, which is therefore posing

difficulties when solving real-world problems [38].

Interestingly, such problems are extremely easy for

humans, which have been nicely demonstrated in an

experiment by [20]: a sequence of functions extracted from

Gaussian Processes [39] with known kernels was presented

to a group of 40 humans. They showed that humans

have systematic expectations about smooth functions that

deviate from the inductive biases inherent in the kernels

that have been used in past models of function learning. A

kernel function measures the similarity between two data

objects.

Formally, a kernel function takes two data objects xi and

xj ∈ R
d , and produces a score K : Rd × R

d → R.

Such a function can also be provided by a human to

the machine learning algorithm, thus it is called: human

kernel. Automatically, this is done by a Support Vector

Machine (SVM), because under certain conditions a kernel

can be represented by a dot product in a high-dimensional

space [40]. One issue here is that a kernel measures the

similarity between two data objects, however, it cannot

explain why they are similar. Here a human-in-the-loop can

be of help to find the underlying explanatory factors of

why two objects are similar, because it requires context

understanding in the target domain.

In the experiment described in [20], the human learners

were asked to make extrapolations in sequence; they had

the opportunity to use prior information on each case. At

the end, they could repeat the first function; then they were

questioned on deductions they made, in an attempt to under-

stand the effect of inductive biases that exhibit difficulties

for conventional Gaussian process (GP) kernels. The open

question is still: how do humans do that. Even little children

can learn surprisingly well from very few examples and

grasp the meaning, because of their ability to generalize

and apply the learned knowledge to new situations [41].

The astonishing good human ability for inductive reasoning

and concept generalization from very few examples could

derive from a prior combined with Bayesian inference [42].

Bayesian approaches provide us with a computational

framework for solving inductive problems, however, much
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remains open and we are still far away from being able to

give answers on the question of how humans can gain out

so much from so little data [43]. More background on these

problems can be found for example in [44, 45].

As stated in the very beginning, a true intelligent ML

algorithm must be able to automatically learn from data,

extract knowledge and make decisions without human inter-

vention. Therefore, ML was always inspired by how humans

learn, how they extract knowledge and how they make deci-

sions. Key insights from past research provided probabilistic

modelling and neurally inspired algorithms (see e.g. [46]).

The capacity of a model to automatically provide patterns

and to extrapolate is influenced by a priori possible solutions

and a priori likely solutions. Such a model should represent

a large set of possible solutions with inductive biases,

be able to extract complex structures even from scarce

data.

Function learning is also important for solving tasks

in everyday cognitive activities: nearly every task requires

mental representations mapping inputs to outputs f : X →

Y . As the set of such mappings is infinite, inductive biases

need to constrain plausible inferences. Theories on how

humans learn such mappings when continuous variables are

implied have focused on two alternatives: 1) humans are just

estimating explicit functions, or 2) humans are performing

associative learning supported by similarity principles. [47]

developed a model that unifies both these assumptions.

2.2 Human abilities on optimization problems

The research at the boundary between Cognitive Science

and Computational Sciences is challenging as, on one

hand, improving automatic ML approaches will open the

road of performance enhancements on a broad range of

tasks which are difficult for humans to process (i.e. big

data analytics or high-dimensional problems); on the other

hand, these practical assignments may further the results in

Computational Cognitive Science.

Undoubtedly, aML algorithms are useful in computa-

tionally demanding tasks: processing large data volumes

with intricate connections, solving multi-dimensional prob-

lems with complicated restrictions, etc. However, aML

algorithms proved to be less efficient when they approach

problems where context information is missing, for exam-

ple when solving NP-hard problems. In general, aML is

weak in unstructured problem solving: the computer lacks

the human creativity and curiosity. The synergistic interac-

tion between people and computers are highly investigated

in games crowdsourcing. An example of successful AI prod-

uct is Google’s AlphaGo, which won the match against the

world Go champion Lee Sedol [48]. Such results emphasize

the potential human-computer cooperation has [49].

Understanding the human skills used in optimization is

one of the current research concerns in Cognitive Science

[50]. The relatively low complexity of the algorithms

processing visual data could help solving difficult problems.

This is a significant feature, as many practical tasks in

medicine and health are exceptionally difficult to solve [51].

