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Abstract. Snakes have become a standard image analysis technique with sev-
eral variants now in common use. We have developed a software package called
“United Snakes”. It unifies the most important snake variants, including finite
difference, B-spline, and Hermite polynomial snakes, within the framework of a
general finite element formulation with a choice of shape functions. Furthermore,
we have incorporated into united snakes a recently proposed snake-like technique
known as “livewire”, via a method for imposing hard constraints on snakes. Here,
we demonstrate that the combination of techniques in united snakes yields gen-
erality, accuracy, ease of use, and robustness in several medical image analysis
applications, including the segmentation of neuronal dendrites in EM images,
dynamic chest image analysis, and the quantification of growth plates.

1 Introduction

Snakes (active contour models) [8] have met the challenge of extracting clinically useful
information from medical images in numerous applications to a wide range of medical
image analysis tasks, including segmentation, registration, tracking, and shape analy-
sis [14, 18]. Extensive research activity worldwide over the past decade has resulted
in a host of snake variants (e.g., finite element snakes [5], B-snakes [15, 3], Fourier
snakes [19]) as well as snake-like “livewire” techniques [16, 2, 17, 6]. The result is a
confusing array of choices for the user.

There exists a need for definitive software which unites the best features of the var-
ious snake(-like) techniques in a portable, reusable package. To this end, we have de-
veloped United Snakes [11] in Java as a JavaBean (reusable Java software component).
United snakes unify the most important snakes variants, including finite difference, B-
spline, and Hermite polynomial snakes, in a comprehensive finite element framework,
where any particular type of snake can be chosen by simply changing the finite element
shape functions. Furthermore, united snakes combine snakes and livewire via a simple
yet effective method for imposing constraints.

Hence, we offer a general purpose tool for interactive medical image analysis that
provides more flexible control than its component techniques alone while reducing the
need for user interaction. In the remainder of the paper, we will describe united snakes
and demonstrate their generality, accuracy, ease of use, and robustness using clinical
images from several different medical image analysis projects.



2 United Snakes

This section presents a non-mathematical description of united snakes. The relevant
mathematical formulations are found in [11]).

2.1 Snakes

A snake is a dynamical system taking the form of a parametric contour in the image
plane, whose shape is dictated by a potential energy comprising a contour deforma-
tion term and an image term. The final shape of the snake results when the dynamical
system reaches equilibrium, corresponding to a minimum of the potential energy. Tra-
ditionally, a snake is initialized manually by the user or automatically through image
processing operators with a rough approximation to an image feature of interest (edge,
boundary, etc.). If the snake has been initialized appropriately, it will accurately localize
and conform to the image feature. With a dynamic snake it is natural to incorporate user
guidance via constraints in order to drive the snake out of one local energy minimum
into another, and it is also possible to track moving objects in image sequences.

2.2 Finite Element Framework

Several variants of the original finite difference formulation [8] have been proposed in
an effort to improve its performance in some respect (e.g. to decrease initialization sen-
sitivity, increase the range of object shapes that can be modeled, decrease noise suscep-
tibility, improve segmentation reproducibility for a class of objects, etc.). Finite element
snakes [5, 13], B-snakes [15, 3], and Fourier descriptor snakes [19] are representative
examples of these variants.

We have unified several snake variants within a finite element framework with
different shape functions: Hermitian, B-spline, NURBS [20], Catmull-Rom, Bézier,
Fourier, and Dirac delta. The shape functions generate different stiffness matrices and,
in turn, yield different snake behaviors suitable for different tasks. For example, snakes
that use B-spline shape functions are typically characterized by a low number of de-
grees of freedom, typically use polynomial basis functions of degree 2 or higher, and
are inherently very smooth. Therefore, these “B-snakes” [15, 3] can be effective in seg-
mentation or tracking tasks involving noisy images and where the target object bound-
aries may exhibit significant gaps in the images. Alternatively, object boundaries with
many fine details or rapid curvature variations may best be segmented by a snake that
uses simpler shape functions and many degrees of freedom such as the finite difference
snake [8]. The unification of different shape functions in a single framework enhances
the range of object modeling capabilities.

2.3 Initialization

An accurate initialization is generally needed in order for the snake to lock onto the
image features. Therefore, researchers have been actively investigating techniques to
mitigate the sensitivity of snakes to their initialization. Among these techniques is the



use of an inflation force [5], the use of a chamfer distance map [5] and gradient vector
flow [21]. These techniques can work well if the image feature map is relatively clean.
However, most clinical images are noisy, contain many uninteresting edges, or texture
is present. Hence, these more automatic techniques do not work as expected. For this
reason, we are exploring an alternative direction—instead of attempting to automati-
cally remove or decrease initialization sensitivity, we seek to increase the efficiency of
interactive initialization. In particular, we enable the user to initialize snakes quickly
and with minimal effort by exploiting the strengths of the livewire technique.

2.4 Livewire

Livewire is a recently proposed interactive boundary tracing technique [16, 2, 17, 6].
Although it shares some similarities with snakes—it was originally developed as an
interactive 2-D extension to previous stage-wise optimal boundary tracking methods—
it is generally considered in the literature as a competing technique to snakes. Like
snakes, the idea behind the livewire technique is to allow image segmentation to occur
with minimal user interaction, while at the same time allowing the user to exercise
control over the segmentation process. However, livewire realizes the idea differently
from snakes.

In livewire, the user places an initial seed point near the boundary of the object of
interest to begin the segmentation process. As the cursor, or free point is moved around,
the current calculated boundary, the livewire or trace, is interactively displayed from
the seed point to the free point. If the displayed trace is acceptable, the free point may
be collected as an additional seed point, and the trace between the two adjacent seed
points is frozen (locked). Each trace given by the livewire is the path with minimal
cost between the two seed points resulting from the application of two-dimensional
dynamic programming [6] or Dijkstra’s graph search algorithm [17] with a local cost
function. The local cost function assigns a lower cost to image features, such as edges,
and consequently the livewire tends to stick to the object boundary guided with the
seed points from the user. The resulting livewire boundaries are piecewise optimal (i.e.
optimal between seed points), while the snake gives a global optimal solution over the
entire contour.

2.5 Union of Snakes and Livewire

With livewire, the user has no control of the traces between seed points other than
by backtracking. When the shape of the object boundary is complex, or when it is
near other strong but uninteresting object boundaries, many seed points are needed
in order to generate an acceptable result. Furthermore, when a section of the desired
object boundary has a weak edge relative to a nearby strong edge, the livewire snaps
to the strong edge rather than the desired weaker boundary. A method called on-the-fly
training has been proposed to mitigate this problem [17]. However, the method relies on
the assumption that the edge property is relatively consistent along the object boundary.

Livewire is fundamentally image-based. Thus, it cannot effectively bridge gaps
where the desired object boundaries are missing, and the smoothness of the traces can-
not be guaranteed. Therefore, it is desirable to allow the user to exercise control over the



livewire traces between seed points, impose smoothness on livewire traces, and bridge
gaps along object boundaries. This is what snakes are very good at doing. Snakes adhere
to edges with sub-pixel accuracy and they may also be adjusted interactively as para-
metric curves with intuitively familiar physical behaviors. Moreover, unlike livewire,
snakes have the power to track moving objects.

In most cases, however, livewire can quickly give much better results than casual
manual tracing. Hence, the resulting livewire boundary can serve to quickly and effec-
tively initialize a snake. The livewire seed points carry the user’s prior knowledge of the
object boundary. They can therefore serve as either hard or soft point constraints for the
snake, depending on the user’s confidence in the accuracies of the livewire seed points.

Because a livewire-traced initial object boundary is usually more accurate than a
hand-drawn boundary, the incorporation of the seed points provided by the livewire
trace as snake constraints results in a snake that very quickly locks onto the desired
object boundary. If necessary, the user may correct errors inherited from the livewire-
generated boundary, by applying mouse-controlled spring forces to the snake. Because
the user still has the opportunity to correct the errors on the traces as the snake is de-
forming, the number of seed points needed to generate the initial livewire object bound-
ary can be further reduced.