In [30] the solutions obtained by humans on the Traveling

Salesman Problem (TSP) were compared to those provided

by Nearest Neighbor, Largest Interior Angle and Convex

Hull methods. The study showed that the humans con-

structed the solutions based on a perceptual process. This

result was validated by two other experiments presented

in [52]. The former test used the same dataset as in [30].

The latter test used TSP instances with uniformly distributed

vertices. The TSP instances were individually displayed.

The human used the mouse to build a solution. No solution

revision was allowed. This investigations revealed that the

humans mostly used the Nearest Neighbor method. When

the Nearest Neighbor algorithm was hybridized with a

method controlling the global shape of the solution, the fit

of the simulation to human performance was quite close.

There are clear evidences that humans are exceptionally

good in finding near optimal solutions to difficult problems;

they can detect and exploit some structural properties of the

instance in order to enhance solution parts. It is interesting

that e.g. medical experts are not aware on how expensive it

would be to computationally solve these problems [53, 54].

In [55], the solutions of 28 humans to 28 instances of

the Euclidean TSP were assessed [56]. After each try on

each TSP instance, the participants received the cost of their

solution. Unlimited tries were allowed. The authors reported

important enhancement of the solution’s quality provided by

each participant, and that the solutions differed in multiple

ways from the random tours that follow the convex hull

of the vertices and are not self-crossing. They also found

that the humans more often kept the edges belonging to

the optimal solution (the good edges) in their solution than

the other edges (the bad edges), which is an indication for

good structural exploitation. Too many trials impaired the

participants’ ability to correctly make use of good edges,

showing a threshold which makes them to simply ran out of

ideas.

As proof-of-concept, we have chosen the Traveling

Salesman Problem (TSP), a problem with many applications

in the health domain. The proposed human-computer

system considered an enhanced Ant Colony Optimization

(ACO) version which include one more special agent - the

human [57]. This idea can be seen either as an inclusion of

the human as a pre-processing module in the multi-agent

artificial system, or as a transition to an “enhanced expert”,

where “enhanced” has the same meaning as in “enhanced

reality”.
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2.3 Traveling Salesman Problem (TSP)

The Traveling Salesman Problem (TSP) is one of the most

known and studied Combinatorial Optimization Problems

(COPs). Problems connected to TSP were mentioned as

early as the last eighteenth century [58]. During the past

century, TSP has become a traditional example of difficult

problems and also a common testing problem for new

methodologies and algorithms in Optimization. It has now

many variants, solving approaches and applications [59].

For example, it models in computational biology the

construction of the evolutionary trees [60], in genetics - the

DNA sequencing [61]; it proved to be useful in designing of

healthcare tools [62], or in healthcare robotics [63].

The formal TSP definition, based on Graph Theory, is the

following [59]:

Definition 1. On a complete weighted graph G =

(V , E, w), where V is the set with n vertices, let

(wij )1≤i,j≤n being the weight matrix W associated with E.

The goal of TSP is to find a minimum weight Hamiltonian

cycle (i.e. a minimum weight cycle that passes through any

vertex once and only once).

From the complexity theory point of view, TSP is a NP -

hard problem, meaning that a polynomial time algorithm for

solving all its cases has not been found by now and it is

unlikely that it exists [64].

As an integer linear program, TSP considers the vertices

forming the set {1, 2, . . . , n} and searches for the values

for the integer variables (xij )1≤i,j≤n which are meant to

describe a path:

xij =

{

1 if the edge (ij) is used

0 otherwise
(1)

TSP objective (2) is subject to the constraints (3)–(5) [65].

min

⎛

⎝

n
∑

i,j=1

xijwij

⎞

⎠ . (2)

n
∑

i=1

xij = 1 ∀ 1 ≤ j ≤ n, (3)

n
∑

j=1

xij = 1 ∀ 1 ≤ i ≤ n, (4)

∑

i,j∈S

xij ≤ |S| − 1 ∀S ⊂ V, 2 ≤ |S| ≤ n − 1. (5)

The constraints (3) and (4) certify that each vertex has

only two incident edges. The constraint (5) excludes the

subtours (i.e. the cycles with less than n distinct vertices).

Several restrictive TSP variants have important trans-

portation applications. The symmetric TSP considers that

the weight matrix is symmetric. In the opposite case, TSP is

asymmetric. Metric TSP has the weights forming a metric

that obeys the triangle inequality (in this case, the weights

can be seen as distances). Euclidean TSP has the weights

computed using the Euclidean norm.