The combination of snakes and livewire relies on an efficient constraint mechanism.
A constraint on a snake may be either soft or hard. Hard constraints generally compel
the snake to pass through certain positions or take certain shapes [7, 1], while soft con-
straints merely encourage a snake to do so. Two kinds of soft constraints, springs and
volcanos, were described in the original finite difference snakes paper [8] and they are
incorporated into our finite element formulation. A simple yet efficient way to impose
hard constraints on snakes for the integration of snakes and livewire is to properly up-
date the stiffness matrix and encode constraint values in the system force vector. This
approach maintains the symmetry of the stiffness matrix for economical skyline storage
and efficient computation via a single factorization [11]. Since they are encoded in the
system force vector, the constraint values may be updated and other hard (or soft) con-
straints may be added as the snake is deforming. Therefore, the user may dynamically
adjust the constraints to refine the object boundary during snake deformation.

2.6 Summary

To summarize, the united snakes software unites several snake variants with livewire
to provide a general purpose tool for interactive medical image segmentation which
amplifies the efficiency, flexibility, and reproducibility of the component techniques.
United snakes offer more control for relatively less user interaction. As it quickly locks
onto the image features of interest with reasonable tolerance to errors in the livewire,
the snake fully exploits the user guidance and expert prior knowledge reflected captured
by the initial livewire trace.

As an initial demonstration that united snakes improves upon the robustness and
accuracy of its component techniques, Fig. 1 shows a synthetic image of a known curve
degraded with strong Gaussian white noise (variance 0.25). Given its image-based na-
ture, the livewire is sensitive to noise as shown in Fig. 1(a). A snake initialized with the
livewire gives a better result (Fig. 1(b)). Fig. 1(c) shows that the united snakes result



(a) (b) (c)

Fig. 1. Performance of united snakes demonstrated using a synthetic image with strong Gaussian
white noise (variance 0.25). (a) A livewire is sensitive to noise (the required seed points are
shown). (b) The united snake is robust to noise and accurately conforms to the boundary. (c)
The united snake segmentation is close to the ideal boundary. The superior performance is a
consequence of the imposed hard constraints (indicated by asterisks in (b)), without which the
snake would slip away from high curvature points.

is very close to the boundary in the ideal image, despite the strong noise. This per-
formance is a consequence of the imposed hard constraints, without which the snake
would slip away from high curvature points.

3 Applications

In this section, we demonstrate the potential of the united snakes technique in a series
of experiments with medical images.

3.1 Segmenting Neuronal Dendrites in EM Images

A neuronal dendrite is the receiving unit of a nerve cell. The area of contact between the
dendrites of different cells is called a synapse and is located on the dendritic spines. In
humans, changes in dendritic spines are seen with aging and with diseases that affect the
nervous system, such as dementia, brain tumors and epilepsy [4]. Detailed anatomical
models of dendritic spines and their synapses will provide new insights into their func-
tion, thus providing better opportunities to understand the underlying causes and effects
of these diseases. To build such models, the dendrite must be segmented from the sur-
rounding tissue in positive electron micrography (see [4] for a detailed description of
how snakes are used in reconstruction of 3D nerve cell models from serial microscopy).
Here, we are interested in localizing nerve cell membranes, which appear dark in posi-
tive micrography.

In the United Snakes system, the user begins an image segmentation task using a
livewire. An initial seed point is placed near the boundary of the object of interest.
As the cursor, or free point, is moved around, the livewire, or trace, is interactively
displayed from the seed point to the free point. If the displayed trace is acceptable, the
free point is collected as an additional seed point.



We can capture an approximate cell boundary in Fig. 2(a) with just three seeds. The
livewire tends to stick to the object boundary using the seed points as a guide. The trace
between the two adjacent seeds is frozen. The user has no further control over these
traces other than backtracking. In order to generate a more accurate result in the area
indicated by a rectangle, more seed points may be placed as in Fig. 2(b). Although the
livewire boundary is somewhat jagged and exhibits some small errors, it is in general
as accurate as manual tracing, but more efficient and reproducible.

Next, we instantiate a snake using the livewire-generated boundary to initialize the
snake and using the seed points to constrain it. The user may select a shape function
for the snake which is suitable for the object boundary. In our cell segmentation exam-
ple, if the livewire result with five seed points is used to construct a finite difference
snake, it is able to tolerate the livewire errors and very quickly and accurately lock onto
the cell boundary without any need for further user interaction (Fig. 2(c)). Using the
livewire result with three seed points, the snake becomes “stuck” in the problematic
area (Fig. 2(d)) due to the livewire-generated boundary errors. However, this situation
can be easily remedied using the mouse spring (Fig. 2(e)). Furthermore, as the snake
is deforming, the hard constraints may be adjusted to refine the snake boundary. In
Fig. 2(f) for example, constraint point 2 is moved to illustrate this snake boundary ad-
justment capability. By contrast, it is not nearly as easy to adjust a seed point in the
livewire algorithm.

We refer to this form of livewire-snake integration as static integration—once the
livewire result is used to initialize a snake, the segmentation process continues using
only the constrained, user-controlled snake. The user may also set the united snake
system to a more dynamic integration “mode”—once the livewire trace between the
last seed point and the free point is formed, a corresponding open snake with constraints
at the seed point and the free point is constructed and automatically set in motion for
deformation. When the free point is collected as a seed point, this open snake is merged
with the snake constructed from the previous livewire traces (if they exist). All seed
points are automatically applied as constraints. Fig. 3 illustrates this process where “+”
indicates the current free point. The livewire and snake results are shown separately
in Fig. 3(a) and (b) respectively. Since the snake is automatically set in motion, the
user may use the mouse spring to correct it in any problematic areas along the snake
(Fig. 3(c)).

3.2 Dynamic Chest Image Analysis

The aim of the dynamic chest image analysis project is to show focal and general ab-
normalities of lung ventilation and perfusion based on a sequence of digital chest flu-
oroscopy frames collected over a short time period (typically about 4 seconds) [10, 12,
9]. The project uses only plain X-ray fluoroscopy (with and without breathing) for the
ventilation and perfusion studies. Consequently, the radiation dose to patients is low
and, unlike a nuclear medicine scan, no preparation is required before the examination
and radioactive isotopes are unnecessary. The information gleaned from these images
is helpful in several aspects of cardiothoracic radiology. Diseases directly related to
the parameters being measured include pulmonary embolism, pulmonary emphysema,
cardiac failure, congenital heart disease and other diseases (tumors, obstructive lesions
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Fig. 2. Using united snakes in static mode to segment neuronal EM images. (a) Approximate
livewire boundary using just 3 seeds (blue rectangle indicates a problem area). (b) Additional
seed points can improve livewire’s accuracy. (c) Initialized from the livewire in (b), the snake
tolerates livewire errors and locks on cell boundary without further user interaction. (d) Initialized
from the livewire in (a), the snake “sticks” in the problem area, but it is easily adjusted (e) using
the mouse. (f) Snake adjustment capability illustrated by moving constraint point 2.
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Fig. 3. Using united snakes in dynamic mode to segment neuronal EM images. (a) Livewire
boundary showing 3 seeds and free point (blue rectangle indicates a problem area). (b) Open
snakes dynamically generated from the livewire trace and constrained by seed and free points. (c)
Third snake corrected in the problem area using the mouse.



or infections) which may change pulmonary ventilation and/or perfusion. An essential
first step for ventilation and perfusion analysis is the delineation of the lungs and the
heart from each frame in a chest image sequence. The united snakes system is used to
perform the delineation. Typically most of the user interactions to initialize and edit the
snake are applied to the first image of the sequence only. The resulting snake is then
propagated and deformed through the remaining frames of the image sequence.

As the chest image (Fig. 4(a)) shows, some segments of the lung boundary have
strong edges and some segments are rather weak. The elliptical viewport generates very
strong edges, consequently, part of the livewire between seed point 4 and seed point 1
snaps to the strong viewpoint edges rather than the desired lung boundary (Fig. 4(b)).
On-the-fly training is not effective since the lung boundary does not exhibit consistent
edge properties. Thus, the livewire alone requires much backtracking and many seed
points (Fig. 4(c)) to generate an accurate lung boundary.