TSP can be generalized in order to model more complex

real-life situations. Time dependent TSPs use variable val-

ues stored in the weight matrix W [66]. The Vehicle Routing

Problem (VRP) seeks for the least weighted set of routes

for a set of vehicles that have to visit a set of customers [65].

The most used TSP benchmarks are 2 and.3 They help

in assessing the implementations of the new methodologies

for solving TSP and its variants. New data features as

geographic coordinates are used for integration with GIS

technologies or allowing network analysis [67].

3 Ant Colony Optimization (ACO)

The Ant Colony Optimization (ACO) is a bio-inspired meta-

heuristic approach for solving Optimization problems, mod-

eling the ability of real ants to quickly find short paths

from food to nest. ACO has been devised in the last years

of the past century and today is intensively studied and

applied [68]. The behavior of real ants can be used in arti-

ficial ant colonies for searching of close-enough solutions

mainly to discrete optimization problems [69].

As one of the most successful swarm-based eusocial

animals on our planet, ants are able to form complex

social systems. Without central coordination and external

guidance, the ant colony can find the shortest connection

between two points based on indirect communication. A

moving ant deposits on the ground a chemical substance,

called pheromone. The following ants detect the pheromone

and is more likely to follow it. Specific ant species exhibit

more elaborated behavior [70].

The multi-agent system following the natural ants’ behav-

ior consists of artificial ants that concurrently and repeatedly

construct Hamiltonian circuits in a complete graph. Initially,

all the edges receive the same pheromone quantity. The

next added edge to a partial solution is chosen based on

its length and on its pheromone quantity. Shorter edges and

also highly-traversed edges are more likely to be chosen.

After all the circuits are constructed, the pheromone

on the traversed edges is reinforced. These steps are

iterated until the stopping condition is met. The algorithm

returns the best solution ever found (best solution). In this

case, DaemonActions could include centralized modules (as

guidance through promising zones of the solution space) or

supplementary activities for some or all ants (for example,

2iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95
3http://www.math.uwaterloo.ca/tsp/data/index.html

http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95
http://www.math.uwaterloo.ca/tsp/data/index.html
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the solution construction is hybridized with local search

procedures).

ACO is a metaheuristic based on the artificial ants

paradigm. The ACO pseudocode contains generic meth-

ods, which allow approaching a broad set of combinatorial

optimization problems [71]. Each problem defines a com-

plete graph, where the artificial ants work based on specific

rules for solution construction, pheromone depositing and

other supplementary methods. For example, a supplemen-

tary activity is an exchange heuristics (2-Opt, 2.5-Opt or

3-Opt) done by each ant after its solution is constructed.

In 2-Opt, two edges are replaced by other two that main-

tains the circuit but produces a smaller length [72]. The

2.5-Opt also includes a better relocation of three consecutive

vertices [73]. The 3-Opt excludes three edges and recon-

nect the circuit in a better way [74]. The pheromone update

rule can be changed in order to improve the local search,

as in [75].

procedure ACOMetaheuristic

set parameters, initialize pheromone

trails

ScheduleActivities

ConstructAntsSolutions

UpdatePheromones

DaemonActions % optional

end-ScheduleActivities

return best_solution

end-procedure

Several ACO methods monitor the overall colony activity

and reacts when undesired situations manifest. For example,

in [76], stagnation is avoided by decreasing the pheromones

on best paths. Other methods of pheromone alteration is

described in [77]. It is specifically designed for dynamic

TSP with altered distances. The authors consider that the

algorithm is aware when alteration moments appear and

immediately reacts.

All these modules belong to the software solving

package, so they are seen as DaemonActions activities.

To our knowledge, this approach is the first attempt to

introduce totally external guidance to a working, automated

process. Our investigation wants to opportunistically use

the good ability of humans to solve TSP instances, proven

by broad researches on human trained or untrained TSP

solving [50]. These studies showed that: the humans have

the ability to better solve an instance on repeated trials,

they perform better on visually described instances with less

vertices, they rarely provide crossing tours, and instinctively

use the convex hull property (the vertices on the convex hull

are traversed in their order). A visual interface for a game

designed for assessing the human abilities in solving small

Euclidean TSP instances is in [55].

3.1 MAX–MIN Ant System (MMAS)

Probably one of the most studied ACO algorithms is the

MAX–MIN Ant System [78]. There are four changes

regarding the initial AS algorithm. First, it exploits the best

tour of an ant, like the ACO. Second, it limits the excessive

growth of the pheromones on good tours (which in some

cases is suboptimal), by adding upper and lower pheromone

limits τ min and τ max . Third, it initializes the pheromone

amount of each edge to the upper pheromone limit τ max,

which increases the exploration of new tours at the start

of the search. Finally, each time, if there is a stagnation in

some way or no improvement of the best tour for a particular

amount of time, it reinitializes the pheromone trails.

4 New concepts based on human
manipulation of pheromones

Following the aML paradigm, ACO solvers are closed pro-

cesses. The ants form a closed multi-agent system which as

a whole constructs a set of solutions and delivers the best

one. Following the iML-approach, here the human becomes

an agent too, able to open the ACO process and to manipu-

late it by dynamically changing its parameters. As a result,

ACO is enhanced with a new, special agent: the human.

As described in [26] and [27], the control in the

procedure ConstructAntsSolutions is given to one more

agent: the human. This special agent (the human) has the

option to change the pheromones spread by the ants. For

this, the human selects 2 nodes in the graph and doubles the

pheromone-level of a specific edge.

The setup of the Experiment consists of to pats, the aML-

Part, based on MMAS-Algorithm as described above, and

the iMl-Part.

The aML-Part is pre-configured with the following

MMAS-Paramters:

– α = 1

– β = 2

– ρ = 0.02

– pbest = 0.05

5 The experiment

As input for the iML part, the data is generated out of a

“snake”-like game, called Traveling Snakesman see Fig. 1

and.4 An apple represent an node of the graph. The path

traveled to the next apple is the edge. Each new game

4https://hci-kdd.org/project/iml

https://hci-kdd.org/project/iml
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Fig. 1 Screenshot of the the traveling Snakesman game

is creating a new instance of the MMAS-Algorithm. The

algorithm runs automatically 5 iterations, after this he is

waiting for the user interaction. Each time the user eats an

apple, the pheromone-level of the traveled edge is multiplied

by 5. This can be seen as:

start the GAME

init MMAS

draw appels

run 5 iterations

while (apple left)

wait for snake to eat apple

edge=[lastApple][currentApple]

pheromone-level of edge*5

run 5 iterations

end_while

return path

On the one hand, the central goal of the game from the

user side is to eat all apples as fast as possible. However,

in the game the users do not recognize that they are

manipulating the pheromone-levels, because they just want

to find the fastest path between all apples.

On the other hand, the goal the game from the algorithm

side is to find the shortest path.

This approach allows us to generate a competitive time

basted challenge for the users and decouples the fact that

the algorithm itself is faster than that one with the iML-

Approach because the users have not to wait for the

interaction (the reader should play the game which is openly

available.5

In one version the user receives a recommendation for

the next apple to eat, this is generated by the MMAS and

represents the edge with the highest pheromone-level.

In the experiments three pre-generated graphs are used in

order to get comparable results (see Figs. 2, 3 and 4).

5https://iml.hci-kdd.org/TravellingSnakesmanWS

Fig. 2 Graph Level 1

6 Results and discussion

For our evaluation we split the game in two parts.

1. iML-Part The game as described above was played by

26 students (95 games played)

2. aML-Part For each game played we started an

completely independent MMAS algorithm without

human interaction

In a first step we multiplied the pheromone-values by 2

but, this had no significant impact on the ants, so we tried

several other values and we came to the conclusion, that

multiplying the value by 5 will increase the performance

significantly, a larger value decreases the performance of

the algorithm again, because a mistake of the human has

major impact on the ants. As shown in Figs. 5, 6 and 7 our

iML approach results in a performance increase (distance

reduction) of the MMAS.

During the game the human travels a whole round

through the graph, we have recognized (Figs. 8, 9 and

10) that the path taken by the human is longer than the

path taken with the iML approach. We can also show that

the shortest distance traveled with the aML approach is

significant longer than the shortest distance traveled with

the iML approach (α = 95%).