We construct a Hermite snake from the livewire traces in Fig. 4(b) and the first seed
is used as a hard constraint on the snake since the edge information there is very weak.
The snake can easily be pulled out of the strong edge and locked onto the lung bound-
ary (as shown in Fig. 4(d)) without the use of on-the-fly training. Thanks to this hard
constraint, it can firmly stick to the lung apex and follow the lung motion throughout
the entire chest image sequence with minimal user interaction, by propagating the result
from one frame to next frame. The first image contains the largest lung boundary in the
sequence while the smallest lung boundary is shown in Fig. 4(e). Fig. 4(f) shows an
additional example.

In the case of the heart, Fig. 5(a) illustrates that part of the livewire trace from seed
point 1 to seed point 2 is a straight line where the cardiac boundary is missing. Further-
more, at the bottom of the image, the livewire technique does not generate an acceptable
cardiac boundary (i.e. from seed point 3 to seed point 1), so we have manually drawn
a rough curve between the points. A least squares approximation to the initial livewire
curve with a cubic B-spline with 5 knots (shown in Fig. 5(b)) can be used as an ini-
tialization to a B-snake. A hard constraint may be further imposed on control polygon
node 3 to effectively bridge the gap along the heart boundary. The result is shown in
Fig. 5(c) after only a few iterations. The B-snake then is used to track the heart motion
through the image sequence.

3.3 Quantifying Growth Plates in MR images

The aim of the growth plate project is to determine the right time for surgery for patients
with abnormal growth of the legs. To this end, the four tiny (essentially horizontal) lines
in the image (Fig. 6(a)) must be detected to quantify the growth plate.

In this scenario, it is difficult for the user to manually trace an initial contour for
a snake because of the small size of the lines and the small distance between each
pair of lines. However, livewires can be used to quickly generate an acceptable snake
initialization with just two or three seed points as shown in Fig. 6(b). In the final results
shown in Fig. 6(c), two hard boundary conditions are applied on each of four finite
difference snakes.
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Fig. 4. Lung delineation in X-ray fluoroscopy image sequence. (a) First image in sequence. (b)
Livewire generated boundary. (c) Livewire trace requires backtracking and additional seed points
to correct boundary delineation. (d) Hermite snake constructed from livewire trace in (b) and
constrained by seed point 1. (e–f) Segmentation of other images in the sequence.
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Fig. 5. Heart delineation in X-ray fluoroscopy image sequence. (a) Initial livewire generated
boundary. (b) Initial B-spline snake (red) and control polygon (blue) constructed from livewire
trace. Control point 3 is used as a hard constraint. (c) Resulting segmentation.
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Fig. 6. Quantifying growth plates in MR images. (a) An MR growth plate image. (b) The livewire
results. (c) The united snakes results.
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Fig. 7. Segmenting a vessel in an angiogram. (a) The image used in [17]. (b) Livewire segmenta-
tion. (c) United snake generates boundaries comparable to ideal boundaries in [17].

(a) (b) (c)

Fig. 8. Segmenting the outer boundary of a vertebra. (a) The image used in [17]. (b) Livewire
segmentation. (c) United snake boundary is comparable to the ideal boundary in [17].



3.4 Other Segmentation Examples

We have applied united snakes to two other medical images, an angiogram (Fig. 7)
and a vertebra image (Fig. 8), to which Mortensen and Barrett applied their livewire
algorithm in [17]. With only a few seeds, united snakes generate the boundaries shown
in Figs. 7(c) and 8(c), which are comparable to the ideal boundaries used as references
in [17].

4 Conclusion

We have developed a software package called “United Snakes” which unites several
snake variants with livewire to offer a general purpose tool for interactive medical im-
age segmentation and tracking. The union of these techniques provides more flexible
control than the individual techniques while reducing user interaction. We have demon-
strated the generality, accuracy and robustness of united snakes in applications to the
segmentation of neuronal dendrites in EM images, to dynamic chest image analysis, and
to the quantification of growth plates, among other segmentation examples. It appears
that united snakes are in several ways superior to livewire or snakes alone.
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