To investigate the difference between the aML and the

iML group, we conducted a repeated measure analysis

of variance (ANOVA) for the independent variables level

and group. The variable level, ranging from 1 to 3 with

an increasing difficulty, is the repeated factor since all

participants played the levels consecutively. The ANOVA

yielded a significant main effect of the factor level

[F(2, 189] = 79546.172, p < .001]. This effect seems

trivial, though, since the levels require traveling different

distances to collect all apples, it is interesting. Even more

https://iml.hci-kdd.org/TravellingSnakesmanWS
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Fig. 3 Graph Level 2

Fig. 4 Graph Level 3

Fig. 5 Distance distribution of Level 1; 39 games played

Fig. 6 Distance distribution of Level 2; 28 games played

Fig. 7 Distance distribution of Level 3; 28 games played

Fig. 8 Distance traveled of Level 1; 39 games played



Interactive machine learning: experimental evidence for the human in the algorithmic loop 2409

Fig. 9 Distance traveled of Level 2; 28 games played

interesting is the factor groups, where we found a significant

main effect as well [F(1, 189) = 33.951, p < .001]. At

level 1, the mean of group aML was 4489802.48 (SD =

109628.351), the mean of group iML was 4376090.665

(SD = 94430.853). At level 2, the mean of group aML was

36281284.86 (SD = 855204.253), the mean of group iML

was 35839124.63 (SD = 722500.697). At level 3, the mean

of group aML was 44247653.59 (SD = 713300.268), the

mean of group iML was 43233333.61 (SD = 865187.636).

Across all levels, group iML resulted in shorter distances

traveled. On the basis of the absolute distances, a compari-

son of the levels is not possible since the minimum distance

varies. Thus, we focused on the differences between both

groups. Instead of computing the difference with each trial,

a more reasonable way is to compute the difference between

group iML and the average of all computer only (aML)

trials. To be able to compare all levels, we transformed

the distances into a range between 0 and 1, which can be

Fig. 10 Distance traveled of Level 3; 28 games played

Fig. 11 Relative improvement in distance traveled (y axis) in group

iML as opposed to the average distance of group aML for the 3 levels

(x axis)

considered as the improvement in group iML as opposed

to the average of group aML. The results are shown in

Fig. 11 The relative improvement for level 1 was .1394,

for level 2 .1021 and for level 3 .0814. One-sample t-tests

computed for each level yielded that this improvement is

significant for each level. Level1 : t (38) = 7.519, p <

.001; level2 : t (26) = 4.310, p < .001; level3 : t (27) =

3.346424, p = .002, which is significant.

In this study we found clear indications that the human

interventions in the path finding processes results in

generally better results, that is, distances traveled to collect

all apples. This is reflected also in the absolute minimal

distance traveled across all trials. For two of the three levels,

the minimum was obtained in group iML (Table 1). In

future steps, we will look into the mechanisms and specific

characteristics of human interventions that improve the

algorithm. We hypothesize that the superiority of humans

may lie in the intuitive overview that is obtained by humans

at the first sight. On the basis of the present results,

which confirm that human interventions can improve the

algorithm, we will systematically design game levels in

favor of the human and the algorithm and repeat the

experiment in future work on a large scale.

Table 1 Absolute minimum distances obtained across groups and levels

aML iML Diff

Level 1 4242192.5568 4215015.4717 27177.0851

Level 2 34178226.0850 34680651.6358 –502425.5508

Level 3 42529746.1429 41378863.0008 1150883.1421



2410 A. Holzinger et al.

Table 2 Example Human-Interaction-Matrix (HIM) and Human-

Impact-Factor (HIF)

a) b)

A B C D E A B C D E

A N 0 0 0 0 A N 0 0 0 0

B 0 N 0 0 0 B 0 N 0.5 0 0

C 0 0 N 0 0 C 0 0.5 N 0 0.1

D 0 0 0 N 0 D 0 0 0 N 0

E 0 0 0 0 N E 0 0 0.1 0 N

a) Initially, no human intervention. The loops are forbidden (N on the

main diagonal). b) The human sets 50% chances to use the edge (B C)

and 10% chances to follow (C E). In the other 40% of the cases, the

ACO solver proceeds on its own, but these two edges are forbidden

7 Future outlook

A possible further extension is the Human-Interaction-

Matrix (HIM) and the Human-Impact-Factor (HIF) repre-

sent the tools chosen here for integrating the human into an

artificial Ant Colony solver. Their definition and their usage

by the artificial agents were designed as to have no impact

on the colony physical evolution (the pheromone deposited

on edges). These two new structures only influences the

colony decisional feature.

Human-Interaction-Matrix (HIM) HIM is a symmetric, pos-

itive matrix of dimension n, where n is the TSP instance

dimension. The human sets its non-zero values as proba-

bilities for realizing his/her decisions (Table 2). The sums

on each column and each row must be at most 1. If such a

sum is 0, then the ant staying in the corresponding vertex

chooses the next vertex completely human-free. If the sum

is 1, then the ant beginning its tour is just a human-reactive

agent, with no decision power; the same situation is when all

the available vertices have non-zero HIM values. The other

cases model a human-ant collaboration as solution con-

struction. This matrix may be dynamically modified by the

human’s decisions. If the human decides that one edge is no

longer of interest, the corresponding two HIM values (due

to the symmetry) are set to zero and the ants will proceed

without human intervention. The modification of HIM and

the solutions’ construction are two asynchronous processes.

Human-Impact-Factor (HIF) The HIF is the variable inter-

pretation of HIM by each ant. When an ant begins its tour in

vertex B, there are 50% chances to go to C. In the other 50%

of the cases, when the ant does not go to C, it moves based

on the algorithm’s transition rules, but C is excluded from

the set of destinations. When an ant begins its tour in vertex

C, there are 50% chances to go to B and 10% chances to go

to E (Fig. 12). If neither B nor E are chosen, then the imple-

mented algorithm decides where to go, excluding B and E

from the available vertices. During the solution construc-

tion, HIM is the sum of the values from the corresponding

column (or row) for the available moves. The situation

when a tour is already started is discussed in the following

section.

Of course, other operational methods could be imagined

in order to include the human as a procedural module into a

solver. The solving process and the human activity here are

designed to run sequentially. More elaborated implemen-

tations could allow parallel executions, with sophisticated

communication frameworks and unified (human, computer,

collaborative) control.

The current implementation and the previous version

from [26] could be further developed or used as local search

methods. Extensions could consider edge blocking, when

ants are forced to obey the edge exclusion from the available

choices, or the asymmetric options for the human settings.

If a larger instance clearly has several vertex clusters,

then it can be split into several smaller instances, and the

method presented here could be used to solve each cluster.

The reason for the clusterization strategy is that the humans

are very good in solving reasonably small TSP instances.

Humans also could provide advices at this final step, as they

Fig. 12 Example of the human interaction in guiding ants, based on

Table 2. Initially the matrix HIM is empty (red squares mean loops are

excluded); HIM=0.5 (blue squares) guide the ants to use the available

edge (B C) in 50% of the cases. HIM=0.1 (green squares) guide the

ants to use the available edge (C E) in 10% of the cases. If the edges

(B C) and (C E) are not used, then the ants move based on their transi-

tion rule only to the available vertices having zero values in HIM (light

blue squares)
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could observe topological properties, unavailable to arti-

ficial agents; other similar ideas are presented in [79–81].

8 Conclusion

In this work we have shown that the iML approach [11]

can be used to enhance the results provided by the current

TSP solvers. The human-computer co-operation is used for

developing a new model, which was successfully instanti-

ated [21]. This investigation complements other rewarding

approaches. The repeated human interventions can orient

the search through promising solutions. Gamification uses

the theories of game playing in various contexts, for solv-

ing difficult problems. In such cases, gamification can be

used as the human and the computer form a coalition, hav-

ing the same goal. Several future research directions can

be opened by our work. One interesting investigation is to

translate the iML ideas in order to solve other similar real-

world situations, for example on protein folding. Another

challenge is to scale up this implementation on complex

software packages. The most interesting part is surely to

investigate re-traceability, interpretability and understand-

ability towards explainable-AI. Here we envision insights

in causality research (a.k.a. explanatory research to iden-

tify cause-and-effect relationships [82]), as well as practical

applications in the medical domain, e.g. for education and

decision support.
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78. Stützle T, Hoos HH (2000) Max–min ant system. Fut Gen Comput

Syst 16(8):889–914
79. Hund M, Boehm D, Sturm W, Sedlmair M, Schreck T, Ullrich

T, Keim DA, Majnaric L, Holzinger A (2016) Visual analytics

for concept exploration in subspaces of patient groups: making

sense of complex datasets with the doctor-in-the-loop. Brain Inf

3(4):233–247
80. Stoean C, Stoean R (2014) Support vector machines and

evolutionary algorithms for classification. Springer, Cham
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